Mr. Frederic Dappozze | Analytical Chemistry | Best Researcher Award

Mr. Frederic Dappozze | Analytical Chemistry | Best Researcher Award

Ircelyon at Centre National de la Recherche Scientifique, France

Frédéric Dappozze, MSc (1997), is a seasoned CNRS engineer with a focused trajectory in analytical chemistry. His professional journey commenced at Danone’s Vitapole Research Center, followed by a pivotal role in the INRA-Versailles unit dedicated to xenobiotics and environmental studies. In 2005, he integrated into Dr. Chantal Guillard’s team within the “Laboratoire d’Application de la Chimie à l’Environnement,” which evolved into the “Institut de Recherches sur la Catalyse et l’Environnement de LYON” (IRCELYON) by 2007. Renowned for his expertise in advanced separation methods, particularly gas and liquid chromatography, he is also deeply involved in devising and optimizing experimental protocols for assessing photocatalytic activities. His multidisciplinary background bridges industrial application and academic precision, making him a cornerstone in environmentally oriented chemical research. Frédéric continues to contribute significantly to the intersection of analytical innovation and sustainable environmental science, positioning him as a valued contributor within France’s scientific community.

Professional Profile 

Education 

Frédéric Dappozze earned his Master of Science (MSc) degree in 1997, specializing in analytical chemistry, a field demanding precision, critical thinking, and technical mastery. His academic training laid a robust foundation in instrumental techniques, data interpretation, and the chemical behavior of environmental contaminants. This rigorous education fostered his proficiency in chromatographic analysis and sample preparation—skills that would later become central to his professional identity. His postgraduate work was notably research-intensive, emphasizing both theoretical comprehension and applied chemical methodology. The academic exposure to interdisciplinary studies, encompassing biochemistry, environmental science, and physical chemistry, further shaped his analytical orientation. His scientific rigor, instilled through structured coursework and hands-on laboratory modules, positioned him for seamless transition into high-level research environments. The degree not only marked a personal milestone but also served as a launching pad for a career dedicated to analytical precision and environmental responsibility in both corporate and national research frameworks.

Professional Experience 

Frédéric’s professional odyssey commenced at Danone Vitapole Research Center, where his role intersected food science and health-oriented chemistry. Here, he honed his aptitude in practical experimentation, contributing to the analytical evaluation of complex biological matrices. Subsequently, his tenure at INRA-Versailles in the “Xenobiotics and Environment” division deepened his insight into chemical residues, environmental pollutants, and bioaccumulation dynamics. In 2005, he joined Dr. Chantal Guillard’s esteemed group at the Laboratoire d’Application de la Chimie à l’Environnement. When the laboratory evolved into IRCELYON in 2007, Frédéric’s responsibilities expanded, incorporating methodological development, inter-laboratory coordination, and maintenance of high-precision instrumentation. His command of gas and liquid chromatography and custom-designed photocatalytic testing systems has made him an indispensable figure in environmental catalysis studies. Across every station of his career, his work ethic, technical versatility, and problem-solving mindset have enabled impactful scientific contributions and supported collaborative projects across academic and industrial landscapes.

Research Interest 

Frédéric Dappozze’s research interests lie at the confluence of analytical chemistry and environmental remediation. His focal expertise in separation science—particularly gas and liquid chromatography—enables the detection and quantification of pollutants, organic residues, and transformation products in complex matrices. He is equally committed to the experimental evaluation of photocatalytic activity, using tailored setups to monitor reaction kinetics and efficiency under controlled light exposure. His current endeavors within IRCELYON reflect an ambition to refine photocatalysts for atmospheric purification and wastewater treatment. By merging analytical rigor with environmental pragmatism, Frédéric aims to advance sustainable chemical processes and contribute to pollution mitigation strategies. He also explores the interface between surface chemistry and light-induced catalysis, seeking to elucidate mechanisms governing photocatalytic degradation pathways. This pursuit of interdisciplinary knowledge not only enhances environmental diagnostics but also informs the design of next-generation materials. His work underscores a commitment to actionable science addressing modern ecological challenges.

Award and Honor

While specific individual awards for Frédéric Dappozze are not publicly listed, his longstanding affiliation with CNRS and inclusion in high-impact research groups like IRCELYON speak volumes about his professional recognition. Being part of a nationally prestigious institute such as CNRS (Centre National de la Recherche Scientifique) signifies a career built on scientific merit, peer-reviewed contributions, and institutional trust. His role in shaping experimental methods for photocatalytic assessment and chromatography-based pollutant detection positions him as a specialist often called upon for collaborative efforts and technical mentorship. Contributions to national and European research initiatives, particularly those centered on environmental sustainability and catalysis, suggest consistent professional acknowledgment. His involvement in state-of-the-art projects and publications reflects the respect he commands within his field. These cumulative acknowledgments, though not always formalized as awards, represent enduring honors in the academic research ecosystem where impact and reliability are the true benchmarks of distinction.

Publications Top Notes 

  • Title: One-Step Synthesis of CuxOy/TiO₂ Photocatalysts by Laser Pyrolysis for Selective Ethylene Production from Propionic Acid Degradation
    Authors: Juliette Karpiel, Pierre Lonchambon, Frédéric Dappozze, Ileana Florea, Diana Dragoe, Chantal Guillard, Nathalie Herlin-Boime
    Year: 2023
    Citation: https://doi.org/10.3390/nano13050792
    Source: Nanomaterials (MDPI)

  • Title: First PEM Photoelectrolyser for the Simultaneous Selective Glycerol Valorization into Value-Added Chemicals and Hydrogen Generation
    Authors: Jie Yu, Jesús González-Cobos, Frédéric Dappozze, Nicolas Grimaldos-Osorio, Philippe Vernoux, Angel Caravaca, Chantal Guillard
    Year: 2023
    Citation: https://doi.org/10.1016/j.apcatb.2023.122465
    Source: Applied Catalysis B: Environmental (Elsevier)

  • Title: TiO₂ Catalyzed Dihydroxyacetone (DHA) Conversion in Water: Evidence That This Model Reaction Probes Basicity in Addition to Acidity
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.3390/molecules27238172
    Source: Molecules (MDPI)

  • Title: Correlation between Photocatalytic Properties of ZnO and Generation of Hydrogen Peroxide—Impact of Composite ZnO/TiO₂ Rutile and Anatase
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.3390/catal12111445
    Source: Catalysts (MDPI)

  • Title: Influence of the Micro-Nanostructuring of Titanium Dioxide Films on the Photocatalytic Degradation of Formic Acid under UV Illumination
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.3390/nano12061008
    Source: Nanomaterials (MDPI)

  • Title: Acetal Photocatalytic Formation from Ethanol in the Presence of TiO₂ Rutile and Anatase
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1007/s43630-022-00244-w
    Source: Photochemical and Photobiological Sciences (Springer)

  • Title: Corrigendum to “Influence of Graphene and Copper on the Photocatalytic Response of TiO₂ Nanotubes”
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1016/j.mssp.2022.106668
    Source: Materials Science in Semiconductor Processing (Elsevier)

  • Title: Coupling of Photocatalysis and Catalysis Using an Optical Fiber Textile for Room Temperature Depollution
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1016/j.chemosphere.2022.133940
    Source: Chemosphere (Elsevier)

  • Title: High Photocatalytic Activity of Aerogel Tetragonal and Monoclinic ZrO₂ Samples
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1016/j.jphotochem.2022.113970
    Source: Journal of Photochemistry and Photobiology A: Chemistry (Elsevier)

Conclusion 

Frédéric Dappozze epitomizes the modern analytical chemist—precise, adaptable, and deeply invested in environmental stewardship. His career trajectory from industrial laboratories to national research centers showcases a seamless blend of applied science and academic inquiry. As a CNRS engineer, he continues to champion method development in separation technologies and photocatalytic assessment, contributing critical insights to the environmental catalysis landscape. His technical acumen, collaborative mindset, and dedication to scientific precision have made him an invaluable resource within IRCELYON and beyond. Frédéric’s work does not exist in isolation but rather resonates across disciplines, influencing projects in atmospheric cleaning, water treatment, and green chemistry. Whether optimizing instrumentation or mentoring emerging researchers, he remains a driving force in advancing chemical solutions for sustainable futures. His enduring contributions highlight a career committed not just to knowledge acquisition, but to applying that knowledge for tangible ecological and societal benefit—an ethos at the heart of impactful scientific practice.

Rihab Chhoud | Chemistry | Best Researcher Award

Dr. Rihab Chhoud | Chemistry | Best Researcher Award

Postdoctoral Researcher at Faculty of Pharmacy of Monastir, Tunisia

Dr. Rihab Chhoud 🇹🇳 is a dynamic Tunisian chemist specializing in the phytochemical and pharmacological exploration of bioactive compounds from oasis fruit trees 🌴. With a Ph.D. in Chemistry from the Faculty of Sciences of Monastir (2022), her work integrates organic synthesis, biomolecule characterization, and drug discovery. A seasoned researcher with international exposure, Dr. Chhoud conducted significant doctoral internships in Italy 🇮🇹 and Spain 🇪🇸, enriching her scientific depth. Her postdoctoral research focuses on green extraction of oleuropein from organic olive leaves 🌿 for nutraceutical applications. She has authored impactful publications in journals like International Journal of Biological Macromolecules and Chemical Biodiversity, targeting antidiabetic, antiherpetic, and antioxidant therapies. Passionate about soft skills and academic writing, she also actively trains students in chemistry-related disciplines. Dr. Chhoud exemplifies the new wave of innovative, globally-aware women scientists making substantial contributions to sustainable health sciences 🌍👩‍🔬.

Professional Profile 

🎓 Education

Dr. Rihab Chhoud’s academic journey began with a fundamental license in Chemistry from Gabes University 🎓. She pursued a Research Master’s in Organic Synthesis at Monastir, delving into the biomolecular richness of Tunisian date seeds 🌰. Her Ph.D. (2017–2022) at the Laboratory of Advanced Materials and Interfaces (LIMA) showcased her multidisciplinary strengths—merging chemistry, pharmacology, and bioactivity profiling. Supervised by Prof. Hatem Majdoub, her doctoral research examined biologically active compounds from oasis fruit trees, blending traditional knowledge with modern analytical tools. Additional certifications in academic writing, soft skills, and molecular docking reflect her commitment to holistic scientific development 📚. Her global perspective was enhanced by internships in Italy and Spain, sharpening her technical fluency and international communication 🌐. From high school distinctions to postgraduate excellence, Dr. Chhoud’s educational background is rooted in resilience, curiosity, and consistent academic merit. Her learning path is a testament to dedication, purpose, and interdisciplinary vision 🌟.

🧪 Professional Experience

Dr. Chhoud has cultivated rich professional experience in academia and international research environments 👩‍🏫. As a postdoctoral researcher at the Faculty of Pharmacy, Monastir (2025–present), she’s engaged in green chemistry innovations involving oleuropein extraction from organic olive leaves 🌿. She previously served as a temporary teacher, delivering practical chemistry lessons ranging from biochemistry to chromatographic techniques. Her career includes prestigious doctoral research stays in Spain and Italy, exploring bioactive substances and their therapeutic potential under expert mentorship 🇪🇸🇮🇹. From 2014 to 2023, she consistently pursued opportunities to refine her scientific writing, English proficiency, and lab methodology through summer schools, soft-skill workshops, and publishing programs 📖. Her ability to transition seamlessly between labs, classrooms, and international forums marks her as a versatile and proactive professional. Dr. Chhoud’s career pathway embodies a globalized, interdisciplinary, and education-oriented model, empowering her to address complex chemical and biomedical challenges with clarity and creativity 🧬.

🧠 Research Interests

Dr. Chhoud’s research interests lie at the intersection of natural product chemistry, green extraction technologies, and biomedical applications 🌿💊. Her investigations have centered on isolating and characterizing polyphenols, polysaccharides, and fatty substances from Tunisian plant sources, particularly date palms and olive leaves 🌴. She’s deeply invested in understanding the pharmacological properties of these compounds, such as antidiabetic, wound-healing, and antiviral effects. Her advanced techniques include UPLC-MS analysis, molecular docking, and structure–activity relationship (SAR) studies 🔬. Currently, her work on oleuropein optimization for nutraceuticals aligns with global trends in sustainable healthcare and functional foods. Dr. Chhoud is also intrigued by biopolymers and their enzymatic behaviors in disease models such as Parkinson’s 🧬. Whether studying enzyme inhibition or plasma antioxidant levels, her aim is to extract value from nature using chemistry, for practical therapeutic benefit. Her research bridges tradition and innovation—transforming indigenous flora into global health solutions 🌍💡.

🏆 Awards and Honors

While Dr. Chhoud’s formal accolades are still emerging, her academic path and global participation reflect significant recognition and promise 🎖️. She was competitively selected for doctoral internships in top labs in Naples and Granada, funded by the Tunisian Ministry of Higher Education and ERASMUS+, respectively 🌍. She has also benefited from advanced training in scientific writing, academic English, soft skills, and computational drug design—showcasing her proactive pursuit of excellence beyond standard curricula 🏅. Her peer-reviewed publications in internationally indexed journals further demonstrate her contributions to cutting-edge research. Participating in events like International Day of Women and Girls in Science underscores her commitment to STEM equity 👩‍🔬✨. Dr. Chhoud’s work represents the intellectual resilience and innovation of North African women in science, and her continuous self-development initiatives signal future accolades at national and international levels 🥇📚.

📚 Publications Top Note 

1. Structural characterization and functional evaluation of polysaccharides extracted from the heart of date palm (Phoenix dactylifera L.): Insights into α-amylase inhibition and antidiabetic potential

  • Authors: Rihab Chhoud

  • Year: 2025

  • Citation (DOI): 10.1016/j.ijbiomac.2025.145425

  • Source: International Journal of Biological Macromolecules

  • Summary:
    This study investigates the structure and function of bioactive polysaccharides derived from the heart of date palm. Using various analytical techniques, the research characterizes their molecular composition and morphology. The polysaccharides exhibit notable α-amylase inhibition, indicating their potential as natural antidiabetic agents by moderating glucose release. These findings support the use of date palm-derived compounds in functional food or therapeutic formulations for diabetes management.


2. Chemical Profile of the Pits Oil from the Tunisian ‘Alig’ Cultivar of Phoenix dactylifera L.: In Vivo Wound Healing Potential Evaluation of a Cream Formulated from the Extracted Oil and Insights from Molecular Docking and SAR Analysis

  • Authors: Rihab Chhoud

  • Year: 2023

  • Citation (DOI): 10.1002/cbdv.202200533

  • Source: Chemistry & Biodiversity

  • Summary:
    This paper reports the chemical composition of oil extracted from the pits of the Tunisian date palm cultivar ‘Alig’. The formulated oil-based cream demonstrated significant wound healing properties in in vivo animal models. Additionally, molecular docking and structure–activity relationship (SAR) analysis identified possible mechanisms behind the bioactivity, suggesting fatty acids and phenolic compounds as key active constituents. The research supports the oil’s use in topical therapies for skin injuries.


3. Identification of an anti-herpetic compound isolated from Pistacia vera L. male floral buds

  • Authors: Rihab Chhoud

  • Year: 2022

  • Citation (DOI): 10.1007/s13205-022-03393-y

  • Source: 3 Biotech

  • Summary:
    The study isolated and identified a bioactive compound from male floral buds of Pistacia vera (pistachio) with anti-herpetic properties. In vitro assays confirmed inhibitory effects against herpes simplex virus (HSV) strains. The compound demonstrated low cytotoxicity and high selectivity index, making it a promising natural antiviral candidate. The work adds value to underexplored parts of the pistachio plant in phytopharmaceutical development.


4. Phytochemical and Bioactivities of Male Flower Buds of Fruit Trees from the Southern Tunisia: Polyphenols UPLC-MS Profiles and Antioxidant Enzymatic Potential in Human Plasma of Parkinson’s Disease Patients

  • Authors: Rihab Chhoud

  • Year: 2022

  • Citation (DOI): 10.1007/s42250-022-00430-4

  • Source: Chemistry Africa

  • Summary:
    This paper explores the polyphenolic composition (via UPLC-MS) of male flower buds from various fruit trees in southern Tunisia and evaluates their antioxidant effects on human plasma from Parkinson’s disease patients. The extracts enhanced enzymatic antioxidant defenses (e.g., SOD, CAT) and reduced oxidative stress markers. The findings highlight the neuroprotective potential of these traditional plant parts, paving the way for complementary therapies in neurodegenerative diseases

🔚 Conclusion

In conclusion, Dr. Rihab Chhoud is a forward-thinking chemist blending rigorous science with social impact 🔍💚. Her interdisciplinary training, international collaborations, and research on bioactive compounds place her at the forefront of sustainable biomedical innovation. A passionate teacher, active researcher, and lifelong learner, she bridges laboratory precision with real-world relevance. Her dedication to natural product discovery and green chemistry aligns with global health and environmental goals. From oasis fruit trees to molecular modeling, her journey is rooted in both local heritage and global vision 🌿🌐. With her expanding publication record and strong academic foundation, Dr. Chhoud is poised to contribute substantially to nutraceutical development, pharmacological science, and academic mentorship. A shining example of Tunisia’s emerging scientific talent, her career holds promise for further breakthroughs in natural therapies and chemical biology. The future looks bright for this devoted researcher, educator, and role model in modern chemistry 🧪✨.