Lei Zhao | Materials Science | Best Researcher Award

Mr. Lei Zhao | Materials Science | Best Researcher Award

Associate professor at Longdong University, China

Dr. Zhao Lei is an Associate Professor at the School of Materials Engineering, Longdong University, with a solid foundation in polymer materials and advanced battery technologies. 🎓 Currently pursuing a Ph.D. in Materials Science at Lanzhou University of Technology, he has earned a Master’s in Materials Processing and a Bachelor’s in Polymer Materials Engineering. 🧪 His research is centered on the failure mechanisms and electrolyte affinity of metal electrodes in metal-based batteries. Over the past five years, he has led multiple cutting-edge projects funded by provincial and municipal agencies, focusing on fast-charging hard carbon anodes and novel carbon fiber membranes for sodium-ion and zinc-based energy storage systems. ⚡ His career progression from assistant lecturer to associate professor reflects his dedication and growth in academic research. 📚 Dr. Zhao’s contributions are paving the way for innovations in sustainable energy storage, making him a strong contender for any prestigious research award. 🏆

Professional Profile 

Orcid

Scopus

🎓 Education

Zhao Lei has built an impressive academic background tailored toward materials science and engineering. 📘 He began his journey with a Bachelor’s degree in Polymer Materials and Engineering from Taishan University (2006–2010), establishing his expertise in macromolecular structures. He then pursued a Master’s in Materials Processing Engineering at Lanzhou University of Technology (2010–2013), where he specialized in materials fabrication and behavior. 🔬 Currently, he is a Ph.D. candidate in Materials Science at the same institution, diving deeper into energy materials, particularly those used in batteries and electrochemical systems. 🔋 This progressive academic path showcases a consistent focus on materials innovation and sustainability. His education blends theoretical knowledge with practical application, laying the groundwork for advanced research in battery failure mechanisms and energy storage materials. Zhao Lei’s dedication to continuous learning and specialized education demonstrates his commitment to academic and technological excellence. 🧑‍🎓

👨‍🏫 Professional Experience

Zhao Lei’s professional trajectory at Longdong University is a testament to his dedication and evolving expertise. 📈 Beginning as a Teaching Assistant in 2013, he steadily advanced through roles in the School of Mechanical Engineering and the School of Intelligent Manufacturing, ultimately becoming an Associate Professor in the School of Materials Engineering by 2024. 🏫 His teaching and research roles span over a decade, during which he has mentored students and engaged in forward-thinking research projects in materials and battery engineering. His cross-disciplinary teaching experience, from mechanical foundations to smart manufacturing, reflects his ability to adapt to emerging educational needs and integrate materials science across domains. ⚙️ Now, in his current role, Zhao is deeply engaged in pioneering studies on electrode materials, with an emphasis on real-world applications in energy storage. His career arc demonstrates resilience, leadership, and academic maturity. 💼

🔬 Research Interest

Zhao Lei’s research is driven by the pressing need for efficient and stable energy storage solutions. 🌍 His primary focus lies in understanding the failure mechanisms of metal anodes in metal-based batteries—a crucial factor in the longevity and safety of next-generation battery systems. 🔋 He also investigates how electrode materials interact with electrolytes, particularly enhancing electrolyte affinity to suppress battery degradation. His projects include studies on asphalt-based hard carbon for fast-charging sodium-ion batteries and zinc-metal anode stabilization for aqueous systems. 💡 He explores cutting-edge techniques such as hierarchical porous carbon microspheres and nanostructured carbon fiber membranes for supercapacitors and energy storage. These research themes not only address current industrial challenges but also align with global efforts toward green and sustainable energy technology. ⚡ Zhao’s work bridges theoretical chemistry and industrial-scale innovation, highlighting his capability as a forward-looking energy materials scientist. 🌱

🏅 Awards and Honors

Although specific award titles are not listed, Zhao Lei has received consistent support and recognition through competitive research grants from the Gansu Provincial Science and Technology Department and the Qingyang Science and Technology Bureau. 📑 The successful leadership of four funded research projects, including high-profile key R&D initiatives and natural science foundation programs, reflects trust in his scientific vision and execution skills. 💼 These grants are highly selective, signaling his capacity to design impactful studies, secure funding, and deliver valuable results. His progression to Associate Professor is itself an academic honor, recognizing both his scholarly contributions and institutional service. 🏆 While formal accolades may follow, Zhao Lei’s growing portfolio of research and grants already positions him as a leader in his field. His career continues to gain momentum, and he is well-poised to achieve further distinctions in battery technology and materials science. 🧠

📚 Publications Top Note 

1. Intercalation mechanism of surfactants in vanadium pentoxides interlayer framework for improving electrochemical performance of zinc metal batteries

  • Authors: [Names not provided; likely includes the user or research team]

  • Year: 2025

  • Citations: 0

  • Source: Journal of Alloys and Compounds

  • Summary:
    This study investigates how surfactant molecules can be intercalated into vanadium pentoxide (V₂O₅) layers to improve the structural stability and electrochemical performance of zinc metal batteries. The modified framework enhances zinc ion diffusion and cycle life.


2. Controllable Nitrogen-Doped Hollow Carbon Nano-Cage Structures as Supercapacitor Electrode Materials

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 0

  • Source: Molecules

  • Summary:
    The paper reports the synthesis of nitrogen-doped hollow carbon nano-cages. Their high surface area and tailored pore structure make them promising electrode materials for high-performance supercapacitors with enhanced capacitance and cycling stability.


3. Lithium ion mediated competitive mechanism in polymer solution for fast phase-inversion toward advanced porous electrode materials

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 1

  • Source: Energy Storage Materials

  • Summary:
    This article presents a novel lithium-ion-driven mechanism in polymer solutions that accelerates phase inversion to create highly porous electrode structures. These are beneficial for applications requiring fast ion transport in batteries or supercapacitors.


4. Improving diffusion kinetics of zinc ions/stabilizing zinc anode by molecular slip mechanism and anchoring effect in supramolecular zwitterionic hydrogels

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 1

  • Source: Journal of Colloid and Interface Science

  • Summary:
    This research explores the use of zwitterionic hydrogels to enhance zinc ion mobility and stabilize zinc anodes. The “molecular slip” mechanism and anchoring interactions within the hydrogel matrix reduce dendrite formation and improve cycling performance.


5. Enhanced charge separation in a CoOx@CdS core-shell heterostructure by photodeposited amorphous CoOx for highly efficient hydrogen production

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 0

  • Source: New Journal of Chemistry

  • Summary:
    This article details the fabrication of a CoOx@CdS core-shell heterostructure with amorphous CoOx photodeposited on the surface. This structure improves charge carrier separation and transfer, enabling more efficient photocatalytic hydrogen evolution.

Conclusion

Zhao Lei is a rising star in the field of materials science and electrochemical energy storage. 🌟 His educational foundation, professional journey, and focused research interests position him at the forefront of sustainable battery innovation. With over a decade of teaching and research experience, he has successfully transitioned into a leadership role within academia, simultaneously contributing to fundamental research and real-world energy applications. 🔄 His grant acquisition and active research trajectory make him a promising candidate for future collaborations, industrial partnerships, and academic awards. As energy challenges mount globally, Zhao’s work on metal anode stabilization and advanced carbon materials holds the potential to impact both science and society. 🌐 He exemplifies the qualities of a best researcher awardee—dedicated, innovative, and impactful. 🏅

Minggang Zhao | Materials Science | Best Researcher Award

Prof. Minggang Zhao | Materials Science | Best Researcher Award

Professor at Ocean University of China

Prof. Minggang Zhao 👨‍🏫 is a distinguished professor and doctoral supervisor at the School of Materials Science and Engineering, Ocean University of China 🌊. He specializes in semiconductor materials and devices 🔬, with over 70 SCI-indexed papers published in top journals like Advanced Functional Materials 📚. A prolific inventor, he holds more than 10 national patents 🧾. His work has attracted national attention, featured in media such as Qilu Evening News 📰. As a dedicated educator, he has been recognized as an excellent teacher and class mentor 🏆. He also leads numerous national research projects 🎯.

Professional Profile:

Scopus

🎓 Education & Experience

  • 🎓 Graduated from Zhejiang University, Department of Materials Science and Engineering

  • 🧪 Trained at the State Key Laboratory of Silicon Materials – Semiconductor Institute

  • 🏫 Currently Professor & Doctoral Supervisor at Ocean University of China

  • 📈 Leads over 10 research projects including National Natural Science Foundation projects

  • 🧾 Holds more than 10 authorized national invention patents

  • ✍️ Published 70+ SCI papers in high-impact journals like Adv. Funct. Mater.

📚 Professional Development 

Prof. Zhao’s career reflects dynamic growth and multidisciplinary expertise 🚀. With a strong foundation in materials science, he has advanced into cutting-edge research in semiconductors, sensors, and nanomaterials ⚙️. Through sustained publication in leading journals and collaboration on national-level projects 🔍, he has built a reputation for innovation and leadership 🧑‍🔬. He mentors Ph.D. students, shapes curricula, and contributes to the academic community with his insights and inventions 🌱. Actively engaged in both fundamental research and real-world applications, his work bridges science and society 🌐, earning media recognition and institutional accolades 🎓📢.

🔬 Research Focus 

Prof. Zhao’s research is deeply rooted in semiconductor materials and functional nanostructures 🌟. His focus spans porous materials, membrane technology, and nanoprobes used in sensing and photoelectric devices 🧫💡. He is particularly committed to addressing challenges in environmental and medical detection 🌍🩺. His interdisciplinary work contributes to sustainable innovation, enabling efficient sensing systems and cleaner technology 🌱. With expertise bridging materials chemistry, nanotechnology, and electronics, Prof. Zhao leads research that impacts fields from green tech to smart healthcare 🧠⚡. His contributions push the boundaries of materials science in both academic and applied contexts 🔧📊.

🏅 Awards and Honors 

  • 🏆 Recognized as an Excellent Teacher at Ocean University of China

  • 🎖️ Honored as an Excellent Class Teacher

  • 📰 Featured in Qilu Evening News, Qingdao Daily, and other national media outlets

  • 🧪 Principal Investigator on over 10 nationally funded research projects

  • 📜 Holder of 10+ authorized national invention patents

Publication Top Notes

1. Fabrication of CQDs/MoS₂/Mo foil for the improved electrochemical detection

  • Authors: Jinghua Shang, Minggang Zhao, Huiyan Qu, Hui Li, Shougang Chen

  • Journal: Analytica Chimica Acta

  • Citation Count: 15

  • Highlights:

    • A novel composite of carbon quantum dots (CQDs), molybdenum disulfide (MoS₂), and molybdenum (Mo) foil was developed.

    • Demonstrated enhanced electrochemical performance, suitable for sensitive detection tasks.

2. Simultaneous electrochemical determination of catechol and hydroquinone in seawater using Co₃O₄/MWCNTs/GCE

  • Authors: Yawen Song, Minggang Zhao, Xingtao Wang, Ying Liu, Shougang Chen

  • Journal: Materials Chemistry and Physics

  • Citation Count: 66

  • Highlights:

    • Developed a cobalt oxide/multi-walled carbon nanotube modified glassy carbon electrode (Co₃O₄/MWCNTs/GCE).

    • Successfully applied for the detection of catechol and hydroquinone in seawater with high sensitivity and selectivity.

3. Fabrication of p-n junction foam for detection of methyl parathion in seawater

  • Authors: Minggang Zhao, Huiyan Qu, Jinghua Shang, Yue Zhang, Shougang Chen

  • Journal: Sensors and Actuators B: Chemical

  • Citation Count: 3

  • Highlights:

    • Focused on p-n junction foam sensors for pesticide detection (methyl parathion).

    • Emphasized use in environmental water monitoring.

4. Synthesis of ZnFe₂O₄/ZnO heterostructures decorated three-dimensional graphene foam as peroxidase mimetics for colorimetric assay of hydroquinone

  • Authors: Xingtao Wang, Minggang Zhao, Yawen Song, Yunpeng Zhuang, Shougang Chen

  • Journal: Sensors and Actuators B: Chemical

  • Citation Count: 55

  • Highlights:

    • Developed 3D graphene foam decorated with ZnFe₂O₄/ZnO heterostructures.

    • Used as artificial peroxidases for colorimetric detection of hydroquinone.

Conclusion:

Prof. Minggang Zhao is an outstanding candidate for a Best Researcher Award. His high-impact publications, innovative patents, and consistent research leadership across nationally funded projects position him as a leader in the field of materials science. His contributions not only advance academic knowledge but also have practical implications in health and environmental technologies, meeting the core criteria for excellence in research.