Xuan Fang | Semiconductor Materials | Best Researcher Award

Dr. Xuan Fang | Semiconductor Materials | Best Researcher Award

Research Fellow at State Key Laboratory of High Power Semiconductor Lasers, School of Physics, Changchun University of Science and Technology, China.

Dr. Xuan Fang 🎓 is a dedicated Research Fellow at the State Key Laboratory of High Power Semiconductor Lasers, Changchun University of Science and Technology 🇨🇳. Specializing in advanced optoelectronic materials and devices 🔬, she focuses on structural engineering, low-dimensional materials, and MBE growth techniques ⚙️. Her pioneering monolayer-distributed epitaxy strategy has resolved key challenges in III–V alloy semiconductor growth 🧪. Dr. Fang’s innovations, including mid-IR emitting “superalloy” structures 💡, push the limits of bandgap engineering and open new pathways for next-generation photonic devices 🌐. She is also a prolific inventor with multiple national patents 🏅.

Professional Profile:

Scopus

🏆 Suitability for Best Researcher Award – Dr. Xuan Fang

Dr. Xuan Fang exhibits all the hallmarks of a top-tier researcher in the field of advanced optoelectronic materials and semiconductor device engineering. Her proven research leadership, technological innovation, and impactful contributions to semiconductor materials, MBE growth techniques, and mid-infrared photonics make her an ideal candidate for this prestigious recognition.

📘 Education & Experience

  • 🎓 Ph.D. in Optoelectronics or Physics – Specializing in semiconductor materials and nanotechnology.

  • 🧪 Research Fellow, State Key Lab of High Power Semiconductor Lasers, Changchun University of Science and Technology (Current).

  • 💼 Principal Investigator in over 10 national and regional research projects, including NSFC, China Postdoc Foundation, and industry collaborations.

  • 🧠 Expert in MBE growth, energy band prediction, low-dimensional materials, and mid-IR photonic devices.

  • 📈 Published multiple high-impact papers in SCI-indexed journals (e.g., Rare Metals, Nano Research).

  • 🛠️ Holds six national patents on semiconductor device structures and epitaxy methods.

🚀 Professional Development 

Dr. Xuan Fang’s professional journey is marked by innovative thinking and technological excellence 🎯. As Principal Investigator on numerous competitive projects 🎓, she has developed and led groundbreaking work on III-V superlattices, mid-IR lasers, and photodetectors 💡. She bridges fundamental science and real-world applications, contributing novel concepts like monolayer-distributed epitaxy and high-responsivity avalanche photodiodes 🔍. Through collaborative research and consistent experimentation, she fosters cutting-edge semiconductor advancements 🧪. Her dedication to research excellence, coupled with intellectual property creation 📑, reflects a career built on curiosity, precision, and scientific impact 🌍.

🔬 Research Focus Category

Dr. Fang’s research lies at the intersection of advanced semiconductor materials and device engineering ⚙️. Her focus spans low-dimensional systems, type-II superlattices, quantum heterostructures, and mid-infrared optoelectronics 🔦. She specializes in molecular beam epitaxy (MBE) to develop multicomponent alloy structures with high luminescence and carrier lifetimes 🌈. With deep expertise in energy band structure prediction and device integration, Dr. Fang addresses critical challenges in laser efficiency, detection precision, and material compatibility 🔍. Her work propels forward-thinking technologies in infrared imaging, sensing, and next-gen photonic integration 🚀.

🏆 Awards & Honors

  • 🧠 Principal Investigator for major NSFC and China Postdoc Foundation projects.

  • 🥇 Multiple national patents granted on novel epitaxy methods and optoelectronic devices.

  • 🧪 Recognized for pioneering mid-IR superalloy device structures.

  • 📊 Consistently publishes in high-impact journals indexed in SCI and Scopus.

  • 🏅 Leading innovator in semiconductor structural engineering and optoelectronic integration.

Publication Top Notes

1. Cu-Plasma-Induced Interfacial Engineering for Nanosecond Scale WS₂/CuO Heterojunction Photodetectors

Authors: Tianze Kan, Kaixi Shi, Fujun Liu, Jinhua Li, Xuan Fang
Journal: Advanced Optical Materials, 2025
Summary: This study presents a novel Cu-plasma treatment to engineer the WS₂/CuO interface, significantly boosting carrier dynamics and photoresponse speed. Achieving nanosecond-level response, the device offers enhanced performance for ultrafast photodetection in optoelectronic systems.
Citations: 1

2. Nanoengineering Construction of g-C₃N₄/Bi₂WO₆ S-Scheme Heterojunctions for Enhanced CO₂ Reduction and Pollutant Degradation

Authors: Bingke Zhang, Yaxin Liu, Dongbo Wang, Liancheng Zhao, Jinzhong Wang
Journal: Separation and Purification Technology, 2025
Summary: This paper demonstrates a g-C₃N₄/Bi₂WO₆ S-scheme heterojunction that significantly improves photocatalytic CO₂ reduction and pollutant degradation. The synergistic interface enhances charge separation and transfer, yielding superior photocatalytic efficiency.
Citations: 17
Keywo

3. Plasma-Enhanced Interfacial Electric Field for High-Performance MoS₂/p-Si Photovoltaic Photodetectors

Authors: Wanyu Wang, Kaixi Shi, Jinhua Li, Xueying Chu, Xuan Fang
Journal: ACS Applied Nano Materials, 2024
Summary: The authors explore plasma treatment to create a strong interfacial electric field in MoS₂/p-Si heterostructures, enabling enhanced light absorption and charge carrier dynamics for high-performance photovoltaic photodetection.
Citations: 1

4. High-Performance Self-Driven Broadband Photoelectrochemical Photodetector Based on rGO/Bi₂Te₃ Heterojunction

Authors: Chenchen Zhao, Yangyang Liu, Dongbo Wang, Liancheng Zhao, Jinzhong Wang
Journal: Nano Materials Science, 2024 | Open Access
Summary: A reduced graphene oxide (rGO)/Bi₂Te₃ heterojunction-based self-powered photodetector is introduced, featuring broadband detection and fast photoresponse, promising for next-gen PEC optoelectronics.
Citations: 3

5. Al@Al₂O₃ Core-Shell Plasmonic Design for Solving High Responsivity–Low Dark Current Tradeoff in MoS₂ Photodetectors

Authors: Ziquan Shen, Wanyu Wang, Zhe Xu, Xuan Fang, Mingze Xu
Journal: Applied Physics Letters, 2024
Summary: By integrating Al@Al₂O₃ core-shell nanostructures, this study mitigates the tradeoff between responsivity and dark current in MoS₂ photodetectors, enhancing device performance through plasmonic effects.
Citations: 2

6. Design of a Self-Powered 2D Te/PtSe₂ Heterojunction for Room-Temperature NIR Detection

Authors: Fengtian Xia, Dongbo Wang, Wen He, Lihua Liu, Liancheng Zhao
Journal: Journal of Materials Chemistry C, 2024
Summary: This paper introduces a novel 2D Te/PtSe₂ heterojunction photodetector capable of room-temperature NIR sensing. The self-powered device exhibits low power consumption, high sensitivity, and stability.
Citations: 1

🧾 Conclusion

Dr. Xuan Fang is not only a prolific and innovative researcher but also a strategic thinker with a rare blend of academic excellence, technical innovation, and practical relevance. Her pioneering work in mid-IR optoelectronics, mastery of semiconductor growth technologies, and tangible contributions through patents and publications establish her as a top contender for the Best Researcher Award.