Evgeny Liverts | Atomic Physics | Best Researcher Award

Dr. Evgeny Liverts | Atomic Physics | Best Researcher Award

Dr. Evgeny Liverts Racah, Institute of Physics. The Hebrew University of Jerusalem, Israel

Dr. Evgeny Liverts is a theoretical physicist and senior researcher at the Racah Institute of Physics, Hebrew University of Jerusalem, Israel. With a Ph.D. in Physics from the Institute of Nuclear Physics, Alma-Ata, he has made significant contributions to computational quantum mechanics, atomic physics, and nuclear physics. His expertise spans advanced computational methods, ab initio calculations, and the study of atomic and molecular systems. Dr. Liverts has over four decades of experience in research, including a strong background in theoretical aspects of the Mössbauer effect and high-temperature superconductivity.

PROFILE

Orcid  Profile

Educational Detail

Master’s Degree (1974): Department of Theoretical Physics, Faculty of Physics, Dnepropetrovsk State University, USSR.

Ph.D. Degree (1983): Institute of Nuclear Physics, Alma-Ata, USSR. Approved by the Higher Attestation Commission, USSR Council of Ministers, Moscow (1983) and the Israeli Ministry of Education, Jerusalem (2005).

Professional Experience

Senior Scientist (1991–2002): Institute of Nuclear Physics, Alma-Ata, Kazakhstan.

Scientist (1983–1990): Institute of Nuclear Physics, Alma-Ata, Kazakhstan.

Junior Scientist (1977–1982): Institute of Nuclear Physics, Alma-Ata, Kazakhstan.

Engineer (1975–1976): Institute of Nuclear Physics, Alma-Ata, Kazakhstan.

Current Role: Researcher at the Racah Institute of Physics, Hebrew University of Jerusalem, Israel.

Research Interests

Dr. Liverts is an accomplished physicist with expertise in theoretical physics and quantum mechanics. His primary research directions include:

Development of advanced computational methods, including the Correlation Function Hyperspherical Harmonic Method (CFHHM) and quasilinearization techniques for solving Schrödinger’s equation.

Study of atomic systems, including double photoionization of atoms encapsulated in fullerenes and specific configurations of two-electron systems.

Ab initio calculations of atomic, nuclear, and molecular systems, focusing on non-relativistic energies, wave functions, and electroweak cross-sections in light nuclear systems.

Refinement of angular Fock coefficients, atomic coalescences, and calculations of bound and quasi-bound states in multi-body systems.

Theoretical studies of the Mössbauer effect and high-temperature superconductors using modern quantum chemistry techniques.

Skills

Proficient in Fortran (77, 90) and Wolfram Mathematica.

Experienced with operating systems such as Windows, Unix, and Linux.

Reviewer for leading scientific journals, including Physica Scripta, Journal of Physics A, Annals of Physics, and Computational Physics Communications.

Top Notable Publications

Evgeny Liverts (2024). “Two-Electron Atomic Systems—A Simple Method for Calculating the Ground State near the Nucleus: Some Applications.” Atoms, DOI: 10.3390/atoms12120069.

Evgeny Liverts (2022). “Fock Expansion for Two-Electron Atoms: High-Order Angular Coefficients.” Atoms, DOI: 10.3390/atoms10040135.

Evgeny Liverts (2022). “Co-spherical Electronic Configuration of the Helium-Like Atomic Systems.” Annals of Physics, DOI: 10.1016/j.aop.2021.168669.

Evgeny Liverts (2021). “Accurate Exponential Representations for the Ground State Wave Functions of the Collinear Two-Electron Atomic Systems.” Atoms, DOI: 10.3390/atoms10010004.

Evgeny Liverts (2020). “Collinear Configuration of the Helium Atom and Two-Electron Ions.” Annals of Physics, DOI: 10.1016/j.aop.2020.168306.

Evgeny Liverts (2020). “Averaged Electron Densities of the Helium-Like Atomic Systems.” Journal of Mathematical Physics, DOI: 10.1063/1.5129026.

Evgeny Liverts (2018). “The Green’s Function Approach to the Fock Expansion Calculations of Two-Electron Atoms.” Journal of Physics A: Mathematical and Theoretical, DOI: 10.1088/1751-8121/aaa2ce.

Conclusion

Dr. Evgeny Liverts is an exemplary candidate for the Research for Best Researcher Award due to his extensive contributions to theoretical physics, computational methods, and atomic studies. His innovative research, supported by a solid academic foundation and decades of professional expertise, makes him a strong contender for this prestigious recognition.

 

 

 

 

 

 

 

 

 

 

 

 

Rachid Amrani | Physics | Best Researcher Award

Dr. Rachid Amrani | Physics | Best Researcher Award

Dr. Rachid Amrani, University of Algiers, Algeria

Dr. Rachid Amrani is a faculty member at the University of Algiers, Algeria. He currently holds the position of Lecturer B, a role he has occupied since July 2023, after serving as Lecturer A from February 2018. Before that, he was an Assistant Professor at the University of Algiers from February 2017 to February 2018. Dr. Amrani has a strong research background, having worked as a Research Scientist at the Center of Development of Advanced Technologies (CDTA) in Algiers from March 2016 to January 2017. Earlier in his career, from 2011 to 2013, he served as a Research Assistant to Dr. Yvan Cuminal at the Institut D’électronique Du Sud (IES), CNRS, University of Montpellier, France. His academic and research experience spans various institutions, focusing on advanced technologies and electronics.

PROFILE

Scopus Profile

Educational Details

Dr. Rachid Amrani earned his Ph.D. from the University of Montpellier, France, in December 2013, with a thesis focused on the “Growth and Properties of Hydrogenated Silicon Thin Films Deposited Near the Nanocrystalline Amorphous Transition Region from Argon Diluted Silane Plasma.” This work reflects his deep expertise in the field of material sciences, particularly in the study of thin films. Prior to his doctoral studies, Dr. Amrani completed a Magister degree in Physics with a specialization in material sciences at Université d’Oran Es-Senia, Algeria, from 2001 to 2006. His Magister thesis explored the “Optical Properties of Nanocrystalline Silicon Films Prepared by RF Magnetron Sputtering.” His academic journey began at Université d’Oran Es-Senia, where he earned his undergraduate degree in Physics with a focus on Theoretical Physics between 1992 and 1997. Throughout his career, Dr. Amrani has demonstrated a strong foundation in both theoretical and applied physics, particularly in the study of nanomaterials and thin film technologies.

Research  Interest

Dr. Rachid Amrani’s research interests lie at the intersection of material sciences and nanotechnology, with a particular focus on the growth, deposition, and characterization of thin films. His expertise encompasses a range of advanced techniques, including Plasma Enhanced Chemical Vapor Deposition (PECVD), RF magnetron sputtering, and thermal evaporation. Dr. Amrani has extensive experience in cleanroom processes, such as UV lithography, chemical etching, and reactive ion etching, which are essential for fabricating precise nanostructures. His work in characterizing thin films involves sophisticated methods like ellipsometry, Raman scattering spectroscopy, and Atomic Force Microscopy (AFM), aiming to understand the optical and structural properties of nanocrystalline silicon films and other functional materials. Dr. Amrani’s contributions to the field are reflected in his numerous publications and presentations at international conferences, where he has shared his findings on nanomaterials for energy conversion, storage, and other cutting-edge applications in electronics and photonics.

Honours and Awards

The Journal of Non-Crystalline Solids (Elsevier) and the Journal of Nanotechnology (IOPscience) are both prestigious publications in their respective fields. The Journal of Non-Crystalline Solids focuses on the latest research in amorphous materials, including glasses, polymers, and composites, and is known for publishing cutting-edge studies that advance the understanding of non-crystalline structures. Meanwhile, the Journal of Nanotechnology provides a platform for the dissemination of research on nanoscience and nanotechnology, covering topics ranging from the synthesis and characterization of nanomaterials to their applications in various industries. These journals are widely recognized for their rigorous peer-review process and their role in promoting scientific advancements.

 

Top Notable Publications

Investigation of Structural Heterogeneities in Hydrogenated Nanocrystalline Silicon Thin Films from Argon-Diluted Silane Dusty Plasma PECVD

Authors: R. Amrani, F. Lekoui, F. Pichot, S. Oussalah, Y. Cuminal

Year: 2024

Journal: Vacuum

Volume: 229

Article ID: 113568

Citations: 0

Machine Learning-Based Method for Predicting C–V-T Characteristics and Electrical Parameters of GaAs/AlGaAs Multi-Quantum Wells Schottky Diodes

Authors: E. Garoudja, A. Baouta, A. Derbal, N. Sengouga, M. Henini

Year: 2024

Journal: Physica B: Condensed Matter

Volume: 685

Article ID: 415998

Citations: 0

Structural and Optical Properties of Highly Ag-Doped TiO2 Thin Films Prepared by Flash Thermal Evaporation

Authors: R. Amrani, F. Lekoui, E. Garoudja, S. Oussalah, S. Hassani

Year: 2024

Journal: Physica Scripta

Volume: 99(6)

Article ID: 065914

Citations: 0

Optical Parameters Extraction of Zinc Oxide Thin Films Doped with Manganese Using an Innovative Technique Based on the Dragonfly Algorithm and Their Correlation to the Structural Properties

Authors: K. Settara, F. Lekoui, H. Akkari, S. Oussalah, S. Hassani

Year: 2024

Journal: Journal of Ovonic Research

Volume: 20(3)

Pages: 365–380

Citations: 0

On the Substrate Heating Effects on Structural, Mechanical, and Linear/Non-Linear Optical Properties of Ag–Mn Co-Doped ZnO Thin Films

Authors: F. Lekoui, R. Amrani, S. Hassani, N. Hendaoui, S. Oussalah

Year: 2024

Journal: Optical Materials

Volume: 150

Article ID: 115151

Citations: 4

A B3LYP-D3 Computational Study of Electronic, Structural, and Torsional Dynamic Properties of Mono-Substituted Naphthalenes: The Effect of the Nature and Position of Substituent

Authors: A. Benalia, A. Boukaoud, R. Amrani, A. Krid

Year: 2024

Journal: Journal of Molecular Modeling

Volume: 30(3)

Article ID: 88

Citations: 2

Electrical Parameters Extraction of Diode Using Whale Optimization Algorithm

Authors: E. Garoudja, W. Filali, S. Oussalah, F. Lekoui, R. Amrani

Year: 2024

Conference: 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC 2024)

Citations: 0

Effect of Ti/TiN Thin Film Geometrical Design on the Response of RTDs

Authors: W. Filali, E. Garoudja, F. Lekoui, S. Oussalah, R. Amrani

Year: 2024

Conference: 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC 2024)

Citations: 0

Artificial Intelligence Approach to Analyze SIMS Profiles of 11B, 31P, and 75As in n- and p-type Silicon Substrates: Experimental Investigation

Authors: W. Filali, M. Boubaaya, E. Garoudja, S. Oussalah, N. Sengouga

Year: 2023

Journal: Zeitschrift für Naturforschung – Section A Journal of Physical Sciences

Volume: 78(12)

Pages: 1143–1151

Citations: 0

Elaboration and Characterization of Pure ZnO, Ag, and Ag-Fe

Thin Films: Effect of Ag and Ag-Fe Doping on ZnO Physical Properties

Authors: F. Lekoui, S. Hassani, E. Garoudja, O. Sifi, S. Oussalah

Year: 2023

Journal: Revista Mexicana de Fisica

Volume: 69(5)

Article ID: 051005

Citations: 3