Dr. Adewale Sedara | Engineering | Research Excellence Award

Dr. Adewale Sedara | Engineering | Research Excellence Award

Research Associate | University of Wisconsin-Madison | United States

Dr. Adewale Sedara is a distinguished scholar whose work demonstrates sustained excellence in Engineering research, innovation, and applied impact. His expertise spans Engineering design optimization, Engineering simulation, Engineering soil machine interaction, and Engineering systems modeling, with a strong emphasis on data driven Engineering solutions. Dr. Adewale Sedara has authored multiple peer reviewed Engineering publications that collectively reflect rigorous Engineering methodology and practical Engineering relevance, generating notable citation impact within the global Engineering community. His Engineering research integrates advanced computational Engineering tools with experimental Engineering validation, strengthening collaboration across academic and industry focused Engineering environments. Through interdisciplinary Engineering partnerships, his contributions advance sustainable Engineering practices, agricultural Engineering efficiency, and infrastructure Engineering performance. His Engineering outcomes support societal needs by improving resource efficiency, environmental resilience, and technology driven Engineering decision making. Dr. Adewale Sedara continues to influence Engineering scholarship through high quality Engineering dissemination, collaborative Engineering engagement, and impactful Engineering innovation. Google Scholar profile of 113 Citations, 5 h- index, 2 i10- index.

Citation Metrics (Google Scholar)

113
100
80
60
40
20
0

Citations

113

h-index

5

i10-index

2

Citations

h-index

i10-index

Featured Publications

Prof. Zhumadil Baigunchekov | Robotics and Automation | Best Researcher Award

Prof. Zhumadil Baigunchekov | Robotics and Automation | Best Researcher Award

Professor | Al-Farabi Kazakh National University | Kazakhstan

Prof. Zhumadil Baigunchekov is a globally recognized authority in Robotics and Automation, with sustained contributions that have shaped advanced research and innovation in Robotics and Automation. His expertise spans theoretical foundations and applied solutions in Robotics and Automation, particularly in mechanism design, mechatronic systems, and intelligent robotic manipulators, strengthening the scientific depth of Robotics and Automation. He has authored over 400 scholarly publications, including high impact articles, monographs, and patents, reflecting exceptional productivity and leadership in Robotics and Automation research. His work in Robotics and Automation has fostered strong international collaborations with leading researchers and institutions, advancing interdisciplinary progress in Robotics and Automation and supporting technology driven societal development. Through mentoring doctoral and postgraduate researchers, he has significantly expanded human capital in Robotics and Automation, ensuring long term academic and industrial impact. His research outcomes in Robotics and Automation contribute to automation efficiency, precision engineering, and sustainable technological solutions, reinforcing the global relevance of Robotics and Automation. Google Scholar profile of 128 Citations, 7 h-index, 3 i10 index.

Citation Metrics (Scopus)

128
100
80
50
20
0

Citations

128

h-index

7

i10-index

3

Citations

i10-index

h-index

Featured Publications


Direct kinematics of a 3-PRRS type parallel manipulator

International Journal of Mechanical Engineering and Robotics Research, 2020
Cited by 16


Inverse kinematics of six-DOF three-limbed parallel manipulator

International Conference on Robotics in Alpe-Adria Danube Region, 2016
Cited by 14


Parallel manipulator of a class RoboMech

Mechanism and Machine Science (Springer), 2016
Cited by 13


Geometry and inverse kinematics of 3-PRRS type parallel manipulator

International Conference on Robotics in Alpe-Adria Danube Region, 2019
Cited by 9


Inverse kinematics of a 3-PRPS type parallel manipulator

International Conference on Robotics in Alpe-Adria Danube Region, 2020
Cited by 8

Assist. Prof. Dr. Feng Chieh Lin | Engineering | Research Excellence Award

Assist. Prof. Dr. Feng Chieh Lin | Engineering | Research Excellence Award

Research Assisant Professor | National Taipei University of Technology | Taiwan

Assist. Prof. Dr. Feng Chieh Lin is a distinguished scholar whose contributions continue to strengthen global research in engineering with a focus on advanced motor drive systems, power converter control, and intelligent diagnostic technologies. His work integrates engineering principles with practical innovation to address challenges in mechatronics, motor drives, and power electronic applications. Through sustained research leadership, he has advanced engineering methodologies for high performance electric machines, with a particular emphasis on demagnetization diagnosis, deep learning based sampling analysis, and precision converter control. His academic role enables him to merge engineering theory with industrial insight, building collaborations that promote technology transfer and practical implementation. He has contributed to influential research projects that support national and industrial development, demonstrating how engineering solutions can enhance energy efficiency, operational reliability, and sustainable technological growth. His experience in research management and product innovation has further strengthened his ability to guide engineering development across multidisciplinary domains. He continues to publish impactful work that reflects rigorous engineering analysis, forward looking design perspectives, and practical societal relevance. His publications and citations demonstrate consistent global engagement, and his engineering research has supported collaborations between academia, research institutes, and industry partners. His contributions highlight the role of engineering in advancing intelligent control strategies, improving machine performance, and shaping modern power electronic applications. His expertise positioned at the intersection of engineering science and applied innovation reflects a commitment to knowledge creation and societal benefit. He remains dedicated to fostering engineering excellence while contributing to high level academic and industrial research communities through impactful publications and technical leadership. Scopus profile of 355 Citations, 25 Documents, 10 h index.

Profiles: Scopus | ORCID

Featured Publications

1. Chen, C.-S., Lin, C.-J., Liu, J.-F., & Lin, F.-C. (2026). IPMSM demagnetization fault diagnosis based on ultra-low sampling frequency data re-indexing restoration method. International Journal of Data Science and Analytics.

2. Chen, C.-S., Wu, Y.-Y., Lin, C.-J., & Lin, F.-C. (2025). Reindexing method for ultralow-sampling-rate data used in the diagnosis of demagnetization faults in IPMSM. IEEE Transactions on Instrumentation and Measurement.

3. Chen, C. S., Lin, C. J., Lin, Y. J., & Lin, F. C. (2025). Application of multi-objective optimization for path planning and scheduling: The edible oil transportation system framework. Applied Sciences.

4. Chen, C. S., Lin, F. C., Lin, C. J., & Wu, P. H. (2024). The improved ROS-based MTAR navigation framework for service robot: Motion trajectory analysis regulator. IEEE Access.

5. Chen, C.-S., Lin, C.-J., Yang, F.-J., & Lin, F.-C. (2024). Model design of inter-turn short circuits in internal permanent magnet synchronous motors and application of wavelet transform for fault diagnosis. Applied Sciences.

Prof. Wei Ma | Robotics and Automation | Research Excellence Award

Prof. Wei Ma | Robotics and Automation | Research Excellence Award

Associate Professor | Tianjin University | China

Prof. Wei Ma is a distinguished researcher recognized for significant contributions to underwater glider development within the domain of Robotics and Automation, where Robotics and Automation remain central to his scientific endeavors. As an Associate Professor at Tianjin University, Prof. Wei Ma has advanced Robotics and Automation through intelligent operation, hydrodynamic modelling and control of unmanned marine platforms. His research encompasses the optimization of underwater glider mechanics, variational mode decomposition for marine data processing and model based multi objective control, each contributing to a growing impact on Robotics and Automation applied to ocean engineering. With a record of ten indexed publications and fifteen patents published or under processing, Prof. Wei Ma continues to demonstrate excellence in Robotics and Automation research with high quality outputs featured in reputable journals including Physics of Fluids, Chaos, Ocean Engineering, Journal of Marine Science and Engineering and Journal of Mechanical Engineering Science. His work on air droppable underwater glider water entry, virtual prototype modelling and shape memory alloy based buoyancy systems remains widely noted in Robotics and Automation due to innovative approaches to control, sensing, networking technologies and AI driven data analytics. Prof. Wei Ma further supports the Robotics and Automation community as a reviewer for respected journals, reflecting recognition of his scholarly authority and scientific judgement. His achievements include major technology progress recognition for water surface glider engineering and an outstanding contribution award for glider system product deployment, strengthening the relevance of Robotics and Automation to maritime applications and marine intelligence systems. Through ongoing projects, expanding research themes and growing publication strength, Prof. Wei Ma continues to shape Robotics and Automation innovation with strong societal and technological relevance. Scopus profile of 231 Citations, 35 Documents, 8 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Yang, P., Wang, Y., Ma, W., Niu, W., Song, Y., & Li, Q. (2025). Fused spatial–temporal graph convolutional networks for ocean currents forecasting using underwater glider measurements. IEEE Journal of Oceanic Engineering.

2. Xi, H., Ma, W., Song, Y., Fa, S., Song, J., & Yang, M. (2025). Energy consumption prediction and endurance optimization for underwater gliders based on data-model fusion. Engineering Applications of Artificial Intelligence.

3. Lyu, G., Wu, S., Song, J., Fa, S., Wang, W., Miao, Z., Gong, F., Ma, W., & Wang, C. (2025). Model and data-driven hydrodynamic identification and prediction for underwater gliders. Physics of Fluids.

4. Ma, W., Wang, Y., Wang, S., Li, G., & Yang, S. (2019). Optimization of hydrodynamic parameters for underwater glider based on the electromagnetic velocity sensor. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.

Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Associate Professor | Isfahan University of Technology | Iran

Assoc. Prof. Dr. Mohammad Silani is a distinguished figure in Engineering research, widely recognized for his contributions to computational mechanics, multiscale material modeling, fracture mechanics, and advanced numerical simulations. With an extensive background in Engineering applications, his work integrates molecular dynamics, finite element analysis, stochastic modeling, and phase-field theory to address complex material behavior in composite and nanocomposite structures. His Engineering research extends across multiscale modeling, machine learning–assisted simulations, and high-fidelity experimentation, establishing him as a leading contributor to Engineering innovation in computational materials science. He has served in multiple advanced academic and scientific capacities, has supervised doctoral and postgraduate research, and has actively collaborated internationally with institutions and Engineering research groups across Europe, Asia, and Australia. His scholarly output reflects a strong Engineering foundation, comprising many high-impact journal publications, conference contributions, and collaborations that have advanced computational Engineering and numerical methodology. His work on nanostructures, wear modeling, fatigue crack propagation, and hydrogen embrittlement demonstrates a deep Engineering perspective in bridging theory, simulation, and physical behavior. As a reviewer for numerous international journals, his expertise supports the global Engineering community through critical evaluation and scientific refinement. His research continues to influence structural integrity, biomaterial mechanics, lattice optimization, composites Engineering, mechanical design, and simulation-driven material development at multi-scale and multi-physics levels. His sustained contributions to Engineering research, academic leadership, and scientific cooperation reflect a career dedicated to advancing knowledge, improving computational frameworks, and developing reliable Engineering tools for industrial and scientific application. His work stands as a reference point for emerging researchers in Engineering modeling and mechanical material characterization, highlighting precision, innovation, and impactful academic leadership in modern Engineering science. Google Scholar profile of 3041 Citations, 22 h-index, 32 i10-index.

Profile: Google Scholar

Featured Publications

1. Koupaei, F. B., Javanbakht, M., Silani, M., Mosallanejad, M. H., & Saboori, A. (2026). Mechanics-based phase-field model for directional microstructure evolution: Multiscale finite element simulation of IN718 in DED process. Computational Materials Science, 261, 114342.

2. Sabetghadam-Isfahani, A., Silani, M., Javanbakht, M., & others. (2025). Molecular dynamics analysis of temperature and shear stress effects on nickel bi-crystal amorphization. Iranian Journal of Chemistry and Chemical Engineering, e732047.

3. Varshabi, N., Jafari, M., Jamshidian, M., Silani, M., Thamburaja, P., & Rabczuk, T. (2025). Phase-field modeling of stressed grain growth in nanocrystalline metals. International Journal of Mechanical Sciences, 110951.

4. Saffari, M. M., Javanbakht, M., Silani, M., & Jafarzadeh, H. (2025). Stress analysis of nanostructures including nanovoids and inclusions based on nonlocal elasticity theory with different kernels. International Journal of Applied Mechanics, 17(6), 2550041.

5. Sabetghadam-Isfahani, A., Javanbakht, M., & Silani, M. (2025). Atomistic-informed phase-field modeling of edge dislocation evolution in Σ3, Σ9, and Σ19 silicon bi-crystals. Computational Materials Science, 254, 113893.

Dr. Ricardo Alberto Rodríguez Carvajal | Engineering | Excellence in Innovation

Dr. Ricardo Alberto Rodríguez Carvajal | Engineering | Excellence in Innovation

Professor | University of Guanajuato | Mexico

Dr. Ricardo Alberto Rodríguez Carvajal is a distinguished academic whose multidisciplinary contributions have significantly advanced Engineering research, technological innovation, and applied knowledge transfer across institutional, industrial, and social environments. His extensive trajectory reflects leadership in Engineering project development, Engineering management, Engineering innovation, and Engineering-based problem-solving applied to solar energy systems, digital transformation, organizational sustainability, and technology transfer. With a strong record of publications in Engineering journals, collaborative research networks, and participation in national and international Engineering associations, he has demonstrated a consistent capacity to connect Engineering theory with practice through strategic collaborations, patent development, and impactful industrial partnerships. His work spans solar-energy Engineering, materials Engineering, industrial Engineering, and computational Engineering, integrating these fields into high-value technological ecosystems. His role in developing prototypes, coordinating multidisciplinary Engineering teams, and guiding projects from conceptualization to market transfer has strengthened regional innovation capabilities and supported industry-focused research agendas. Through leadership in academic committees, graduate program coordination, and supervision of numerous postgraduate theses in Engineering and innovation, he has also contributed to shaping new generations of specialists capable of applying Engineering principles to emerging societal challenges. His intellectual production includes articles, books, and chapters addressing Engineering processes, knowledge management, and innovation systems, while his participation in collaborative networks has enhanced knowledge circulation across Engineering communities. His societal impact is evident in applied research projects for renewable energy, agro-industrial transformation, technology-based entrepreneurship, and sustainable development, all grounded in rigorous Engineering methodologies. This consolidated profile reflects an academic committed to expanding the frontiers of Engineering and advancing technological solutions with broad social relevance. Google Scholar profile of 200 Citations, 8 h-index, 8 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Herrera-Zamora, D. M., Lizama-Tzec, F. I., Santos-González, I., & others. (2020). Electrodeposited black cobalt selective coatings for application in solar thermal collectors: Fabrication, characterization, and stability. Solar Energy, 207, 1132–1145.

2. Pitalúa-Díaz, N., Herrera-López, E. J., Valencia-Palomo, G., & others. (2015). Comparative analysis between conventional PI and fuzzy logic PI controllers for indoor benzene concentrations. Sustainability, 7(5), 5398–5412.

3. León Lara, J. D., & Rodríguez Carvajal, R. A. (2014). Customer relationship management (CRM), a tool for creating competitive strategies. Epistemus (Sonora), 8(17), 81–87.

4. Isiordia-Lachica, P. C., Valenzuela, A., Rodríguez-Carvajal, R. A., & others. (2020). Identification and analysis of technology and knowledge transfer experiences for the agro-food sector in Mexico. Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 59.

5. Romero-Hidalgo, J. A., Isiordia-Lachica, P. C., Valenzuela, A., & others. (2021). Knowledge and innovation management model in the organizational environment. Information, 12(6), 225.

Prof. Eui-chan Jeon | Engineering | Research Excellence Award

Prof. Eui-chan Jeon | Engineering | Research Excellence Award

Professor | Sejong University | South Korea

Prof. Eui-chan Jeon is a distinguished scholar whose extensive contributions to Engineering and environmental science have positioned him as a leading global authority in climate change mitigation, atmospheric emissions, and sustainable policy development. With a long-standing career marked by influential leadership roles, Prof. Jeon has advanced national and international frameworks through his work with major climate organizations, including key positions related to the IPCC, national carbon-neutrality committees, and major environmental research councils. His expertise spans the Engineering dimensions of greenhouse gas inventories, air-pollution management, emission-factor development, and short-lived climate forcers, and he has consistently shaped policies and methodologies that guide both scientific communities and governmental bodies. His Engineering-driven research portfolio encompasses more than a hundred documents, demonstrating impactful collaborations across academia, industry, and government institutions, while his applied investigations into ammonia emissions, particulate-matter sources, and industrial greenhouse-gas abatement technologies have significantly strengthened environmental decision-making. Prof. Jeon’s work in Engineering has also contributed to advanced modeling systems, emission-characterization frameworks, and mitigation strategies utilized across sectors such as agriculture, waste management, semiconductor manufacturing, and energy industries. His numerous authored and co-authored publications reflect a sustained commitment to Engineering innovation, methodological rigor, and interdisciplinary problem-solving, offering solutions that translate complex scientific insights into practical societal benefits. Prof. Jeon’s Engineering achievements extend to textbook authorship, national consulting, and international project leadership, establishing him as a pivotal figure whose research reshapes climate governance and emission-management standards. His reliable scientific output, strong Engineering foundation, and broad collaborative networks continue to influence sustainable-development pathways and evidence-based environmental reforms. This professional summary is supported by his Scopus profile of 2,082 Citations, 110 Documents, and a 22 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Effects of Plasma Power on By-Product Gas Formation from CHF₃ and CH₂F₂ Process Gases in Semiconductor Etching Processes. (2025). Applied Sciences Switzerland.

2. Understanding the correlation between the structural and photoluminescent properties of Ca₃(PO₄)₂:Eu³⁺, M⁺ (M⁺ = Li⁺, Na⁺, K⁺) phosphors. (2025). Ceramics International.

3. Thermoelectric properties of SiC nanoparticle-dispersed Bi₁.₉₂₅Ba₀.₀₇₅Sr₂Co₂Oy. (2025). Journal of Alloys and Compounds.

4. A study on the application of an estimated ammonia emission factor reflecting the operating characteristics of open laying hen houses in Korea. (2025). Atmosphere.

5. The impact of plasma intensity on the unused rate in semiconductor manufacturing: Comparative analysis across intensity ranges from 30 to 3000. (2025). Applied Sciences Switzerland.

Sarra Senouci | Engineering | Editorial Board Member

Mrs. Sarra Senouci | Engineering | Editorial Board Member

Sarra Senouci | University of Electronic Science and Technology of China | Algeria

Mrs. Sarra Senouci is an active contributor to contemporary Engineering research, recognized for her commitment to advancing scholarly inquiry and strengthening collaborative scientific networks. Her work reflects a rigorous approach to Engineering challenges, integrating analytical methodologies with practical applications that support innovation across multiple Engineering domains. Mrs. Sarra Senouci has contributed to the broader Engineering community through focused research outputs that highlight both technical depth and interdisciplinary relevance. Her publications demonstrate a clear engagement with emerging Engineering problems, addressing key gaps and offering solutions that align with global priorities in Engineering development, sustainability, and technological advancement. Throughout her professional journey, Mrs. Sarra Senouci has participated in collaborative initiatives that enhance the visibility and applicability of Engineering research. Her scholarly activities reinforce the importance of Engineering as a driver of societal progress, with particular emphasis on structured problem-solving and evidence-based approaches. By contributing to peer-reviewed scientific work, she supports the continuous growth of Engineering knowledge and the dissemination of high-quality research findings. Her academic presence underscores a dedication to Engineering excellence, methodological precision, and constructive international collaboration. Mrs. Sarra Senouci’s research interests intersect with multiple branches of Engineering, allowing her to engage with diverse scientific communities and contribute meaningfully to multidisciplinary Engineering dialogues. Her work aligns with global standards in Engineering innovation, reflecting a strong orientation toward impactful research that supports technological and societal advancement. As a researcher, she emphasizes integrity, analytical clarity, and a sustained commitment to Engineering-driven solutions that benefit both academic and industrial ecosystems. Her contributions continue to reinforce the role of Engineering as a foundational pillar of modern scientific progress. Google Scholar profile of 4 Citations, 1 h-index, 0 i10-index.

Profile: Google Scholar

Featured Publications

1. Senouci, S., Madoune, S. A., Senouci, M. R., Senouci, A., & Tang, Z. (2025). A novel PRNG for fiber optic transmission. Chaos, Solitons & Fractals, 192, 116038.

2. Madoune, S. A., Senouci, S., Dingde, J., & Senouci, A. (2024). Deep convolutional neural network-based high-precision and speed DDOS detection in SDN environments. In 2024 21st International Computer Conference on Wavelet Active Media.

3. Madoune, S. A., Senouci, S., Setitra, M. A., & Dingde, J. (2024). Toward robust DDOS detection in SDN: Leveraging feature engineering and ensemble learning. In 2024 21st International Computer Conference on Wavelet Active Media.

4. Madoune, S. A., Senouci, S., De Jiang, D., Senouci, M. R., Daoud, M. A., & others. (2025). A novel approach for real-time DDoS detection in SDN using dimensionality reduction and ensemble learning. Journal of Information Security and Applications, 94, 104195.

5. Senouci, S., Madoune, S. A., Senouci, M. R., Senouci, A., & Zhangchuan, T. (2024). A new chaotic based cryptographically secure pseudo random number generator. In 2024 21st International Computer Conference on Wavelet Active Media.

Mohammadmahdi Negaresh | Engineering | Editorial Board Member

Mr. Mohammadmahdi Negaresh | Engineering | Editorial Board Member

Polymer Researcher | Amirkabir University of Technology | Iran

Mr. Mohammadmahdi Negaresh is an accomplished researcher whose work reflects a strong commitment to Engineering innovation, Engineering advancement, and Engineering oriented problem solving across multidisciplinary research environments. His contributions demonstrate a sophisticated understanding of Engineering principles, with a focus on developing solutions that support scientific progress and practical applications. His scholarly outputs highlight a consistent engagement with Engineering methodologies, and his collaborations underscore the value he brings to collective scientific endeavors in Engineering driven fields. As an active contributor to high quality publications, he has authored multiple Engineering related studies that extend technical knowledge and strengthen global research dialogue. His work represents a meaningful intersection of Engineering practice and scientific inquiry, emphasizing analytical depth, research precision, and purposeful academic direction. Through his involvement in impactful collaborative projects, he demonstrates how Engineering insights can enhance societal development, industrial capability, and technological growth. His research contributions show continued refinement of Engineering concepts applied to real world challenges, offering clear evidence of professional dedication and scholarly integrity. With an established record of publications and citations within reputable academic sources, he remains a recognized contributor whose work promotes Engineering excellence and Engineering based solutions with sustained relevance. His scientific engagement reflects a strong alignment with international research standards, reinforcing the importance of Engineering competence within collaborative networks and research communities. His ability to integrate Engineering knowledge with emerging research themes demonstrates both academic maturity and technical expertise. This professional profile positions him as a valuable figure who continues to support the progression of Engineering scholarship and its broader societal impacts with clarity, quality, and commitment. Scopus profile of 15 Citations, 4 Documents, 3 h index.

Profile: Scopus

Featured Publication

1. Poly(lactic acid)/poly(ε-caprolactone) blends: Separate effects of nanocalcium carbonate and glycidyl methacrylate on interfacial characteristics. Journal of Thermoplastic Composite Materials. (2024).

Assoc. Prof. Dr Elnaz Khodapanah | Engineering | Editorial Board Member

Assoc. Prof. Dr Elnaz Khodapanah | Engineering | Editorial Board Member

Assoc. Prof. Dr Elnaz Khodapanah reflects a distinguished record of contributions shaped by sustained commitment to Engineering research, Engineering innovation, and Engineering-driven societal advancement. As an active scholar in the global Engineering community, Assoc. Prof. Dr Elnaz Khodapanah has established a strong research footprint through impactful studies that integrate Engineering principles with applied scientific inquiry, resulting in high-quality outputs recognized across international platforms. Her body of work demonstrates consistent engagement with multidisciplinary Engineering collaborations, leading to publications that advance methodological rigor and strengthen the broader relevance of Engineering solutions for contemporary challenges. Through productive partnerships with research teams and institutional networks, she has expanded the scope and visibility of Engineering knowledge, with her publications receiving meaningful scholarly attention aligned with the evolving frontiers of Engineering practice. Her research contributions reflect a commitment to bridging theoretical Engineering foundations with practical outcomes that yield long-term societal value. The scholarly influence of Assoc. Prof. Dr Elnaz Khodapanah continues to grow through active participation in Engineering communities, strategic involvement in collaborative Engineering projects, and sustained dissemination of high-impact findings that reinforce the essential role of Engineering in global scientific progress. Her contributions exemplify the intellectual depth, professional integrity, and forward-looking perspective expected within the international Engineering landscape, ensuring continued impact across multiple domains enriched by Engineering excellence. Presented in alignment with recognized academic standards, her professional influence is further reflected through the Scopus profile of 570 Citations, 43 Documents, 13 h-index.

Profile: Scopus

Featured Publications

1. Experimental investigation of silica nanoparticle morphology on interfacial properties, diffusion behavior, and oil recovery in carbonate reservoirs: Insights into spherical and rod-shaped particles. Journal of Molecular Liquids. (2025).

2. An evaluation of the viscoelastic properties of nanosized preformed particle gels. ACS Omega. (2025)

3. Comprehensive review of hybrid chemical enhanced oil recovery methods: synergistic mechanisms, applications, and insights into chemical-based water alternating gas techniques. (2025).

4. Evaluation of nanosilica morphology: Effects on nanofluid stability and interaction with carbonate rock surfaces. Journal of Cluster Science. (2024).