Morteza Khorami | Engineering | Best Researcher Award

Assoc. Prof. Dr. Morteza Khorami | Engineering | Best Researcher Award

Associate Professor at Coventry University, United Kingdom

Morteza Khorami πŸŽ“ is a distinguished civil engineer and academic at Coventry University, specializing in structural engineering, sustainable construction materials, and reinforced concrete. With over 20 years of experience πŸ—οΈ, he has led research projects on innovative cement composites and green building materials. As a Chartered Engineer (CEng) and Senior Fellow of the Higher Education Academy (SFHEA) πŸŽ–οΈ, he has contributed significantly to academia through teaching, mentoring, and publishing in high-impact journals. His expertise in project management and material innovation makes him a key figure in sustainable infrastructure development. 🌍🏒

Professional Profile:

Orcid

Scopus

Google Scholar

Education & Experience

πŸ“š Education:

πŸ’Ό Experience:

  • Professor at Coventry University (2015 – Present) πŸ“–πŸ—οΈ

    • Conducts lectures and supervises research in structural engineering and construction materials.

    • Leads research on innovative materials for sustainable construction.

    • Publishes in high-impact journals and presents at international conferences.

    • Mentors postgraduate students in thesis development and engineering methodologies.

Professional Development

Morteza Khorami is a leading researcher in sustainable construction materials πŸ—οΈπŸŒ±, focusing on reinforced concrete, cement composites, and eco-friendly building technologies. As a Chartered Engineer (CEng) πŸŽ–οΈ and Senior Fellow of the Higher Education Academy (SFHEA) πŸ…, he actively promotes innovation in civil engineering. He collaborates with global researchers to advance construction methodologies 🌍 and enhance material durability. His passion for teaching and mentorship πŸ‘¨β€πŸ« has influenced many students in academia and industry. With extensive project management expertise πŸ“Š, he integrates cutting-edge research into practical engineering solutions for sustainable infrastructure. πŸ’πŸ”¬

Research Focus

Morteza Khorami’s research focuses on sustainable and innovative materials in civil engineering πŸ—οΈπŸŒΏ. His studies explore reinforced concrete durability, cement composites, and eco-friendly alternatives such as waste-based construction materials. He has conducted extensive research on fiber-reinforced cement boards, geopolymer mortars, and corrosion-resistant structures πŸ”¬βš™οΈ. His work contributes to reducing carbon footprints in construction by utilizing materials like scrap tires, bagasse fibers, and nano silica fume πŸŒŽβ™»οΈ. Through his research, he aims to improve structural resilience and sustainability, making a lasting impact on the construction industry. πŸ›οΈπŸ”

Awards & Honors

πŸ… Chartered Engineer (CEng) – Recognized for professional excellence in engineering.
πŸŽ–οΈ Senior Fellow of the Higher Education Academy (SFHEA) – Prestigious recognition in academia.
πŸ† Published over 18 high-impact research papers in leading international journals.
πŸ“š Authored multiple books and book chapters on structural engineering and materials science.
🌍 Presented research at international conferences, influencing global construction methodologies.

Publication Top Notes

  1. Effect of Low-Grade Calcined Clay on the Durability Performance of Blended Cement Mortar

    • Journal: Buildings

    • Publication Date: April 2, 2025

    • DOI: 10.3390/buildings15071159

    • Summary: This study investigates how incorporating low-grade calcined clay influences the durability of blended cement mortar. The research focuses on properties such as compressive strength, porosity, and resistance to chloride penetration.​

  2. Performance of Calcined Impure Kaolinitic Clay as a Partial Substitute for Portland Cement Concrete: A Review

    • Journal: Journal of Composites Science

    • Publication Date: March 21, 2025

    • DOI: 10.3390/jcs9040145

    • Summary: This review examines the viability of using calcined impure kaolinitic clay as a partial replacement for Portland cement. It evaluates the material’s impact on mechanical properties, durability, and environmental benefits.​

  3. Behaviour of Reinforced Concrete Beams Subjected to Corrosion Damage Under Cyclic Loading

    • Journal: Proceedings of the Institution of Civil Engineers – Structures and Buildings

    • Publication Date: March 7, 2025

    • DOI: 10.1680/jstbu.24.00104

    • Summary: This paper explores how corrosion damage affects the performance of reinforced concrete beams under cyclic loading conditions, focusing on changes in load-bearing capacity and structural integrity.​

  4. Development of Fiber Cement Boards Using Recycled Jute Fibers for Building Applications

    • Journal: Journal of Materials in Civil Engineering

    • Publication Date: January 2025

    • DOI: 10.1061/JMCEE7.MTENG-18084

    • Summary: This research focuses on creating fiber cement boards incorporating recycled jute fibers, assessing their mechanical properties, durability, and potential for sustainable building applications.​

  5. Assessment of the Mechanical and Microstructural Performance of Waste Kraft Fibre Reinforced Cement Composite Incorporating Sustainable Eco-Friendly Additives

    • Journal: Buildings

    • Publication Date: August 30, 2024

    • DOI: 10.3390/buildings14092725

    • Summary: This study evaluates the mechanical and microstructural properties of cement composites reinforced with waste kraft fibers and sustainable additives, aiming to enhance performance while promoting eco-friendly construction materials.

Conclusion

Dr. Morteza Khorami’s outstanding contributions to structural engineering, sustainable materials research, and academic leadership make him a highly deserving candidate for the Best Researcher Award. His work has not only advanced scientific knowledge but has also had practical applications in the construction industry, promoting sustainability and innovation.

Mohsen Khatibinia | Structural Control | Best Researcher Award

Assoc. Prof. Dr. Mohsen Khatibinia | Structural Control | Best Researcher Award

Civil Engineering at University of Birjand, Iran

Mohsen Khatibinia, Ph.D., is an Associate Professor of Civil Engineering at Shahid Bahonar University of Kerman, Iran. With a robust academic background, he has contributed significantly to the field of structural engineering, particularly in optimizing structures for earthquake resilience. His research integrates computational intelligence methods with advanced structural analysis, focusing on performance-based design and soil-structure interaction. Dr. Khatibinia is an experienced educator and a skilled user of advanced engineering software.

Professional Profile

Education

  • Ph.D. in Civil Engineering (Structural Engineering)
    Shahid Bahonar University of Kerman, Iran (2006–2013)
    Dissertation focused on reliability-based optimization of reinforced concrete structures with soil-structure interaction.
  • M.Sc. in Civil Engineering (Structural Engineering)
    Shahid Bahonar University of Kerman, Iran (2002–2004)
    Thesis: Optimal design of space structures using genetic algorithms.
  • B.Sc. in Civil Engineering
    University of Sistan and Baluchestan, Zahedan, Iran (1998–2002).

Professional Experience

Associate Professor, Shahid Bahonar University of Kerman, Iran
Mohsen Khatibinia has extensive academic experience, specializing in teaching undergraduate and graduate courses such as Structural Analysis, Theory of Elasticity, Advanced Engineering Mathematics, and Stability of Structures.

  • Expertise in computational tools including FORTRAN, MATLAB, SAP, ETABS, SAFE, Ansys, and OpenSees.
  • Proficient in developing optimization algorithms and conducting numerical simulations for structural engineering applications.

Research Interest

  • Structural optimization for earthquake-resistant design.
  • Soil-structure interaction and performance-based design.
  • Application of soft computing methods (e.g., genetic algorithms, particle swarm optimization, gravitational search algorithms, hybrid optimization algorithms, fuzzy logic, and neural networks) in structural and earthquake engineering.
  • Seismic reliability assessment and optimization of reinforced concrete and steel structures.

Author Metric

  • Published 12 peer-reviewed journal articles in prestigious journals such as Reliability Engineering & System Safety, Journal of Sound and Vibration, and Engineering Optimization.
  • Presented research at 16 international and national conferences, highlighting advancements in structural and earthquake engineering.
  • Expertise in developing hybrid computational models, with numerous citations in domains of structural optimization and earthquake engineering.

Publications Top Noted

1. Truss Optimization on Shape and Sizing with Frequency Constraints Based on Orthogonal Multi-Gravitational Search Algorithm

  • Authors: m. khatibinia, s.s. naseralavi
  • Journal: Journal of Sound and Vibration, Volume 333, Issue 24, Pages 6349-6369, 2014
  • Citations: 112
  • Abstract:
    This paper introduces an Orthogonal Multi-Gravitational Search Algorithm (OMGSA) for optimizing truss structures in terms of shape and size while satisfying frequency constraints. The approach integrates orthogonal learning and multi-agent search to enhance solution accuracy and convergence speed. The method’s effectiveness is demonstrated through benchmark problems and comparison with existing algorithms.

2. A Hybrid Approach Based on an Improved Gravitational Search Algorithm and Orthogonal Crossover for Optimal Shape Design of Concrete Gravity Dams

  • Authors: m. khatibinia, s. khosravi
  • Journal: Applied Soft Computing, Volume 16, Pages 223-233, 2014
  • Citations: 99
  • Abstract:
    This research presents a hybrid optimization technique combining an Improved Gravitational Search Algorithm (IGSA) with Orthogonal Crossover for the shape optimization of concrete gravity dams. The hybrid method addresses computational challenges in design optimization, yielding high-quality solutions with improved convergence efficiency.

3. RETRACTED: Shear Behaviour of Concrete Beams with Recycled Aggregate and Steel Fibres

  • Authors: h.r. chaboki, m. ghalehnovi, a. karimipour, j. de brito, m. khatibinia
  • Journal: Construction and Building Materials, Volume 204, Pages 809-827, 2019
  • Citations: 95
  • Abstract:
    (Retracted) The study initially examined the shear behavior of concrete beams incorporating recycled aggregates and steel fibers, aiming to explore their structural and sustainability benefits. However, the paper has been retracted, and further details are unavailable or unreliable.

4. Optimizing Parameters of Tuned Mass Damper Subjected to Critical Earthquake

  • Authors: r. kamgar, p. samea, m. khatibinia
  • Journal: The Structural Design of Tall and Special Buildings, Volume 27, Issue 7, Article e1460, 2018
  • Citations: 92
  • Abstract:
    This paper focuses on optimizing the parameters of Tuned Mass Dampers (TMDs) to enhance their performance under critical seismic events. The study utilizes advanced optimization techniques to achieve an optimal balance between cost and efficiency, improving the structural stability of tall buildings.

5. Seismic Reliability Assessment of RC Structures Including Soil–Structure Interaction Using Wavelet Weighted Least Squares Support Vector Machine

  • Authors: m. khatibinia, m.j. fadaee, j. salajegheh, e. salajegheh
  • Journal: Reliability Engineering & System Safety, Volume 110, Pages 22-33, 2013
  • Citations: 92
  • Abstract:
    This study proposes a novel approach using the Wavelet Weighted Least Squares Support Vector Machine (WLS-SVM) model for seismic reliability analysis of reinforced concrete (RC) structures, incorporating the effects of soil-structure interaction (SSI). The method offers a computationally efficient way to assess structural reliability under seismic loading conditions.

Conclusion

Dr. Mohsen Khatibinia is a strong candidate for the Best Researcher Award due to his impactful contributions to structural engineering, particularly in earthquake-resilient design and optimization. His innovative application of computational intelligence and hybrid optimization techniques highlights his expertise and commitment to advancing the field. While addressing the retraction and expanding his collaborative and publication scope could enhance his profile, his achievements make him a deserving nominee for this prestigious recognition.