Khushboo Singh | Engineering | Best Researcher Award

Dr. Khushboo Singh | Engineering | Best Researcher Award

Research Fellow at University of Technology Sydney, Australia

Dr. Khushboo Singh πŸŽ“πŸ”¬ is a Postdoctoral Research Fellow at the University of Technology Sydney πŸ‡¦πŸ‡Ί. With 10+ years of experience in academia, defence, and industry, she specializes in high-power millimetre-wave antennas πŸš€πŸ“‘. Her collaboration with the Defence Science and Technology Group (DSTG) has earned her national recognition, including the prestigious Eureka Prize πŸ†. Passionate about cutting-edge tech, she also works on space, maritime, and mobile satellite communication systems πŸŒŒπŸŒŠπŸ“Ά. A dedicated mentor and leader, Dr. Singh actively supports women in STEM πŸ’ͺπŸ‘©β€πŸ”¬ while advancing Australia’s research landscape through innovation and excellence 🌟.

Professional Profile:

Scopus

Google Scholar

πŸ”Ή Education & ExperienceΒ 

πŸŽ“ Education:

  • πŸ“ Ph.D. in Electrical & Electronics Engineering | Macquarie University, Australia | 2021

  • πŸ“ M.Sc. (Research) in Electronics & Communication | LNMIIT, India | 2014 | CPI: 9/10

  • πŸ“ B.Tech in Electronics & Communication | SHIATS, India | 2012 | CPI: 9.7/10

πŸ’Ό Experience:

  • πŸ‘©β€πŸ”¬ Postdoctoral Research Fellow | UTS | Nov 2023 – Present

  • πŸ‘©β€πŸ« Research Associate | UTS | Nov 2020 – Oct 2023

  • 🌏 Visiting Researcher | IIT-Kanpur | Mar – May 2023

  • 🧠 Technical Researcher | Electrotechnik Pty Ltd. | Nov 2019 – Mar 2020

  • πŸŽ“ Casual Tutor | Macquarie University | 2017, 2024

  • πŸ‘©β€πŸ« Guest Lecturer | Swami Rama Himalayan University | 2015 – 2016

  • πŸ‘©β€πŸ« Assistant Professor | Pratap Institute, India | 2014 – 2015

πŸ”Ή Professional DevelopmentΒ 

Dr. Singh is a passionate leader in research and professional mentoring 🌟. She serves as a mentor in multiple STEM programs πŸ‘©β€πŸ”¬πŸ€ including Women in Engineering and WiSR at UTS, encouraging female participation in science and technology πŸ‘©β€πŸ’»πŸ‘©β€πŸ”¬. As award chair for the 2025 Australian Microwave Symposium πŸ… and a past session organizer for major IEEE and EuCAP conferences, she actively contributes to the global antenna research community πŸŒπŸ“‘. She also provides project supervision, peer reviews, and guidance to students and engineers, playing a key role in shaping future tech talent and research direction πŸš€πŸ§‘β€πŸ”¬.

πŸ”Ή Research FocusΒ 

Dr. Singh’s research centers on high-power, metasurface-based millimetre-wave antennas πŸ“‘βš‘ with beam-steering and in-antenna power-combining features. Her work has major applications in defence, space, maritime, and satellite communications πŸ›°οΈπŸš’. She collaborates with Australia’s Defence Science and Technology Group (DSTG) to design antennas suited for compact, power-constrained environments πŸ› οΈ. Her contributions enable better surveillance, radar, and communication systems in mission-critical scenarios 🎯. She is also exploring inter-satellite link antennas and intelligent surfaces for next-gen wireless communication πŸŒπŸ“Ά, cementing her role at the intersection of advanced electromagnetics, microwave engineering, and national security defense systems πŸ›‘οΈ.

πŸ”Ή Awards & HonorsΒ 

πŸ† Awards & Honors:

  • πŸ₯‡ Winner – 2024 ICEAA – IEEE APWC Best Paper Award

  • πŸ… Winner – 2023 Eureka Prize for Outstanding Science for Safeguarding Australia

  • πŸ‘ Finalist – 2025 AUS SPACE Academic Research Team of the Year

  • πŸ‘©β€πŸš€ Finalist – 2024 ADM Women in Defence (R&D Category)

  • πŸ§ͺ Finalist – 2022 UTS Vice-Chancellor’s Award for Research Excellence

  • ⭐ Top 200 Reviewer – IEEE Transactions on Antennas & Propagation (2023)

  • πŸ₯‡ Winner – 2019 IEEE NSW Outstanding Student Volunteer

  • πŸ’° Winner – CHOOSEMATHS Grant by AMSI & BHP Foundation (2017)

  • πŸŽ“ Scholarships – iRTP (2017–2020), LNMIIT Research Stipend (2012–2014)

Publication Top Notes

πŸ“˜ 1. Controlling the Most Significant Grating Lobes in Two-Dimensional Beam-Steering Systems with Phase-Gradient Metasurfaces

  • Authors: K. Singh, M.U. Afzal, M. Kovaleva, K.P. Esselle

  • Journal: IEEE Transactions on Antennas and Propagation

  • Volume/Issue: 68(3), Pages 1389–1401

  • Year: 2019

  • Citations: 86

  • DOI: 10.1109/TAP.2019.2940403

  • Highlights:

    • Introduced techniques to control dominant grating lobes in 2D beam-steering.

    • Employed phase-gradient metasurfaces to steer beams without complex feed networks.

    • Achieved low sidelobe levels and improved directivity.

    • Combined analytical modeling with full-wave electromagnetic simulations.

πŸ“— 2. Designing Efficient Phase-Gradient Metasurfaces for Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 9, Pages 109080–109093

  • Year: 2021

  • Citations: 34

  • DOI: 10.1109/ACCESS.2021.3102204

  • Highlights:

    • Focused on near-field applications such as wireless power transfer.

    • Proposed a method to optimize phase response for compact metasurfaces.

    • Improved phase accuracy and minimized aperture size.

    • Demonstrated via simulations and measured prototypes.

πŸ“™ 3. State-of-the-Art Passive Beam-Steering Antenna Technologies: Challenges and Capabilities

  • Authors: F. Ahmed, K. Singh, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 11, Pages 69101–69116

  • Year: 2023

  • Citations: 28

  • DOI: 10.1109/ACCESS.2023.3285260

  • Highlights:

    • Comprehensive review of passive beam-steering technologies.

    • Covers reconfigurable metasurfaces, mechanical rotation, and tunable materials.

    • Discusses energy efficiency, low-cost manufacturing, and practical limitations.

    • Key insight for researchers targeting 6G, IoT, and wearable tech.

πŸ“• 4. Evaluation Planning for Artificial Intelligence-Based Industry 6.0 Metaverse Integration

  • Author: K. Singh

  • Conference: Intelligent Human Systems Integration (IHSI 2023)

  • Year: 2023

  • Citations: 27

  • DOI: 10.1007/978-3-031-28032-0_40

  • Highlights:

    • Discusses AI-driven frameworks for integrating Industry 6.0 with the metaverse.

    • Addresses human-system interaction, digital twins, and smart automation.

    • Proposes an evaluation roadmap for real-time metaverse-industrial synergy.

    • Useful for future cyber-physical systems and smart manufacturing.

πŸ“’ 5. Accurate Optimization Technique for Phase-Gradient Metasurfaces Used in Compact Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: Scientific Reports (Nature Publishing Group)

  • Volume: 12, Article 4118

  • Year: 2022

  • Citations: 20

  • DOI: 10.1038/s41598-022-08057-8

  • Highlights:

    • Developed a precise numerical optimization technique for metasurface design.

    • Reduced phase errors, enabling high-accuracy near-field beam control.

    • Achieved better performance in compact and portable systems.

    • Practical for radar, medical imaging, and wireless power applications.

Conclusion

Dr. Khushboo Singh exemplifies the qualities of an outstanding researcher β€” innovative, impactful, and committed to scientific excellence. Her exceptional track record in antenna technology for defense and space applications, combined with her leadership in mentoring and research supervision, makes her a standout candidate for the Best Researcher Award. Her research is not only scientifically robust but also socially and nationally significant, particularly in safeguarding technological frontiers of Australia.

She is a role model for aspiring researchers, especially women in STEM, and a worthy recipient of such an honor.

Alex Chandraraj | Engineering | Excellence in Research

Dr. Alex Chandraraj | Engineering | Excellence in Research

Dr. Alex Chandraraj, Kieluniversity, Germany

Dr. Alex Chandraraj is a post-doctoral fellow at Christian-Albrechts-UniversitΓ€t zu Kiel, Germany. He holds a Ph.D. in Physics, specializing in condensed matter physics and materials science. His research focuses on advanced materials, nanostructures, and their applications in renewable energy technologies. Dr. Chandraraj has authored several peer-reviewed publications in prestigious scientific journals and has presented his work at international conferences. He is dedicated to exploring innovative solutions to global energy challenges through material science.

PROFILE

Orcid Profile

Educational Details

Dr. Chandraraj earned his Ph.D. in Chemistry, specializing in electro-catalysis, from the Centre for Nano and Soft Matter Sciences, Bangalore, in 2022. His thesis, titled “Nanomaterials for Electrochemical Water Activation,” was supervised by Dr. Neena Susan John. He also holds an M.Sc. (2014) and B.Sc. (2012) in Chemistry from S.T. Hindu College, Nagercoil, affiliated with Manonmaniam Sundaranar University, where he was a university rank holder in both degrees.

Professional Experience

Dr. Alex Chandraraj has extensive experience in the field of electro-catalysis, having worked on various research projects focused on advanced nanomaterials and sustainable energy applications. Since February 2024, he has been a Post-doctoral Fellow at Christian-Albrechts-UniversitΓ€t zu Kiel, Germany, where he focuses on modifying nickel surfaces through wet-chemical deposition as part of the PrometH2eus project. His work aims to enhance the performance of nickel-based catalysts for energy-efficient applications. Prior to this, from August 2023 to January 2024, he was a Guest Researcher at the same institution, where he investigated oxide interface structures under real-time reaction conditions using operando surface X-ray diffraction techniques. Between February 2022 and July 2023, he served as a Project Associate at the Centre for Nano and Soft Matter Sciences in Bangalore, where he developed and characterized high-valent nickel-based electrocatalysts for urea electrolysis, emphasizing hydrogen production and energy efficiency. Additionally, as a Research Associate from August 2022 to January 2023, Dr. Chandraraj contributed to the development of nanomaterials for catalytic processes and renewable energy applications. His diverse research background underscores his expertise in electro-catalysis and nanomaterials for clean energy technologies.

ResearchΒ  Interest

Dr. Alex Chandraraj’s research focuses on electro-catalysis and advanced nanomaterials, with a particular emphasis on sustainable energy solutions. His work explores the use of nanomaterials and metal oxides in water splitting and electrochemical water activation, aiming to improve the efficiency of hydrogen production through oxygen and hydrogen evolution reactions. He is also deeply involved in urea electrolysis, where he investigates high-valent nickel-based catalysts to develop cost-effective and energy-efficient processes for hydrogen production from urea-based waste. Additionally, Dr. Chandraraj’s research addresses nitrate and oxygen reduction reactions by tuning metal oxidation states in catalyst systems, optimizing their performance for environmental and energy applications. His broader goal is to innovate in renewable energy by developing advanced nanomaterials and surface modifications that enhance the efficiency and durability of catalysts used in clean energy technologies.

Top Notable Publications

“Role of active redox sites and charge transport resistance at reaction potentials in spinel ferrites for improved oxygen evolution reaction”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: Journal of Electroanalytical Chemistry

DOI: 10.1016/j.jelechem.2024.118613

“Unfolding the Significance of Regenerative Active Species in Nickel Hydroxide-Based Systems for Sustained Urea Electro-Oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: Chemistry of Materials

DOI: 10.1021/acs.chemmater.3c03062

“In-situ generated Ni(OH)2 on chemically activated spent catalyst sustains urea electro-oxidation in extensive alkaline conditions”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: International Journal of Hydrogen Energy

DOI: 10.1016/j.ijhydene.2024.01.339

“Evidence for Exclusive Direct Mechanism of Urea Electro-Oxidation Driven by In Situ-Generated Resilient Active Species on a Rare-Earth Nickelate”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: ACS Catalysis

DOI: 10.1021/acscatal.3c04967

“Spontaneous decoration of Ultrasmall Pt Nanoparticles on size‐separated MoS2 nanosheets”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2023

Journal: Chemistry – A European Journal

DOI: 10.1002/chem.202301596

“Probing the Evolution of Active Sites in MoO2 for Hydrogen Generation in Acidic Medium”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2023

Journal: ACS Applied Energy Materials

DOI: 10.1021/acsaem.3c00320

“Hydrogen and Hydrocarbons as Fuel”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2022

Book Chapter: Green Energy Harvesting: Materials for Hydrogen Generation and Carbon Dioxide Reduction

DOI: 10.1002/9781119776086.ch2

“Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2022

Journal: Journal of Materials Chemistry A

DOI: 10.1039/D1TA05753G

“Role of Metal Ion Sites in Bivalent Cobalt Phosphorus Oxygen Systems toward Efficient Oxygen Evolution Reaction”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2021

Journal: The Journal of Physical Chemistry C

DOI: 10.1021/acs.jpcc.1c05614

“Introduction of surface defects in NiO with effective removal of adsorbed catalyst poisons for improved electrochemical urea oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2021

Journal: Electrochimica Acta

DOI: 10.1016/j.electacta.2021.138425

“Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: ACS Applied Energy Materials

DOI: 10.1021/acsaem.0c00297

“A general route to free-standing films of nanocrystalline molybdenum chalcogenides at a liquid/liquid interface under hydrothermal conditions”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: Applied Surface Science

DOI: 10.1016/j.apsusc.2020.145579

“Nickel Cobalt Phosphite Nanorods Decorated with Carbon Nanotubes as Bifunctional Electrocatalysts in Alkaline Medium with a High Yield of Hydrogen Peroxide”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: ChemElectroChem

DOI: 10.1002/celc.202000176