Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Associate Professor | Isfahan University of Technology | Iran

Assoc. Prof. Dr. Mohammad Silani is a distinguished figure in Engineering research, widely recognized for his contributions to computational mechanics, multiscale material modeling, fracture mechanics, and advanced numerical simulations. With an extensive background in Engineering applications, his work integrates molecular dynamics, finite element analysis, stochastic modeling, and phase-field theory to address complex material behavior in composite and nanocomposite structures. His Engineering research extends across multiscale modeling, machine learning–assisted simulations, and high-fidelity experimentation, establishing him as a leading contributor to Engineering innovation in computational materials science. He has served in multiple advanced academic and scientific capacities, has supervised doctoral and postgraduate research, and has actively collaborated internationally with institutions and Engineering research groups across Europe, Asia, and Australia. His scholarly output reflects a strong Engineering foundation, comprising many high-impact journal publications, conference contributions, and collaborations that have advanced computational Engineering and numerical methodology. His work on nanostructures, wear modeling, fatigue crack propagation, and hydrogen embrittlement demonstrates a deep Engineering perspective in bridging theory, simulation, and physical behavior. As a reviewer for numerous international journals, his expertise supports the global Engineering community through critical evaluation and scientific refinement. His research continues to influence structural integrity, biomaterial mechanics, lattice optimization, composites Engineering, mechanical design, and simulation-driven material development at multi-scale and multi-physics levels. His sustained contributions to Engineering research, academic leadership, and scientific cooperation reflect a career dedicated to advancing knowledge, improving computational frameworks, and developing reliable Engineering tools for industrial and scientific application. His work stands as a reference point for emerging researchers in Engineering modeling and mechanical material characterization, highlighting precision, innovation, and impactful academic leadership in modern Engineering science. Google Scholar profile of 3041 Citations, 22 h-index, 32 i10-index.

Profile: Google Scholar

Featured Publications

1. Koupaei, F. B., Javanbakht, M., Silani, M., Mosallanejad, M. H., & Saboori, A. (2026). Mechanics-based phase-field model for directional microstructure evolution: Multiscale finite element simulation of IN718 in DED process. Computational Materials Science, 261, 114342.

2. Sabetghadam-Isfahani, A., Silani, M., Javanbakht, M., & others. (2025). Molecular dynamics analysis of temperature and shear stress effects on nickel bi-crystal amorphization. Iranian Journal of Chemistry and Chemical Engineering, e732047.

3. Varshabi, N., Jafari, M., Jamshidian, M., Silani, M., Thamburaja, P., & Rabczuk, T. (2025). Phase-field modeling of stressed grain growth in nanocrystalline metals. International Journal of Mechanical Sciences, 110951.

4. Saffari, M. M., Javanbakht, M., Silani, M., & Jafarzadeh, H. (2025). Stress analysis of nanostructures including nanovoids and inclusions based on nonlocal elasticity theory with different kernels. International Journal of Applied Mechanics, 17(6), 2550041.

5. Sabetghadam-Isfahani, A., Javanbakht, M., & Silani, M. (2025). Atomistic-informed phase-field modeling of edge dislocation evolution in Σ3, Σ9, and Σ19 silicon bi-crystals. Computational Materials Science, 254, 113893.

Sarra Senouci | Engineering | Editorial Board Member

Mrs. Sarra Senouci | Engineering | Editorial Board Member

Sarra Senouci | University of Electronic Science and Technology of China | Algeria

Mrs. Sarra Senouci is an active contributor to contemporary Engineering research, recognized for her commitment to advancing scholarly inquiry and strengthening collaborative scientific networks. Her work reflects a rigorous approach to Engineering challenges, integrating analytical methodologies with practical applications that support innovation across multiple Engineering domains. Mrs. Sarra Senouci has contributed to the broader Engineering community through focused research outputs that highlight both technical depth and interdisciplinary relevance. Her publications demonstrate a clear engagement with emerging Engineering problems, addressing key gaps and offering solutions that align with global priorities in Engineering development, sustainability, and technological advancement. Throughout her professional journey, Mrs. Sarra Senouci has participated in collaborative initiatives that enhance the visibility and applicability of Engineering research. Her scholarly activities reinforce the importance of Engineering as a driver of societal progress, with particular emphasis on structured problem-solving and evidence-based approaches. By contributing to peer-reviewed scientific work, she supports the continuous growth of Engineering knowledge and the dissemination of high-quality research findings. Her academic presence underscores a dedication to Engineering excellence, methodological precision, and constructive international collaboration. Mrs. Sarra Senouci’s research interests intersect with multiple branches of Engineering, allowing her to engage with diverse scientific communities and contribute meaningfully to multidisciplinary Engineering dialogues. Her work aligns with global standards in Engineering innovation, reflecting a strong orientation toward impactful research that supports technological and societal advancement. As a researcher, she emphasizes integrity, analytical clarity, and a sustained commitment to Engineering-driven solutions that benefit both academic and industrial ecosystems. Her contributions continue to reinforce the role of Engineering as a foundational pillar of modern scientific progress. Google Scholar profile of 4 Citations, 1 h-index, 0 i10-index.

Profile: Google Scholar

Featured Publications

1. Senouci, S., Madoune, S. A., Senouci, M. R., Senouci, A., & Tang, Z. (2025). A novel PRNG for fiber optic transmission. Chaos, Solitons & Fractals, 192, 116038.

2. Madoune, S. A., Senouci, S., Dingde, J., & Senouci, A. (2024). Deep convolutional neural network-based high-precision and speed DDOS detection in SDN environments. In 2024 21st International Computer Conference on Wavelet Active Media.

3. Madoune, S. A., Senouci, S., Setitra, M. A., & Dingde, J. (2024). Toward robust DDOS detection in SDN: Leveraging feature engineering and ensemble learning. In 2024 21st International Computer Conference on Wavelet Active Media.

4. Madoune, S. A., Senouci, S., De Jiang, D., Senouci, M. R., Daoud, M. A., & others. (2025). A novel approach for real-time DDoS detection in SDN using dimensionality reduction and ensemble learning. Journal of Information Security and Applications, 94, 104195.

5. Senouci, S., Madoune, S. A., Senouci, M. R., Senouci, A., & Zhangchuan, T. (2024). A new chaotic based cryptographically secure pseudo random number generator. In 2024 21st International Computer Conference on Wavelet Active Media.

Mohammadmahdi Negaresh | Engineering | Editorial Board Member

Mr. Mohammadmahdi Negaresh | Engineering | Editorial Board Member

Polymer Researcher | Amirkabir University of Technology | Iran

Mr. Mohammadmahdi Negaresh is an accomplished researcher whose work reflects a strong commitment to Engineering innovation, Engineering advancement, and Engineering oriented problem solving across multidisciplinary research environments. His contributions demonstrate a sophisticated understanding of Engineering principles, with a focus on developing solutions that support scientific progress and practical applications. His scholarly outputs highlight a consistent engagement with Engineering methodologies, and his collaborations underscore the value he brings to collective scientific endeavors in Engineering driven fields. As an active contributor to high quality publications, he has authored multiple Engineering related studies that extend technical knowledge and strengthen global research dialogue. His work represents a meaningful intersection of Engineering practice and scientific inquiry, emphasizing analytical depth, research precision, and purposeful academic direction. Through his involvement in impactful collaborative projects, he demonstrates how Engineering insights can enhance societal development, industrial capability, and technological growth. His research contributions show continued refinement of Engineering concepts applied to real world challenges, offering clear evidence of professional dedication and scholarly integrity. With an established record of publications and citations within reputable academic sources, he remains a recognized contributor whose work promotes Engineering excellence and Engineering based solutions with sustained relevance. His scientific engagement reflects a strong alignment with international research standards, reinforcing the importance of Engineering competence within collaborative networks and research communities. His ability to integrate Engineering knowledge with emerging research themes demonstrates both academic maturity and technical expertise. This professional profile positions him as a valuable figure who continues to support the progression of Engineering scholarship and its broader societal impacts with clarity, quality, and commitment. Scopus profile of 15 Citations, 4 Documents, 3 h index.

Profile: Scopus

Featured Publication

1. Poly(lactic acid)/poly(ε-caprolactone) blends: Separate effects of nanocalcium carbonate and glycidyl methacrylate on interfacial characteristics. Journal of Thermoplastic Composite Materials. (2024).

Assoc. Prof. Dr Elnaz Khodapanah | Engineering | Editorial Board Member

Assoc. Prof. Dr Elnaz Khodapanah | Engineering | Editorial Board Member

Assoc. Prof. Dr Elnaz Khodapanah reflects a distinguished record of contributions shaped by sustained commitment to Engineering research, Engineering innovation, and Engineering-driven societal advancement. As an active scholar in the global Engineering community, Assoc. Prof. Dr Elnaz Khodapanah has established a strong research footprint through impactful studies that integrate Engineering principles with applied scientific inquiry, resulting in high-quality outputs recognized across international platforms. Her body of work demonstrates consistent engagement with multidisciplinary Engineering collaborations, leading to publications that advance methodological rigor and strengthen the broader relevance of Engineering solutions for contemporary challenges. Through productive partnerships with research teams and institutional networks, she has expanded the scope and visibility of Engineering knowledge, with her publications receiving meaningful scholarly attention aligned with the evolving frontiers of Engineering practice. Her research contributions reflect a commitment to bridging theoretical Engineering foundations with practical outcomes that yield long-term societal value. The scholarly influence of Assoc. Prof. Dr Elnaz Khodapanah continues to grow through active participation in Engineering communities, strategic involvement in collaborative Engineering projects, and sustained dissemination of high-impact findings that reinforce the essential role of Engineering in global scientific progress. Her contributions exemplify the intellectual depth, professional integrity, and forward-looking perspective expected within the international Engineering landscape, ensuring continued impact across multiple domains enriched by Engineering excellence. Presented in alignment with recognized academic standards, her professional influence is further reflected through the Scopus profile of 570 Citations, 43 Documents, 13 h-index.

Profile: Scopus

Featured Publications

1. Experimental investigation of silica nanoparticle morphology on interfacial properties, diffusion behavior, and oil recovery in carbonate reservoirs: Insights into spherical and rod-shaped particles. Journal of Molecular Liquids. (2025).

2. An evaluation of the viscoelastic properties of nanosized preformed particle gels. ACS Omega. (2025)

3. Comprehensive review of hybrid chemical enhanced oil recovery methods: synergistic mechanisms, applications, and insights into chemical-based water alternating gas techniques. (2025).

4. Evaluation of nanosilica morphology: Effects on nanofluid stability and interaction with carbonate rock surfaces. Journal of Cluster Science. (2024).

Passar Bamerni | Engineering | Excellence in Research

Mr. Passar Bamerni | Engineering | Excellence in Research

Researcher | Albert-Ludwigs-Universität Freiburg | Germany

Mr. Passar Bamerni is a distinguished professional in Microsystems Engineering, recognized for his advanced contributions to sensor technology, interdisciplinary innovation, and applied research within the broader Engineering domain. His work reflects a strong command of Engineering principles, integrating theoretical foundations with practical experimentation to advance miniaturized diagnostic systems, particularly in the area of compact PCR technologies. Through his extensive involvement in Engineering research, he has contributed to the development of novel measurement platforms, simulation-driven optimization, and prototype realization, demonstrating an Engineering mindset oriented toward precision, reliability, and societal benefit. Mr. Bamerni has collaborated with leading institutions and industrial partners on projects spanning sensor Engineering, photoacoustic detection methods, flow-sensor development, and laser-based analytical systems. His research activity exemplifies Engineering excellence through the integration of material characterization, system design, and computational modeling. He has contributed to multiple Engineering-driven initiatives requiring cross-disciplinary teamwork, scientific rigor, and the capacity to translate Engineering concepts into functional devices that strengthen the interface between technology and community needs. Beyond his scientific work, he has demonstrated a meaningful societal impact through civic engagement and leadership roles within community organizations and municipal committees. His responsibilities have involved addressing digitalization, youth development, mobility, education, and other areas where Engineering-informed decision-making supports sustainable public service. This combination of Engineering expertise and public involvement positions Mr. Bamerni as a professional whose influence extends beyond laboratory achievements into broader societal advancement. With strong competencies in Engineering software environments, sensor characterization, simulation tools, and system integration, Mr. Bamerni continues to contribute to the global Engineering landscape through research, innovation, and collaborative development. His profile reflects a commitment to Engineering advancement that is both scientifically significant and socially responsive, reinforcing his standing as a noteworthy figure in contemporary Engineering research and community-oriented technological progress.

Profile: ORCID

Featured Publication

1. Bamerni, P., Mistry, L., Schmitt, K., & Wöllenstein, J. (2023). Evaluation of microheaters for stationary miniaturized PCR thermocyclers (P26). Conference paper.

Prof. Maria Harja | Engineering | Best Researcher Award

Prof. Maria Harja | Engineering | Best Researcher Award

Professor | Technical University Gheorghe Asachi Iasi | Romania

Prof. Maria Harja is a distinguished figure in Engineering, internationally recognized for her sustained contributions to chemical Engineering, environmental Engineering, materials Engineering, and process Engineering. With a prolific scholarly record encompassing more than two hundred Engineering articles, numerous Engineering books, and extensive collaborative research in advanced Environmental and Chemical Engineering, Prof. Harja has established a global reputation for academic excellence and Engineering innovation. Her work spans applied Engineering domains such as inorganic products, inorganic composite materials, chemical reactor design, non-catalytic Engineering processes, integrated pollution control, and sustainable materials derived from industrial residues, particularly fly ash. Through her leadership in Engineering research projects and her role as director in multiple national and international Engineering grants, she has significantly advanced the development of eco-friendly materials, adsorption technologies, photocatalytic systems, and novel Engineering solutions for water treatment, soil improvement, and environmental protection. Prof. Harja’s research portfolio demonstrates a deep commitment to Engineering-driven societal progress, reflected in her impactful collaborations with global partners and multidisciplinary Engineering teams. Her extensive contributions to journals, editorial boards, and international scientific committees further highlight her influence in shaping Engineering research directions. She has authored over two dozen Engineering-focused books and contributed to major Engineering handbooks and scientific volumes addressing nanomaterials, environmental remediation, and sustainable construction technologies. Her participation in professional Engineering societies and her active involvement in scientific evaluation, mentoring, and knowledge dissemination underscore her dedication to advancing Engineering education and research worldwide. The societal impact of Prof. Harja’s Engineering work is evident in the development of environmentally responsible technologies, the valorization of industrial waste through Engineering innovation, and the creation of materials that support sustainable development. Her accomplishments align strongly with global priorities in environmental Engineering, chemical Engineering, and materials Engineering, reaffirming her as a leading authority in these interconnected Engineering fields. Google Scholar profile of 3569 Citations, 31 h-index, 87 i10-index.

Profile: Google Scholar

Featured Publications

1. Harja, M., Buema, G., & Bucur, D. (2022). Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Scientific Reports, 12(1), 6087.

2. Harja, M., & Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of the Total Environment, 628(1), 36–43.

3. Bárbuţă, M., Harja, M., & Baran, I. (2010). Comparison of mechanical properties for polymer concrete with different types of filler. Journal of Materials in Civil Engineering, 22(7), 696–701.

4. Ciobanu, G., & Harja, M. (2019). Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceramics International, 45(2), 2852–2857.

5. Sescu, A. M., Favier, L., Lutic, D., Soto-Donoso, N., Ciobanu, G., & Harja, M. (2021). TiO₂ doped with noble metals as an efficient solution for the photodegradation of hazardous organic water pollutants at ambient conditions. Water, 13(1), 19.

Dr. Liping Gong | Mechanical engineering | Best Researcher Award

Dr. Liping Gong | Mechanical engineering | Best Researcher Award

Associate Research Fellow | University of Wollongong | Australia

Dr. Liping Gong is a distinguished researcher in the field of mechanical engineering, demonstrating exceptional expertise in advanced materials, vibration control, and energy harvesting systems. He earned his Doctor of Philosophy in mechanical engineering from the University of Wollongong, Australia, where his work received the Examiners’ Commendation for Outstanding Thesis. His academic foundation in mechanical engineering was strengthened by a Bachelor’s degree in Engineering Mechanics from Chang’an University, China. As a Postdoctoral Research Fellow, he has made significant strides in developing shear-stiffening phononic crystals through stereolithography for vibration and acoustic applications, alongside mentoring students in material characterization and finite element modeling—core skills in mechanical engineering research. His contributions span the design of magnetorheological elastomers, liquid metal-based nanogenerators, and intelligent materials for energy harvesting, reflecting innovation across various mechanical engineering domains. Dr. Gong’s research in mechanical engineering has been published in top-tier journals such as Advanced Materials, Nano Energy, and Smart Materials and Structures. His dedication has been recognized with the Best Oral Presentation Award at international mechanical engineering conferences. His research skills encompass experimental design, data analysis, material fabrication, and computational modeling—crucial aspects of mechanical engineering advancement. With deep involvement in reviewing for international journals, Dr. Gong continues to contribute to global mechanical engineering excellence. His professional journey highlights a commitment to innovation, interdisciplinary collaboration, and scientific impact within mechanical engineering.Google Scholar profile of 301 Citations, 7 h-index, 7 i10-index.

Profile: Google Scholar

Featured Publications

1. Wang, S., Gong, L., Shang, Z., Ding, L., Yin, G., Jiang, W., Gong, X., & Xuan, S. (2018). Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures. Advanced Functional Materials, 28(18), 1707538.

2. Zhang, Q., Lu, H., Yun, G., Gong, L., Chen, Z., Jin, S., Du, H., Jiang, Z., & Li, W. (2024). A laminated gravity‐driven liquid metal‐doped hydrogel of unparalleled toughness and conductivity. Advanced Functional Materials, 34(31), 2308113.

3. Wu, H., Gong, N., Yang, J., Gong, L., Li, W., & Sun, S. (2024). Investigation of a semi-active suspension system for high-speed trains based on magnetorheological isolator with negative stiffness characteristics. Mechanical Systems and Signal Processing, 208, 111085.

4. Gong, L., Xuan, T., Wang, S., Du, H., & Li, W. (2023). Liquid metal based triboelectric nanogenerator with excellent electrothermal and safeguarding performance towards intelligent plaster. Nano Energy, 109, 108280.

5. Jin, S., Yang, J., Sun, S., Deng, L., Chen, Z., Gong, L., Du, H., & Li, W. (2023). Magnetorheological elastomer base isolation in civil engineering: a review. Journal of Infrastructure Intelligence and Resilience, 2(2), 100039.