Mehabaw Fikrie Yehuala |  Computaional Physics | Best Researcher Award

Mr. Mehabaw Fikrie Yehuala |  Computaional Physics | Best Researcher Award

Chief Academic Technical Assistant | University of Gondar | Ethiopia

Mr. Mehabaw Fikrie Yehuala is an emerging researcher and academic professional specializing in Computational Physics, with an active role as Chief Academic Technical Assistant at the University of Gondar. His career reflects a deep commitment to advancing Computational Physics through theoretical modeling, simulation techniques, and practical implementation in modern physical systems. His research expertise centers on Computational Physics applications in material dynamics, phase separation, and simulation-based investigations, particularly focusing on systems involving complex mixtures and energy interactions. Through his scholarly journey, Mr. Mehabaw has demonstrated a rigorous approach to Computational Physics, integrating programming proficiency in Python, Fortran, and LaTeX with analytical frameworks to model and interpret physical phenomena. His publication in Separation Science and Technology stands as a key contribution to the scientific community, highlighting the relevance of Computational Physics in studying the phase separation of oil–water mixtures using Monte Carlo simulation methods. His collaborative research embodies an interdisciplinary essence, bridging experimental insights with the predictive strength of Computational Physics. Mr. Mehabaw’s professional engagement extends beyond research into educational innovation, where he has contributed significantly to the development of physics laboratory manuals and academic resource materials, further strengthening the pedagogical aspects of Computational Physics education. His recognition for academic excellence and active participation in institutional development underscores his leadership and dedication to the advancement of scientific knowledge. As an analytical thinker and a collaborative scientist, Mr. Mehabaw continues to explore new dimensions in Computational Physics, contributing to both academic and societal progress. His vision emphasizes fostering research-driven learning environments and leveraging Computational Physics methodologies to address real-world scientific and industrial challenges, marking him as a promising contributor to the global physics and research community.

Profile: ORCID

Featured Publication

1. Fikrie, M., Birhanu, T., Bassie, Y., Abebe, Y., & Temare, Y. (2025). Investigation of phase separation of mixture of oil and water in Monte Carlo simulation. Separation Science and Technology.

Prof. Dr. Jinju Sun | Computational Methods | Best Researcher Award

Prof. Dr. Jinju Sun | Computational Methods | Best Researcher Award

Professor | Xi'an Jiaotong University | China

Prof. Dr. Jinju Sun is a distinguished scholar in the School of Energy and Power Engineering at Xi’an Jiaotong University, renowned for her pioneering contributions to fluid mechanics, turbomachinery, and multiphase flow systems through advanced Computational Methods. Her educational journey spans cryogenic engineering to a PhD in turbomachinery and engineering mechanics, which laid the foundation for her expertise in Computational Methods applied to turbomachinery optimization, Lattice Boltzmann modeling, and Vortex Method simulations. Throughout her professional career, she has served as a researcher, lecturer, and professor, advancing research through numerous national and international collaborations emphasizing Computational Methods in fluid dynamics and green energy system design. She has received prestigious honors, including the Donald Julius Groen Prize and the Arthur Charles Main Award from the Institution of Mechanical Engineers (UK), in recognition of her outstanding achievements utilizing Computational Methods for energy system modeling and flow optimization. Her research interests include cryogenic liquid turbines, compressor instabilities, and innovative Computational Methods for fluid-structure interaction and multiphase flow behavior. She has authored numerous high-impact publications and holds multiple international patents that demonstrate her excellence in Computational Methods-based innovation. Prof. Dr. Jinju Sun’s research skills encompass CFD modeling, LBM, topology optimization, and Computational Methods-driven analysis for turbomachinery and green energy systems. In conclusion, her dedication to advancing Computational Methods in engineering has positioned her as a global leader driving innovation, sustainability, and scientific excellence in modern energy and power engineering.

Profile: ORCID

Featured Publications

1. Qu, Y., Sun, J., Song, P., & Wang, J. (2025). Enhancing efficiency and economic viability in Rectisol system with cryogenic liquid expander. Asia-Pacific Journal of Chemical Engineering.

2. Ge, Y., Peng, J., Chen, F., Liu, L., Zhang, W., Liu, W., & Sun, J. (2023). Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion. AIP Advances.

3. Fu, X., & Sun, J. (2023). Three-dimensional color-gradient lattice Boltzmann model for simulating droplet ringlike migration under an omnidirectional thermal gradient. International Journal of Thermal Sciences.

4. Song, P., Sun, J., Wang, S., & Wang, X. (2022). Multipoint design optimization of a radial-outflow turbine for Kalina cycle system considering flexible operating conditions and variable ammonia-water mass fraction. Energies.

5. Song, P., Wang, S., & Sun, J. (2022). Numerical investigation and performance enhancement by means of geometric sensitivity analysis and parametric tuning of a radial-outflow high-pressure oil–gas turbine. Energies.

Dr. Liping Gong | Mechanical engineering | Best Researcher Award

Dr. Liping Gong | Mechanical engineering | Best Researcher Award

Associate Research Fellow | University of Wollongong | Australia

Dr. Liping Gong is a distinguished researcher in the field of mechanical engineering, demonstrating exceptional expertise in advanced materials, vibration control, and energy harvesting systems. He earned his Doctor of Philosophy in mechanical engineering from the University of Wollongong, Australia, where his work received the Examiners’ Commendation for Outstanding Thesis. His academic foundation in mechanical engineering was strengthened by a Bachelor’s degree in Engineering Mechanics from Chang’an University, China. As a Postdoctoral Research Fellow, he has made significant strides in developing shear-stiffening phononic crystals through stereolithography for vibration and acoustic applications, alongside mentoring students in material characterization and finite element modeling—core skills in mechanical engineering research. His contributions span the design of magnetorheological elastomers, liquid metal-based nanogenerators, and intelligent materials for energy harvesting, reflecting innovation across various mechanical engineering domains. Dr. Gong’s research in mechanical engineering has been published in top-tier journals such as Advanced Materials, Nano Energy, and Smart Materials and Structures. His dedication has been recognized with the Best Oral Presentation Award at international mechanical engineering conferences. His research skills encompass experimental design, data analysis, material fabrication, and computational modeling—crucial aspects of mechanical engineering advancement. With deep involvement in reviewing for international journals, Dr. Gong continues to contribute to global mechanical engineering excellence. His professional journey highlights a commitment to innovation, interdisciplinary collaboration, and scientific impact within mechanical engineering.Google Scholar profile of 301 Citations, 7 h-index, 7 i10-index.

Profile: Google Scholar

Featured Publications

1. Wang, S., Gong, L., Shang, Z., Ding, L., Yin, G., Jiang, W., Gong, X., & Xuan, S. (2018). Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures. Advanced Functional Materials, 28(18), 1707538.

2. Zhang, Q., Lu, H., Yun, G., Gong, L., Chen, Z., Jin, S., Du, H., Jiang, Z., & Li, W. (2024). A laminated gravity‐driven liquid metal‐doped hydrogel of unparalleled toughness and conductivity. Advanced Functional Materials, 34(31), 2308113.

3. Wu, H., Gong, N., Yang, J., Gong, L., Li, W., & Sun, S. (2024). Investigation of a semi-active suspension system for high-speed trains based on magnetorheological isolator with negative stiffness characteristics. Mechanical Systems and Signal Processing, 208, 111085.

4. Gong, L., Xuan, T., Wang, S., Du, H., & Li, W. (2023). Liquid metal based triboelectric nanogenerator with excellent electrothermal and safeguarding performance towards intelligent plaster. Nano Energy, 109, 108280.

5. Jin, S., Yang, J., Sun, S., Deng, L., Chen, Z., Gong, L., Du, H., & Li, W. (2023). Magnetorheological elastomer base isolation in civil engineering: a review. Journal of Infrastructure Intelligence and Resilience, 2(2), 100039.

Sathya Arumugam Thirumalai | Computational Methods | Young Scientist Award

Mr. Sathya Arumugam Thirumalai | Computational Methods | Young Scientist Award

Mr. Sathya Arumugam Thirumalai | Indian Institute of Technology Roorkee | India

Mr. Sathya Arumugam Thirumalai is a highly motivated researcher whose work integrates Computational Methods with experimental nanomaterial science, emphasizing sustainability, environmental protection, and advanced detection technologies. His academic journey, from IIT Roorkee to TU Dresden, reflects an enduring commitment to merging experimental nanotechnology with Computational Methods for the synthesis and characterization of perovskite, MXene, and 2D materials. Mr. Sathya’s professional experience spans renowned institutions like IISc Bengaluru, BARC Mumbai, and IIT Roorkee, where he utilized Computational Methods in density functional theory (DFT) simulations, material modeling, and radiation detector design. His research, grounded in Computational Methods, has contributed to multiple journal publications addressing gas sensing, field emission, and radiation detection. He applies Computational Methods to optimize nanomaterial performance, enhance photonic properties, and improve the efficiency of radiation detectors. Recognized with several awards and fellowships, including the National Talent Search Fellowship and the Saxon Student Mobility Grant, he has demonstrated excellence in both theoretical and practical domains. His technical mastery extends to Python, MATLAB, COMSOL, and VASP, emphasizing his strength in applying Computational Methods across interdisciplinary fields. Mr. Sathya’s skill in Computational Methods enables him to bridge theoretical simulations with experimental validation, ensuring scientific precision and innovation. His collaborative engagements with global research groups highlight his leadership and cross-disciplinary adaptability. In conclusion, Mr. Sathya exemplifies how Computational Methods can revolutionize material science, fostering technological advancements that align with sustainability and human welfare.

Profiles: Google Scholar | ORCID

Featured Publications

1. Sathya, A. T., Jethawa, U., Sarkar, S. G., & Chakraborty, B. (2025). Pd-decorated MoSi₂N₄ monolayer: Enhanced nitrobenzene sensing through DFT perspective. Journal of Molecular Liquids, 427, 127310.

2. Sathya, A. T., Kandasamy, M., & Chakraborty, B. (2024). Strain induced nitrobenzene sensing performance of MoSi₂N₄ monolayer: Investigation from density functional theory. Surfaces and Interfaces, 55, 105386.

3. Sanyal, G., Vaidyanathan, A., Sathya, A. T., & Chakraborty, B. (2025). Efficient catechol sensing in newly synthesized 2D material Ti₂B MBene: Insights from density functional theory simulations. Langmuir, 41(33), 22525–22534.

4. Sathya, A. T., Sarkar, S. G., Bakhtsingh, R. I., & Mondal, J. (2024). Suppression of shielding effect of large area field emitter cathode in radio frequency gun environment. Physica Scripta, 99(12), 125301.

Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Leading Scientific Researcher | Institute for Applied Problemss of Mechanics and Mathematics | Ukraine

Prof. Viktor Mykhas’kiv is a distinguished researcher at the Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine. His academic achievements include a Doctor of Science in Physics and Mathematics and a professorship in Mechanics of Deformable Solids. His extensive expertise in Computational Methods spans across Computational Mechanics, Materials Science, Structural Mechanics, and Multiscale Mathematical Modeling. Through his pioneering work, he has applied Computational Methods to study wave propagation, metamaterials, and nanomechanics, advancing knowledge in multiple scattering theory. His research leadership in international collaborations under INTAS, STCU, DAAD, DFG, and Fulbright programs highlights his ability to integrate Computational Methods within global scientific frameworks. As a team leader and project manager, he has promoted innovative Computational Methods in the investigation of elastic metamaterials and complex lattice structures. He has published widely, authoring over seventy-six Scopus-indexed papers, two books, and contributing to editorial boards of international journals like Mathematical Methods and Physicomechanical Fields. His commitment to excellence in Computational Methods is reflected in his role as a member of the European Structural Integrity Society. He has also served as a visiting researcher in the USA and Germany, applying Computational Methods to solve advanced mechanical and physical problems. His awards and honors recognize his groundbreaking use of Computational Methods in applied mechanics and theoretical modeling. With remarkable research skills and professional integrity, Prof. Viktor Mykhas’kiv continues to contribute significantly to global scientific progress. Scopus profile of 474 Citations, 76 Documents, 14 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Stankevych, V. Z., & Mykhas’kiv, V. V. (2023). Intensity of dynamic stresses of longitudinal shear in a periodically layered composite with penny-shaped cracks. Journal of Mathematical Sciences, 269(2), 268–280.

2. Mykhas’kiv, V. V., & Stasyuk, B. M. (2021). Effective elastic moduli of short-fiber composite with sliding contact conditions at interfaces. Mechanics of Composite Materials, 57(6), 845–854.

3. Mykhas’kiv, V., & Stankevych, V. (2019). Elastodynamic problem for a layered composite with penny-shaped crack under harmonic torsion. ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik, 99(8), e201800193.

4. Mykhas’kiv, V. V., Zhbadynskyi, I. Y., & Zhang, C. (2019). On propagation of time-harmonic elastic waves through a double-periodic array of penny-shaped cracks. European Journal of Mechanics - A/Solids, 74, 68–77.

5. Zhbadynskyi, I. Y., & Mykhas’kiv, V. V. (2018). Acoustic filtering properties of 3D elastic metamaterials structured by crack-like inclusions. Proceedings of the International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 54–59.

Dr. Seungpyo Lee | Computational Methods | Best Researcher Award

Dr. Seungpyo Lee | Computational Methods | Best Researcher Award

Director at ILJIN Global, South Korea

Dr. Seungpyo Lee is an expert in computational methods with extensive research in computational methods for mechanical systems, especially in bearings. His focus lies in computational methods for finite element analysis, and he leads computational methods applications at ILJIN Global. Over the years, his work has demonstrated how computational methods enhance engineering outcomes. Dr. Seungpyo Lee utilizes computational methods in fatigue evaluation, stiffness prediction, and dynamic simulations. By implementing computational methods, he ensures accuracy, efficiency, and innovation. His leadership relies on computational methods to solve real-world mechanical challenges. Using computational methods, he fosters engineering advancements. Computational methods help define his professional profile. Through computational methods, Dr. Seungpyo Lee inspires others to pursue innovation via computational methods in research and development.

Professional Profile

Google Scholar

Education 

Dr. Seungpyo Lee pursued all his degrees in mechanical engineering from Hanyang University, specializing in computational methods, particularly computational methods used in finite element analysis. Throughout his education, computational methods were central to his learning, research, and thesis. His academic foundation was enriched by computational methods in structural analysis and mechanics. He became proficient in computational methods while working on real-time simulation projects. Computational methods were crucial in solving engineering problems. His graduate studies included extensive work on computational methods in applied mechanics. Computational methods supported his skill development and critical thinking. Dr. Lee explored advanced topics in computational methods, integrating computational methods into core engineering applications. His commitment to computational methods began early and shaped his entire academic path.

Experience 

Dr. Seungpyo Lee has applied computational methods throughout his career. At ILJIN Global, he leads the R&D Center's CAE team, where computational methods are a foundation of daily operations. His role includes integrating computational methods for mechanical simulations, design validation, and predictive maintenance. Dr. Lee manages teams that rely on computational methods to solve real-time problems. With computational methods, he evaluates bearing stiffness, friction, and fatigue. Computational methods allow his team to drive innovation and enhance product quality. His daily decisions are based on computational methods for simulation accuracy. Under his guidance, computational methods have transformed workflows. His experience reflects a deep understanding of computational methods. Dr. Lee continuously evolves professional practices using computational methods.

Research Interest 

Dr. Seungpyo Lee’s research interests revolve around computational methods for CAE applications. He uses computational methods to study bearing performance, fatigue life, and structural behavior. His current research includes computational methods applied in AI-driven simulations. Dr. Lee combines computational methods with machine learning and deep learning. These advanced computational methods improve prediction accuracy. He investigates how computational methods optimize mechanical design. His research also evaluates computational methods in modeling torque and stiffness. Using computational methods, he addresses industry challenges. He frequently publishes studies exploring new computational methods. His research goal is to expand computational methods in automated analysis. Dr. Lee constantly explores frontiers of computational methods, enriching the engineering field with innovative computational methods-based solutions.

Award and Honor

Dr. Seungpyo Lee’s achievements are grounded in his expertise in computational methods. He has earned recognition for applying computational methods in mechanical simulations. His work with computational methods has received industry-wide acclaim. Dr. Lee’s use of computational methods in predictive modeling led to significant product innovation. Honors were awarded based on his contributions to computational methods in CAE analysis. He has led numerous projects where computational methods were essential. These projects highlight his mastery of computational methods in real-world scenarios. His honors celebrate dedication to advancing computational methods. Computational methods are central to every accolade he receives. His reputation as a leader in computational methods continues to grow. Dr. Lee’s accomplishments underscore the power of computational methods.

Research Skill

Dr. Seungpyo Lee’s research skills are rooted in computational methods, especially in finite element modeling. He excels in applying computational methods for stress analysis, fatigue simulation, and AI integration. His problem-solving approach uses computational methods extensively. With a strong command of simulation tools, he implements computational methods in various projects. His skill set includes writing algorithms and customizing tools based on computational methods. Dr. Lee can assess results through computational methods and improve accuracy. He adapts computational methods to new technologies. His ability to apply computational methods in different domains showcases versatility. Dr. Lee develops strategies using computational methods to solve complex problems. His proficiency ensures that computational methods remain central to research and development practices.

Publication Top Notes 

Title: Probabilistic analysis for mechanical properties of glass/epoxy composites using homogenization method and Monte Carlo simulation
Authors: SP Lee, JW Jin, KW Kang
Journal: Renewable Energy

Title: Low and high cycle fatigue of automotive brake discs using coupled thermo-mechanical finite element analysis under thermal loading
Authors: MJ Han, CH Lee, TW Park, SP Lee
Journal: Journal of Mechanical Science and Technology

Title: Bearing life evaluation of automotive wheel bearing considering operation loading and rotation speed
Authors: SP Lee
Journal: Transactions of the Korean Society of Mechanical Engineers A

Title: Homogenization-based multiscale analysis for equivalent mechanical properties of nonwoven carbon-fiber fabric composites
Authors: H Lee, C Choi, J Jin, M Huh, S Lee, K Kang
Journal: Journal of Mechanical Science and Technology

Title: Distortion analysis for outer ring of automotive wheel bearing
Authors: SP Lee, BC Kim, IH Lee, YG Cho, YC Kim
Journal: Transactions of the Korean Society of Mechanical Engineers A

Title: Analysis for deformation behavior of multilayer ceramic capacitor based on multiscale homogenization approach
Authors: SP Lee, KW Kang
Journal: Journal of Mechanical Science and Technology

Title: The effect of outer ring flange concavity on automotive wheel bearings performance
Authors: S Lee, N Lee, J Lim, J Park
Journal: SAE International Journal of Passenger Cars - Mechanical Systems

Title: Structural design and analysis for small wind turbine blade
Authors: SP Lee, KW Kang, SM Chang, JH Lee
Journal: Journal of the Korean Society of Manufacturing Technology Engineers

Title: Deformation analysis of rubber seal assembly considering uncertainties in mechanical properties
Authors: SP Lee, KW Kang
Journal: Journal of Mechanical Science and Technology

Title: Fatigue analysis for automotive wheel bearing flanges
Authors: JW Jin, KW Kang, S Lee
Journal: International Journal of Precision Engineering and Manufacturing

Title: Life Evaluation of grease for ball bearings according to temperature, speed, and load changes
Authors: J Son, S Kim, BH Choi, S Lee
Journal: Tribology and Lubricants

Conclusion

Dr. Seungpyo Lee exemplifies leadership in computational methods across research, education, and industry. His consistent use of computational methods has advanced mechanical engineering practices. Whether in simulation, design, or research, computational methods are his core tool. Dr. Lee advocates for computational methods in problem-solving and innovation. Through team leadership and research, he advances computational methods. His knowledge of computational methods helps bridge academic theory and industrial practice. Dr. Lee’s influence ensures computational methods will remain integral to future developments. He continues to inspire others by promoting computational methods. His vision includes expanding computational methods to new frontiers. Dr. Lee's legacy will be closely tied to computational methods and their impact on engineering evolution.

Dr. Ammar Alnmr | Geotechnical engineering | Best Researcher Award

Dr. Ammar Alnmr | Geotechnical engineering | Best Researcher Award

Dr. Ammar Alnmr, Széchenyi István University, Hungary

Dr. Ammar Alnmr is an accomplished civil engineer specializing in geotechnical engineering. With a strong academic foundation, including dual Ph.D. pursuits from Széchenyi István University, Hungary, and Tishreen University, Syria, he brings extensive experience from both academia and industry. As a geotechnical engineer and former lecturer at Tishreen University, Dr. Alnmr has contributed to various critical projects and studies, ranging from slope stability to tunnel design. Fluent in Arabic and proficient in English, he is an active member of the Syrian Engineers’ Syndicate, committed to continuous professional growth and advancement in geotechnical engineering

PROFILE

Orcid

Education

Dr. Ammar Alnmr is currently pursuing a Ph.D. in Civil Engineering with a focus on Geotechnical Engineering at Széchenyi István University in Gyor, Hungary, expected to graduate in April 2025. He previously earned another Ph.D. in Civil Engineering from Tishreen University, Lattakia, Syria, where he also completed his Master’s Degree in Civil Engineering (Geotechnical Engineering) in 2017 and his Bachelor’s Degree in Civil Engineering (Geotechnical Engineering) in 2012. His academic journey began with a High School Scientific Degree from Yabroud, Rural Damascus, Syria, which he completed in 2007. Dr. Alnmr’s educational background reflects a consistent focus on geotechnical engineering, laying a solid foundation for his research and professional pursuits.

Research Innovation

Dr. Ammar Alnmr has a robust research portfolio focused on the complex dynamics of plasma physics. His completed projects include significant studies such as the development of a Magnetized Plasma Lens, investigations into Harmonic Generation in Laser-Plasma Interaction, and comprehensive analyses of Weibel Instability in various contexts, including microwave discharge and laser-produced plasmas. He has also explored Kinetic Instability in Astronomical Shock Waves and the generation of Large Amplitude Plasma Waves through the interaction of laser beams. Currently, Dr. Alnmr is working on cutting-edge research projects, including the Laser Direct Acceleration of Electrons in Magnetized Plasma Channels, the exploration of Synchrotron Weibel Instability, and the study of Self-Generated Magnetic Fields in Laser Fusion Processes. These ongoing projects are aimed at advancing our understanding of plasma behavior and its applications in fields such as fusion energy and space physics.

Awards and Honors

Dr. Ammar Alnmr has been recognized for his academic excellence with the Superior Graduate’s Certificate. This honor reflects his outstanding performance and dedication throughout his educational journey. It underscores his commitment to achieving high academic standards and his ability to excel in his field. This recognition is a testament to his hard work, perseverance, and exceptional capabilities in civil engineering, particularly in geotechnical engineering.