Prof. Dr. Robert Nesbet | Physics | Lifetime achievement Award

Prof. Dr. Robert Nesbet | Physics | Lifetime achievement Award

Prof. Dr. at IBM Almaden Research Center, United States

Robert K. Nesbet , a distinguished theoretical physicist born in Cleveland, Ohio, is celebrated for his pioneering work across physics, chemistry, and cosmology. After earning his BA in physics from Harvard College in 1951 and a PhD from the University of Cambridge in 1954  supported as both a Henry Fellow and NSF Predoctoral Fellow he embarked on a remarkable global scientific journey. His academic tenures included posts at MIT, Boston University, and several prestigious institutions worldwide . He contributed extensively at IBM’s Almaden Research Center and published over 300 scientific papers, influencing atomic theory, computational physics, and astrophysical models . Even after his formal retirement in 1994, Nesbet continued exploring the cosmos, bridging microscopic and cosmic scales in his work. He is the author of foundational texts like Variational Principles and Methods in Theoretical Physics and Chemistry . His lifelong curiosity, scholarly rigor, and contributions remain deeply impactful across disciplines.

Professional Profile 

Education

Robert K. Nesbet’s educational path exemplifies brilliance and ambition . Born in Cleveland, he graduated from Harvard College in 1951 with a BA in Physics , reflecting an early commitment to foundational science. Soon after, he earned his PhD in 1954 from the University of Cambridge , supported as a Henry Fellow at St. John’s College and an NSF Predoctoral Fellow—a rare dual honor showcasing both academic excellence and promise. At Cambridge, he cultivated deep theoretical insight that shaped his lifelong trajectory. His transatlantic education merged American analytical precision with British theoretical traditions, laying the groundwork for interdisciplinary ventures in quantum mechanics and beyond . The convergence of elite mentorship, international exposure, and competitive fellowships not only sharpened his research skills but also infused his approach with global perspective . Nesbet’s academic formation remains a testament to how early opportunities and prestigious institutions can shape a transformative scientific voice.

Professional Experience

Nesbet’s professional odyssey traversed elite laboratories, esteemed universities, and global institutions . After a two-year research post at MIT, he became Assistant Professor of Physics at Boston University . His research later spanned continents—from the RIAS at the Martin Company in Baltimore and the Institut Pasteur in Paris  to Brookhaven National Laboratory in New York . In 1962, he joined IBM’s San Jose Research Center (later Almaden) as a Research Staff Member, where he solidified his legacy in computational physics and theoretical chemistry . Throughout his career, he held visiting professorships at top universities worldwide, inspiring students and researchers alike . His dual role as a scholar and editor—serving the Journal of Computational Physics and the Journal of Chemical Physics—reflected both his intellectual authority and collaborative ethos . Nesbet’s decades-long career fused industrial innovation with academic inquiry, shaping generations of theory, simulation, and scientific thought.

Research Interests

Nesbet’s research universe is vast, spanning from atomic orbitals to cosmic curvature . Initially focused on interacting electrons, his contributions in quantum mechanics, computational physics, and molecular theory were groundbreaking . Over 300 publications capture his deep engagement with variational principles, density functional theory, and theoretical chemistry . With mathematical precision, he modeled complex systems—from atomic interactions to crystalline solids—often bridging physics and chemistry in elegant, predictive frameworks . Post-retirement, he boldly pivoted to galactic astrophysics and cosmology, applying quantum insights to gravitational theories and universal expansion . This shift reflected his enduring quest for fundamental understanding—seeking unity between the quantum and cosmic realms. His interdisciplinary fluency allowed him to translate tools across fields, contributing uniquely to gravitational theory and cosmological modeling . Nesbet’s intellectual curiosity and flexible thinking enabled a rare breadth of exploration, making him not just a physicist but a scientific explorer across scales and domains.

Awards and Honors

Robert K. Nesbet’s accolades mirror his extraordinary scholarly influence . From early recognition as a Henry Fellow and NSF Predoctoral Fellow to leadership roles in prestigious journals, his contributions have earned sustained academic reverence . As Associate Editor of both the Journal of Computational Physics and the Journal of Chemical Physics (1969–1974), Nesbet was entrusted with shaping scholarly discourse in two pivotal domains . Though less focused on collecting formal awards, his honor resides in impact—measured by citations, collaborations, and the continued relevance of his models and methods. His long tenure at IBM’s Almaden Research Center underscores the respect of the scientific and industrial communities alike . Author of foundational texts like Variational Principles and Methods in Theoretical Physics and Chemistry, his work is recognized not only in labs and lecture halls but in textbooks and international symposia. Nesbet’s career is rich with intellectual distinction and peer recognition .

Publications Top Note 

1. Conformal Theory of Gravitation and Cosmic Expansion

  • Author: R. K. Nesbet

  • Year: 2023 (arXiv), published in Symmetry in 2024

  • Citations: Currently very low (preprint shows ~1 citation)

  • Source: arXiv preprint (arXiv:2308.10399), final version published in MDPI journal Symmetry

  • Summary: This paper extends the framework of conformal symmetry to build a unified theory that combines Conformal Gravity (CG) and the Conformal Higgs Model (CHM). The author shows that this model explains galactic rotation curves and cosmic acceleration without requiring dark matter or dark energy. It further constrains the Higgs sector, proposing that the 125 GeV resonance observed experimentally might be due to gauge field interactions, not a Standard Model Higgs boson. The theory aligns with empirical laws such as the baryonic Tully–Fisher relation and predicts finite-size galactic halos based on non-classical gravitational effects.

2. Conformal Theory of Gravitation and Cosmology

  • Author: R. K. Nesbet

  • Year: 2020

  • Citations: Approximately 7 citations

  • Source: Published in Europhysics Letters (EPL)

  • Summary: This article introduces and formalizes the application of conformal symmetry in gravitation and cosmology. The gravitational theory replaces Einstein’s field equations with equations derived from the conformal Weyl tensor, leading to a solution that fits galactic rotation curves without dark matter. Simultaneously, the Conformal Higgs Model modifies the cosmological Friedmann equation to fit supernova-based Hubble expansion data, offering a single-parameter explanation for cosmic acceleration. The paper also addresses the radial acceleration relation observed in galaxies and predicts a definite boundary to galactic halos beyond which centripetal acceleration drops to zero.

3. Conformal Gravity: Newton’s Constant Is Not Universal

  • Author: R. K. Nesbet

  • Year: 2022

  • Source: EPL (Europhysics Letters)

  • Summary: This article argues that in the conformal framework, Newton’s gravitational constant emerges from spontaneous symmetry breaking and is not universally fixed. It challenges the standard cosmological model’s assumption of a constant G and suggests variability in gravitational coupling at galactic and cosmological scales.

4. Weyl Conformal Symmetry Model of the Dark Galactic Halo

  • Author: R. K. Nesbet

  • Year: 2022

  • Citations: 1

  • Source: Galaxies (MDPI)

  • Summary: This study focuses on modeling dark galactic halos using Weyl conformal symmetry. The proposed model eliminates the need for dark matter by explaining gravitational effects purely through modified gravitational dynamics. It aligns with observed galaxy data and presents an alternative framework to traditional dark matter theories.

5. Implications of the Conformal Higgs Model

  • Author: R. K. Nesbet

  • Year: 2022

  • Source: Particles (MDPI)

  • Summary: This paper discusses the broader implications of the Conformal Higgs Model, particularly how spontaneous symmetry breaking in a conformal theory can generate the observed properties of particles and vacuum energy without a fundamental Higgs boson mass term. It aims to connect cosmological observations with particle physics.

6. Conformal Higgs Model: Gauge Fields Can Produce a 125 GeV Resonance

  • Author: R. K. Nesbet

  • Year: 2021

  • Citations: 3

  • Source: Modern Physics Letters A

  • Summary: Here, the author argues that the 125 GeV resonance observed in experiments (usually attributed to the Higgs boson) could instead arise from gauge field effects in a conformally symmetric theory. This provides an alternative view of electroweak symmetry breaking and the Higgs mechanism.

7. Dark Energy Density Predicted and Explained

  • Author: R. K. Nesbet

  • Year: 2019

  • Citations: 6

  • Source: EPL (Europhysics Letters)

  • Summary: This article claims to explain the observed value of dark energy density within the conformal Higgs framework. The energy density arises naturally from the modified gravitational equations, potentially solving one of the most challenging problems in cosmology without invoking a cosmological constant.

8. Theoretical Implications of the Galactic Radial Acceleration Relation of McGaugh, Lelli, and Schombert

  • Author: R. K. Nesbet

  • Year: 2018

  • Citations: 8

  • Source: Monthly Notices of the Royal Astronomical Society: Letters

  • Summary: This paper analyzes the empirical radial acceleration relation in galaxies, as reported by McGaugh and collaborators, through the lens of conformal gravity. It suggests that the correlation between baryonic and observed acceleration can be derived from conformal gravitational dynamics, providing a theoretical foundation for the empirical results.

9. Dark Galactic Halos without Dark Matter

  • Author: R. K. Nesbet

  • Year: 2015

  • Citations: 10

  • Source: EPL (Europhysics Letters)

  • Summary: In this foundational work, Nesbet uses conformal gravity to explain the existence and properties of galactic halos without invoking dark matter. The model accounts for the observed flat rotation curves and offers a novel interpretation of gravitational effects in galaxies.

10. Conformal Gravity: Dark Matter and Dark Energy

  • Author: R. K. Nesbet

  • Year: Not clearly specified, but before 2022

  • Citations: 23

  • Source: Appears to be a review or survey article, possibly based on earlier EPL papers

  • Summary: This comprehensive overview summarizes Nesbet’s work on conformal gravity as an alternative to dark matter and dark energy. It synthesizes previous results and places them in the context of observational cosmology, arguing for the viability of conformal symmetry as a fundamental principle in physics.

Conclusion

In the arc of Robert K. Nesbet’s journey, we find the essence of a true scientific visionary—unbound by discipline or decade . His path from Harvard and Cambridge to IBM, Pasteur Institute, and beyond reflects both depth and versatility . Even in retirement, Nesbet’s mind continued to explore—from quantum intricacies to cosmic enigmas, revealing the enduring passion of a thinker driven by fundamental truths . With over 300 publications, editorial leadership, and international teaching, he stands as a pillar of 20th and 21st-century theoretical inquiry . His legacy lives not only in published equations or computational models but in the questions he dared to ask—bridging micro and macro, matter and meaning . As both scholar and mentor, Nesbet’s work offers a timeless reminder: curiosity knows no retirement, and the search for understanding is a lifelong pursuit .

Dr. Mona Jani | Physics | Best Researcher Award

Dr. Mona Jani | Physics | Best Researcher Award

Senior Researcher at University of Latvia, Latvia

Dr. Mona Jani is a globally recognized physicist with a vibrant career spanning research, teaching, and innovation in material science and quantum technologies . She holds a Ph.D. in Physics from Savitribai Phule Pune University, India, with pioneering work on manganite nanoparticles. Her postdoctoral and research journey led her through premier institutes in Taiwan , Brazil, Czech Republic, Poland, and Germany, showcasing her versatility in nanodiamond biosensing, superconductivity, and quantum magnetometry. With teaching stints in India and Ecuador, she brings a blend of academic rigor and global perspective to classrooms. Her impactful work in photonic quantum biosensing and NV-center diamond research positions her at the cutting edge of future bio-diagnostic technologies. Honored with prestigious fellowships and awards including the FORTHEM Award  and several international grants, Dr. Jani continues to mentor, publish, and innovate, leaving a legacy of excellence in physical sciences and beyond.

Professional Profile 

Education

Dr. Mona Jani’s academic foundation is deeply rooted in excellence and exploration. She earned her Ph.D. in Physics (2005–2010) from Savitribai Phule Pune University, India, supported by a CSIR-SRF fellowship under UGC regulations. Her thesis focused on “Manganite Nanoparticles: Synthesis and Applications”—a frontier topic in condensed matter physics. Prior to her doctoral pursuit, she completed her M.Sc. in Physics from Fergusson College, Pune, with a remarkable and distinction honors. She holds a B.Sc. in Physics, Mathematics, and Statistics from H.V. Desai College, securing —also with distinction. Her educational path reveals a consistent record of academic brilliance paired with early involvement in research activities, setting the stage for a multidisciplinary research career. From nanoparticle synthesis to cutting-edge quantum sensing, her learning journey showcases both depth and diversity, building a robust knowledge base that fuels her innovative pursuits in material science and quantum technology.

Professional Experience

Dr. Mona Jani’s professional career is a tapestry woven with global collaborations, research breakthroughs, and transformative teaching. Post-Ph.D., she served as a research scientist and postdoc at premier institutes including the University of Campinas, National Dong Hwa University, IOCB Prague, and Jagiellonian University. Her work spans nanodiamond biosensing, superconducting materials, and magneto-transport phenomena. At DESY (Germany), she was a visiting scientist, mastering advanced synchrotron techniques. As a faculty member, she taught physics and materials science courses at Yachay Tech University and Ahmedabad University, enriching students with her global insights. Her technical expertise includes spectroscopic techniques, ODMR, and magnetization studies—skills honed across continents and disciplines. Dr. Jani’s career reflects a powerful synergy between research and teaching, marked by innovation and student mentorship. Her ability to traverse academia and advanced labs exemplifies a rare scientific versatility and global engagement.

Research Interests

Dr. Mona Jani’s research compass points boldly toward the quantum frontier and materials innovation . Her central interests lie in Quantum Diamond Magnetometry, employing NV centers in diamonds for ultra-sensitive magnetic field detection and nanoscale imaging. She’s a trailblazer in Photonic Quantum Biosensing, using quantum effects in nanodiamonds to revolutionize bio-diagnostics and medical imaging. With foundational expertise in Superconductivity and Magneto-Transport, she investigates how exotic states emerge in semimetals and functional materials. She also explores Structural and Spectroscopic Characterization using Raman, IR, and PL spectroscopy to decode material behavior. Her earlier research explored surface-modified nanodiamonds for biomedical imaging and manganites for multifunctional device applications. Dr. Jani’s curiosity-driven science bridges physics, biology, and chemistry—demonstrating how quantum principles can enable transformative real-world solutions. With every project, she dives deeper into matter’s smallest scales to uncover phenomena that could redefine sensing, imaging, and materials engineering .

Awards and Honors

Dr. Mona Jani’s scientific odyssey is decorated with prestigious awards and recognitions that affirm her excellence and impact . In 2025, she received the FORTHEM Award from Germany—honoring her quantum biosensing innovations. Earlier, she earned competitive postdoctoral fellowships from FAPESP (Brazil), NSC (Taiwan), and IOCB (Czech Republic)—testimonies to her international research caliber. She was also awarded the DST Inspire Faculty Fellowship in India and fellowships from CSIR as both SRF and RA. Beyond fellowships, she clinched first prizes at top scientific symposiums including the DAE-BRNS ISMC 2008 and the Raman Memorial Conference 2005 . These accolades highlight not just her academic brilliance, but also her presentation skills, innovation, and peer recognition. Her research projects—often institutionally funded—underscore the trust placed in her by top scientific bodies worldwide. Through dedication and visionary work, Dr. Jani continues to raise the bar in quantum materials science and biosensing frontiers.

Publications Top Notes

  • Title: Quantum diamond microscopy of individual vaterite microspheres containing magnetite nanoparticles
    Authors: M. Jani, H. Barhum, J. Alnis, M. Attrash, T. Amro, N. Bar-Gill, T. Salgals, …
    Year: 2025
    Citation: – (Preprint, no citation data yet)
    Source: Preprint (not yet peer-reviewed/published)

  • Title: Multi-parameter study of a diamond magnetometer
    Authors: M. Jani, R. Lazda, F. Gāhbauer, A. Asare, M. Mrózek, A.M. Wojciechowski, …
    Year: 2025
    Citation: 1
    Source: Peer-reviewed journal (exact journal not specified)

  • Title: Optically detected magnetic resonance study of thermal effects due to absorbing environment around nitrogen-vacancy-nanodiamond powders
    Authors: M. Jani, Z. Orzechowska, M. Mrózek, M. Mitura-Nowak, W. Gawlik, …
    Year: 2024
    Citation: 1
    Source: Peer-reviewed journal (exact journal not specified)

  • Title: Sensing of magnetic-field gradients with nanodiamonds on optical glass-fiber facets
    Authors: M. Jani, P. Czarnecka, Z. Orzechowska, M. Mrózek, W. Gawlik, …
    Year: 2023
    Citation: 8
    Source: Peer-reviewed journal (likely Sensors or similar)

  • Title: FND-glass Fiber Interfaces and Their Optically Detectable Magnetic Resonance Studies
    Authors: M. Jani, P. Czarnecka, A. Filipkowski, S. Sengottuvel, M. Mrózek, …
    Year: 2022
    Citation:
    Source: Peer-reviewed journal (exact source not provided)

  • Title: Magnetically-sensitive nanodiamond thin-films on glass fibers
    Authors: P. Czarnecka, M. Jani, S. Sengottuvel, M. Mrózek, P. Dąbczyński, …
    Year: 2022
    Citation: 14
    Source: Peer-reviewed journal (possibly Applied Physics Letters or Scientific Reports)

  • Title: Role of high nitrogen‐vacancy concentration on the photoluminescence and Raman spectra of diamond
    Authors: M. Jani, M. Mrózek, A.M. Nowakowska, P. Leszczenko, W. Gawlik, …
    Year: 2022
    Citation: 11
    Source: Peer-reviewed journal (likely Physica Status Solidi or equivalent)

  • Title: Engineered zero-dimensional fullerene/carbon dots-polymer based nanocomposite membranes for wastewater treatment
    Authors: M. Jani, J.A. Arcos-Pareja, M. Ni
    Year: 2020
    Citation: 60
    Source: Journal of Hazardous Materials or similar environmental nanotech journal

  • Title: Using Polymers to Enhance the Carbon Nanomaterial Biointerface
    Authors: G. Pramanik, J. Neburkova, V. Vanek, M. Jani, M. Kindermann, P. Cigler
    Year: 2019
    Citation: 2
    Source: Book Chapter in Springer/Nanotechnology series

  • Title: Long-Term Imaging: Supported Lipid Bilayers on Fluorescent Nanodiamonds: A Structurally Defined and Versatile Coating for Bioapplications
    Authors: J. Vavra, I. Rehor, T. Rendler, M. Jani, J. Bednar, M.M. Baksh, A. Zappe, …
    Year: 2018
    Citation: 2
    Source: Nano Letters (communication/short format)

  • Title: Supported lipid bilayers on fluorescent nanodiamonds: A structurally defined and versatile coating for bioapplications
    Authors: J. Vavra, I. Rehor, T. Rendler, M. Jani, J. Bednar, M.M. Baksh, A. Zappe, …
    Year: 2018
    Citation: 28
    Source: ACS Nano or similar high-impact journal

  • Title: Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli
    Authors: A. Chatterjee, E. Perevedentseva, M. Jani, C.Y. Cheng, Y.S. Ye, P.H. Chung, …
    Year: 2015
    Citation: 70
    Source: Nanoscience and Nanotechnology Letters or Scientific Reports

Conclusion

Dr. Mona Jani emerges as a beacon in the world of quantum physics and material sciences, harmonizing knowledge, innovation, and mentorship. Her cross-continental academic journey is not just a tale of scientific exploration but one of intellectual courage and global outreach. With contributions spanning superconductors to nanodiamonds, she exemplifies how fundamental physics can translate into impactful technologies for healthcare, imaging, and diagnostics . A seasoned mentor and educator, she fosters scientific curiosity in students while shaping next-gen researchers across India, Latin America, and Europe. Her awards reflect both her trailblazing science and her community engagement. By bridging quantum theory with real-world bioapplications, she is at the vanguard of shaping a smarter, more sensitive scientific future. In every role—researcher, teacher, or mentor—Dr. Jani continues to inspire with depth, precision, and vision, leaving an indelible mark on modern science and education.

Prof. Marilyn E Noz |Physics |Best Researcher Award

Prof. Marilyn E Noz|Physics |Best Researcher Award

Professor. Marilyn E Noz at New York University, United States

Dr. Marilyn E. Noz 🇺🇸, born June 17, 1939, in New York City 🗽, is a trailblazing physicist and educator whose pioneering work bridges theoretical physics and medical imaging. With a Ph.D. in Physics from Fordham University 🎓, she emerged as a powerful voice in nuclear medicine and radiological research. Serving NYU’s School of Medicine for over four decades 🏥, she rose from Assistant Professor to Professor Emerita and Research Professor. Her accolades include awards from renowned bodies like the Society of Nuclear Medicine and Radiological Society of North America 🏆. A licensed Medical Physicist and diplomate of multiple scientific boards, Dr. Noz is recognized globally for CT/SPECT fusion advancements and nuclear magnetic resonance insights 💡. Her dedication to education, research, and clinical innovation marks her as a luminary in the intersection of physics and medicine 🌟.

Professional Profile 

🎓 Education

Dr. Marilyn E. Noz’s academic path is as illustrious as her career. She graduated summa cum laude in Mathematics from Marymount College in 1961, setting a strong foundation in analytical thinking and scientific curiosity 🧮. She pursued both her M.S. and Ph.D. in Physics at Fordham University, completing them in 1963 and 1969 respectively ⚛️. Her commitment to academic excellence was recognized through numerous fellowships and scholarships, including the National Defense Education Act Fellowship and the New York State Regents Fellowship 🏅. This scholarly journey laid the groundwork for her later groundbreaking contributions to nuclear medicine and radiological science. Her educational philosophy continues to inspire aspiring physicists and medical professionals alike 📚.

👩‍🔬 Professional Experience

Dr. Noz’s professional journey spans prestigious institutions and critical innovations. Beginning as a professor at Marymount College in the 1960s, she shaped young scientific minds while holding leadership roles 👩‍🏫. Her career blossomed at New York University’s Department of Radiology, where she spent over three decades—from Assistant Professor to Research Professor and Professor Emerita 🏛️. She held concurrent roles at Tisch Hospital and Bellevue Hospital, enhancing clinical radiology practice. Her adjunct positions at Manhattan College and Iona College reflect her dedication to sharing knowledge across disciplines 🌐. Notably, she played a pivotal role in advancing nuclear medicine physics and medical imaging integration, leaving an indelible mark on academic and clinical settings 🧬.

🔬 Research Interest

Dr. Noz’s research traverses the dynamic interface between physics and medicine. Her primary focus lies in nuclear medicine physics, SPECT/CT fusion, and nuclear magnetic resonance 🧠. She is known for pioneering the integration of cross-sectional imaging modalities, improving diagnostic accuracy and patient care through novel imaging algorithms and data interpretation techniques 🖥️. Her work in radiation protection and computational physics has also made significant contributions to the safety and efficacy of imaging technologies ☢️. As a physicist deeply invested in translational science, Dr. Noz has published extensively and mentored future leaders in medical physics, bridging theoretical insight with clinical innovation seamlessly 🔗.

🏅 Awards and Honors

Throughout her distinguished career, Dr. Noz has received numerous prestigious awards celebrating her research excellence and innovation 🌟. Highlights include the Giovanni DiChiro Award for outstanding research in the Journal of Computer Assisted Tomography, and several Cum Laude honors from the Society of Computed Body Tomography 🧾. Her work in CT/SPECT fusion earned multiple scientific exhibit awards, showcasing her ingenuity in imaging science 🎖️. She was a finalist for the ComputerWorld-Smithsonian Institute Awards and honored with a Senior International Research Fellowship by the NIH’s Fogarty International Center 🌍. These accolades underscore her enduring impact and peer recognition across interdisciplinary fields 🧪.

📚 Publications Top Note 

1. Can Na¹⁸F PET/CT bone scans help when deciding if early intervention is needed in patients being treated with a TSF attached to the tibia: insights from 41 patients


⚛️ 2. Integration of Dirac’s efforts to construct a quantum mechanics which is Lorentz‑covariant

  • Authors: Young S. Kim, Marilyn E. Noz

  • Year: 2020

  • Citations: 1

  • Source: Symmetry

  • Summary: This paper synthesizes Dirac’s 1927, 1945, 1949, and 1963 efforts to reconcile quantum mechanics with Lorentz covariance. It explains his use of Gaussian localization, light-cone coordinates, “instant form,” and coupled oscillators to derive Lorentz group representations, ultimately yielding a Lorentz‑covariant harmonic oscillator framework Colab+3arXiv+3arXiv+3bohr.physics.berkeley.edu+11MDPI+11arXiv+11.


🦴 3. Accuracy and precision of a CT method for assessing migration in shoulder arthroplasty: an experimental study


🧬 4. Einstein’s E = mc² derivable from Heisenberg’s uncertainty relations

  • Authors: Sibel Başkal, Young S. Kim, Marilyn E. Noz

  • Year: 2019

  • Citations: 5

  • Source: Quantum Reports

  • Summary: This theoretical paper demonstrates that the Lie algebra of the Poincaré group (and thus mass–energy equivalence) can emerge naturally from Heisenberg’s uncertainty relations. Using harmonic oscillators and signal‑space group contractions (O(3,2) → Poincaré), they derive E = mc² Inspire+15MDPI+15arXiv+15ysfine.com+1arXiv+1.


📷 5. Are low‑dose CT scans a satisfactory substitute for stereoradiographs for migration studies? A preclinical test…

  • Authors: Eriksson T, Maguire GQ Jr, Noz M.E., Zeleznik M.P., Olivecrona H., Shalabi A., Hänni M.

  • Year: 2019

  • Citations: 13

  • Source: Acta Radiologica

  • Summary: The authors tested multiple low‑dose CT protocols in a hip phantom and a pilot patient, finding that selected protocols (≈0.70 mSv) provided migration measurement precision comparable to standard RSA, demonstrating CT’s promise as a lower-dose, reliable tool link.springer.com+15PubMed+15Colab+15Colab+1ous-research.no+1.


🔄 6. Poincaré symmetry from Heisenberg’s uncertainty relations

  • Authors: (Likely similar to above)

  • Year: 2019

  • Citations: 4

  • Source: Symmetry

  • Summary: This related work further details how expanding from one to two oscillators in the Heisenberg framework leads to the de Sitter group, which can be contracted to the Poincaré group. It highlights a structural derivation of spacetime symmetries using quantum uncertainty Colabysfine.com+1arXiv+1.


🦴 7. Motion analysis in lumbar spinal stenosis with degenerative spondylolisthesis: A feasibility study of the 3DCT technique comparing laminectomy versus bilateral laminotomy

  • Authors: Not fully listed

  • Year: 2018

  • Citations: 6

  • Source: Clinical Spine Surgery

  • Summary: This feasibility study used 3D CT motion analysis to compare two spinal decompression techniques. Although article details are limited, it evaluated kinematic differences following laminectomy and bilateral laminotomy.


🦴 8. Prosthetic liner wear in total hip replacement: a longitudinal 13‑year study with computed tomography

  • Authors: Not fully listed

  • Year: 2018

  • Citations: 7

  • Source: Skeletal Radiology

  • Summary: This long-term CT-based evaluation tracked in vivo liner wear in total hip replacements over 13 years, offering valuable longitudinal data on implant durability and wear behavior.


📘 9. New perspectives on Einstein’s E = mc²

  • Authors: (Not specified)

  • Year: (Not specified, presumably recent)

  • Citations: 1

  • Source: Book

  • Summary: Presents fresh theoretical insights and interpretations surrounding mass–energy equivalence. Likely synthesizes recent research building on Dirac and uncertainty-related frameworks.


🔄 10. Loop representation of Wigner’s little groups

  • Authors: Not listed

  • Year: 2017

  • Citations: 3

  • Source: Symmetry

  • Summary: Investigates representations of Wigner’s little groups (subgroups of the Lorentz group preserving particle momentum) via loop structures, contributing to our understanding of relativistic particle symmetries.

🧭 Conclusion

Dr. Marilyn E. Noz stands as a beacon of scientific integrity, academic rigor, and humanistic contribution to medicine and physics 🌈. Her legacy is reflected not only in her groundbreaking research but also in her mentorship, teaching, and service to institutions that shape healthcare innovation 🏥. Through her interdisciplinary expertise and visionary leadership, she helped transform diagnostic imaging, elevate standards in medical physics, and inspire generations of scientists 📈. Even in emerita status, her influence resonates through her publications, innovations, and the many professionals she has mentored. A true pioneer, Dr. Noz exemplifies what it means to blend intellect, compassion, and purpose into a lifetime of contribution 🙌.

Joshua Benjamin | Physics | Best Researcher Award

Mr. Joshua Benjamin | Physics | Best Researcher Award

Lagos Nigeria at TYDACOMM Nigeria Limited, Nigeria

benjamin, joshua olamide is a dedicated scholar and researcher passionate about space physics, ionospheric studies, and space weather. He holds a first-class degree in pure and applied physics from Ladoke Akintola University of Technology and a distinction in space physics from the African University of Science and Technology. With experience in RF network planning and optimization, teaching, and research, he combines technical expertise with strong analytical skills. Proficient in MATLAB, Microsoft Office, and data analysis tools, he is committed to innovation, leadership, and academic excellence. His research contributes to understanding ionospheric models and their impact on space weather. 🚀📡

Professional Profile

Education & Experience 🎓💼

  • [2022] MSc in Space Physics (Distinction) – African University of Science and Technology 📡
  • [2019] B.Tech in Pure and Applied Physics (First Class) – Ladoke Akintola University of Technology 🔬
  • [2023 – Present] RF Network Planning & Field Test Engineer – TYDACOMM Nigeria Limited 📶
  • [2020 – 2021] NYSC Mathematics & Economics Teacher – Jofegal International School 📚
  • [2018] Internship at Perfect Seven Solar Company – Solar System Maintenance ☀️
  • [2011 – 2012] Mathematics Teacher – Fountain of Knowledge Group of School 📏

Professional Development 📖🔍

benjamin, joshua olamide has actively participated in multiple international colloquiums and workshops related to space science, GNSS, and ionospheric studies. He has certifications in health, safety, and environment (HSE Levels 1-3) and has completed training in soft skills, entrepreneurship, and critical thinking. His involvement in research and development, coupled with hands-on experience in field testing, data collection, and RF network optimization, showcases his versatility. Passionate about academic excellence, he regularly engages in professional training, leadership roles, and mentorship programs to enhance his expertise in space physics and its applications. 🌍🛰️

Research Focus 🔬🌌

benjamin, joshua olamide specializes in ionospheric physics, space weather, and solar-terrestrial interactions. His research explores the global climatological performance of ionospheric models using Swarm satellite electron density measurements, evaluating their accuracy and implications for GNSS and communication systems. He has worked on latitudinal electron density profiles, comparing SWARM measurements with IRI models, and studying biophysics applications. His goal is to improve predictive models for space weather impacts on Earth, ensuring the safety and reliability of communication and navigation technologies. His research contributes to scientific advancements in space physics and atmospheric studies. 🌞🌍📡

Awards & Honors 🏆🎖️

  • [2022] Best Graduating Student – Institute of Space Science and Engineering 🏅
  • [2022] Best Graduating Student – Department of Space Physics 🏆
  • [2019] Akinrogun Trust Fund Award 💰
  • [2019] Best WAEC Result – New Era High School 🏅
  • [2007] One of the Best Junior WAEC Results – Greater Tomorrow College 🎓

Publication Top Notes

  1. “Investigation of the global climatologic performance of ionospheric models utilizing in-situ Swarm satellite electron density measurements”
    This paper was published in Advances in Space Research, Volume 75, Issue 5, pages 4274-4290, in 2025. The authors are:

    • D. Okoh
    • C. Cesaroni
    • J.B. Habarulema
    • Y. Migoya-Orué
    • B. Nava
    • L. Spogli
    • B. Rabiu
    • J. Benjamin

    The study offers a comprehensive investigation into the climatologic performance of three ionospheric models when compared to in-situ measurements from Swarm satellites. The models evaluated are the International Reference Ionosphere (IRI), NeQuick, and a 3-dimensional electron density model based on artificial neural network training of COSMIC satellite radio occultation measurements (3D-NN). The findings indicate that while all three models provide fairly accurate representations of the Swarm measurements, the 3D-NN model consistently performed better across various conditions.

  2. “Global Comparison of Instantaneous Electron Density Latitudinal Profiles from SWARM Satellites and IRI Model”
    This paper was published in Advances in Space Research in 2025. The authors are:

    • J.O. Benjamin
    • D.I. Okoh
    • B.A. Rabiu

    This study focuses on comparing instantaneous electron density latitudinal profiles obtained from Swarm satellites with predictions from the IRI model. The comparison aims to assess the accuracy of the IRI model in representing real-time electron density variations observed by the Swarm mission.

For full access to these publications, you may consider visiting the publisher’s website or accessing them through academic databases such as IEEE Xplore or ScienceDirect. If you are affiliated with an academic institution, you might have institutional access to these resources.

Conclusion

Benjamin, joshua olamide stands out as a promising researcher in space physics, with notable contributions to ionospheric studies, climatology models, and research-driven technological applications. His exceptional academic achievements, research output, leadership roles, and technical expertise position him as a deserving candidate for the Best Researcher Award.

Tan Zhiguang | Phenomenology model | Best Researcher Award

Tawfik Chaabeni | Physics | Best Researcher Award

Mr. Tawfik Chaabeni | Physics | Best Researcher Award

Mr. Alessandro Di, Nola Università Federico II Napoli, Italy

tawfik chaabeni is a doctoral researcher and secondary school teacher with a background in materials physics and energy. Based at the Faculty of Sciences of Sfax, University of Sfax, Tunisia, he combines academic research with practical teaching experience across various educational levels. He aims to contribute to innovative solutions in energy materials while inspiring future generations through physics education.

PROFILE

Orcid Profile

Educational Details

Mr. tawfik chaabeni is currently a doctoral candidate at the Faculty of Sciences of Sfax, University of Sfax, Tunisia. He began his Ph.D. program in physics at the Faculty of Sciences of Sfax in September 2020, focusing on materials physics and energy. He holds a Master’s degree in Materials Physics and Energy from the Higher School of Science and Technology of Hammam Sousse, University of Sousse (2015). He also completed a Bachelor’s degree in General Physics from the same institution in 2013, following a high school diploma (Baccalauréat) in Mathematics from Lycée Ali Zouaoui, Kairouan, Tunisia (2010).

Professional Experience

Since 2021, Mr. chaabeni has been a secondary school teacher at Lycée La Persévérance, building on previous teaching roles at Lycée Ibn Khaldoun, Pascal School, and the Mon Excellence tutoring center. His teaching experience spans secondary education and post-secondary levels, including roles as a part-time assistant at the Higher School of Science and Technology of Hammam Sousse (2017–2019). His diverse teaching background covers core physics subjects, aimed at fostering students’ understanding and interest in the field.

Research Interests

Mr. chaabeni’s research interests are centered on materials physics and energy, with a particular focus on the development and application of new materials for energy solutions. His doctoral research explores advanced materials with potential applications in renewable energy technologies, contributing to sustainable energy development.

Top Notable Publications

Authors: Tawfik Chaabeni, et al.

Year: 2024

Title: Tunable Optical Properties and Relaxor Behavior in Ni/Ba Co-Doped NaNbO3 Ceramics: Pathways Toward Multifunctional Applications

Journal: Ceramics

Volume: 7

Issue: 4

DOI: 10.3390/ceramics7040107

ISSN: 2571-6131

Conclusion

Mr. Chaabeni demonstrates commendable achievements in education and a promising start in research. While he may not yet meet the highest qualifications of seasoned researchers for this award, his recent contributions and evolving research focus position him as an emerging researcher with potential for future awards.

 

 

 

 

Alessandro Di Nola | Neutrino Experiments | Best Researcher Award

Mr. Alessandro Di Nola | Neutrino Experiments | Best Researcher Award

Mr. Alessandro Di, Nola Università Federico II Napoli, Italy

Alessandro Di Nola, a physicist and Ph.D. candidate at Università di Napoli Federico II, specializes in front-end electronics and detector systems for high-energy physics experiments. With a Master’s degree cum laude and active involvement in international collaborations, he has contributed to the Hyper-Kamiokande and JEM-EUSO programs, with multiple publications and conference presentations to his name. His work bridges digital electronics, cosmic ray physics, and advanced detector optimization, contributing to the future of experimental physics.

PROFILE

Google Scholar Profile

Educational Details

Alessandro Di Nola is a Ph.D. candidate in Physics at Università di Napoli Federico II, Italy, with a strong background in experimental physics, particularly in detector technology and front-end electronics. His academic journey began with a Bachelor’s degree in Physics (2017-2020), followed by a Master’s degree in Physics, both from Università di Napoli Federico II. Graduating with cum laude honors, his Master’s thesis focused on characterizing the front-end electronics and detectors of the Hyper-Kamiokande experiment.

Professional Experience

Alessandro is deeply involved in high-energy particle physics experiments, collaborating with international research teams. His work emphasizes the development and quality assurance of advanced electronic components for detectors used in large-scale neutrino and cosmic ray studies. Since 2023, he has contributed to key components of the Hyper-Kamiokande experiment, handling responsibilities in the FD mPMT electronics for CERN’s WCTE experiment and serving as a key contributor for the Jennifer 3 working group.

His recent publications, including several journal articles and conference proceedings, cover advancements in cosmic ray detection and front-end electronics. Alessandro has presented his research widely, sharing his work through oral and poster presentations at international conferences, such as the IEEE Real Time Conference and the Società Italiana di Fisica.

Research Interests

Alessandro’s research interests include high-energy particle detection, cosmic ray physics, and the development of hybrid electronics systems for experimental physics. His work integrates digital filters, electronics characterization, and detector optimization, with a keen focus on the application of these technologies in large-scale experiments.

Awards and Achievements

Best Communication Award: 110° Congresso della Società Italiana di Fisica, Bologna, Italy, 2024.

Presentations: Delivered oral and poster presentations at renowned conferences, including the IEEE Real Time Conference, the Pisa Meeting on Advanced Detectors, and the Next Generation Nucleon Decay and Neutrino Experiments conference.

Working Groups

MEMPHYS (MEMristive-CMOS hybrid electronics for experimental PHYSics) experiment (2024-present)

Hyper-Kamiokande Collaboration (2023-present): Contributing to the FD mPMT electronics for Jennifer 3.

T2K International Collaboration (2024-present)

JEM-EUSO International Collaboration (2022-2023)

Skills

Languages: Fluent in English and Italian (native).

Coding: Proficient in Python, MATLAB, VHDL, Tcl, LATEX, C/C++, LabVIEW, Git, PSpice.

Web Development: Knowledgeable in HTML, CSS, JavaScript.

Miscellaneous: Skilled in academic research, training, consultation, and LATEX typesetting and publishing.

Top Notable Publications

S Abe, JH Adams Jr, D Allard, P Alldredge, L Anchordoqui, A Anzalone, …
“Developments and results in the context of the JEM-EUSO program obtained with the ESAF simulation and analysis framework,” The European Physical Journal C, 83(11), 1028, 2023.
Citation count: 10

S Abe, JH Adams, D Allard, P Alldredge, R Aloisio, L Anchordoqui, …
“EUSO-Offline: A comprehensive simulation and analysis framework,” Journal of Instrumentation, 19(01), P01007, 2024.
Citation count: 4

JH Adams Jr, D Allard, P Alldredge, L Anchordoqui, A Anzalone, M Battisti, …
“The EUSO-SPB2 fluorescence telescope for the detection of Ultra-High Energy Cosmic Rays,” Astroparticle Physics, 165, 103046, 2025.
Citation count: 1

S Abe, JH Adams Jr, D Allard, P Alldredge, R Aloisio, L Anchordoqui, …
“JEM-EUSO Collaboration contributions to the 38th International Cosmic Ray Conference,” arXiv preprint arXiv:2312.08204, 2023.

H Wistrand, T Heibges, J Posligua, C Guépin, MH Reno, TM Venters
“The Targets of Opportunity Source Catalog for the EUSO-SPB2 Mission,” arXiv preprint arXiv:2312.00920, 2023.

M Zotov, S Abe, JH Adams, D Allard, P Alldredge, R Aloisio, …
“Machine Learning for the EUSO-SPB2 Fluorescence Telescope Data Analysis,” POS Proceedings of Science, 2023.

S Abe, JH Adams, D Allard, P Alldredge, R Aloisio, L Anchordoqui, …
“The EUSO-TA ground-based detector: results and perspectives,” POS Proceedings of Science, 2023.

G Sammartino, G Pretto, S Abe, JH Adams, D Allard, P Alldredge, …
“Analysis of EAS-like events detected by the Mini-EUSO telescope,” POS Proceedings of Science, 2023.

Conclusion

In conclusion, Mr. Alessandro Di Nola is a highly qualified and deserving candidate for the Best Researcher Award. His academic credentials, innovative research, technical expertise, and contributions to international collaborations make him an ideal recipient of this prestigious award. His ongoing work with experiments like Hyper-Kamiokande and JEM-EUSO positions him as a key player in the field of particle physics, and his future contributions are anticipated to continue advancing our understanding of fundamental physics.

 

 

 

 

Uzma Tabassam | High Energy Physics | Best Researcher Award

Dr. Uzma Tabassam | High Energy Physics | Best Researcher Award 

Dr. Uzma Tabassam, COMSATS University Islamabad, Islamabad Pakistan, Pakistan

Dr. Uzma Tabassam is a dedicated physicist specializing in experimental nuclear astrophysics and high-energy physics. With a Ph.D. from the University of Camerino, Italy, and extensive experience in particle detector technology, Dr. Tabassam is a leading figure in experimental nuclear research at COMSATS University Islamabad. She excels in particle detector fabrication, simulations, and spectroscopy, playing an active role in global physics collaborations like the ALICE experiment.

PROFILE

Google Scholar Profile

Educational Details

Dr. Tabassam completed her Ph.D. in Experimental Nuclear Astrophysics at the University of Camerino, Italy, from 2009 to 2012. She holds an MS in Physics with a specialization in Quantum Computation and Nano-science from COMSATS Institute of Information Technology, Islamabad, which she earned in 2008. Her foundational academic journey began with an MSc in Physics from Quaid-i-Azam University, Islamabad, from 2003 to 2006, followed by a BSc in Physics from Islamabad College for Girls, F-6/2, Pakistan, between 2001 and 2003.

Professional Experience

With a strong focus on experimental nuclear physics and high energy physics, Dr. Tabassam has been involved in various collaborative research projects, including the ALICE experiment at CERN. Her work entails using advanced simulation tools like GEANT4 and Monte Carlo event generators (HIJING2.0, PYTHIA8, UrQMD, EPOS-LHC, and more) for the analysis of particle interactions. She has extensive experience in detector construction, UHV fabrication, and operating sophisticated tools such as electron microscopes and spectroscopic detectors (NaI(Tl), HPGe, SSBD, BF3).

Research Interest

Experimental Nuclear Astrophysics

High-Energy Physics Phenomenology

Particle Detector Fabrication

GEANT4 Simulations

Particle Spectroscopy Her contributions to these fields help advance the understanding of particle interactions at the nuclear and astrophysical levels.

Skills and Competencies

Proficient in O2 software and AliRoot for ALICE experiment data analysis

Expertise in Monte Carlo event generators such as PYTHIA8, UrQMD, and EPOS

Advanced user of ROOT data analysis framework and GEANT4 simulations

C++ programming for simulation and analysis

Particle detector fabrication (UHV) and spectroscopy with detectors like NaI(Tl), HPGe, SSBD, and BF3

Experience with front-end electronics for alpha, beta, and gamma spectroscopy

Proficiency in Linux, Latex, Microsoft Word, and Origin for data analysis

Top Notable Publications

Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions

Authors: J Adam, D Adamová, MM Aggarwal, G Aglieri Rinella, M Agnello, et al.

Journal: Nature Physics

Volume: 13 (6), Pages 535-539

Year: 2017

Citations: 1802

Anisotropic Flow of Charged Particles in Pb-Pb Collisions at

Authors: J Adam, D Adamová, MM Aggarwal, G Aglieri Rinella, M Agnello, et al.

Journal: Physical Review Letters

Volume: 116 (13), 132302

Year: 2016

Citations: 465

Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic collisions at TeV

Authors: S Acharya, D Adamová, SP Adhya, A Adler, J Adolfsson, MM Aggarwal, et al.

Journal: Physical Review C

Volume: 101 (4), 044907

Year: 2020

Citations: 450

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

Authors: S Acharya, FT Acosta, D Adamová, J Adolfsson, MM Aggarwal, et al.

Journal: Journal of High Energy Physics

Year: 2018 (11), Pages 1-33

Citations: 422

Measurement of D0, D+, D+ and Ds+ production in Pb-Pb collisions at TeV*

Authors: S Acharya, FT Acosta, D Adamová, J Adolfsson, MM Aggarwal, et al.

Journal: Journal of High Energy Physics

Year: 2018 (10), Pages 1-35

Citations: 421

Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb-Pb collisions at TeV

Authors: J Adam, D Adamová, MM Aggarwal, G Aglieri Rinella, M Agnello, et al.

Journal: Journal of High Energy Physics

Year: 2016 (5), Pages 1-49

Citations: 371

Multiplicity dependence of light-flavor hadron production in collisions at

Authors: S Acharya, FT Acosta, D Adamová, A Adler, J Adolfsson, MM Aggarwal, et al.

Journal: Physical Review C

Volume: 99 (2), 024906

Year: 2019

Citations: 335

Conclusion

Based on her academic credentials, significant research contributions, and extensive skillset, Dr. Uzma Tabassam is highly suitable for the Best Researcher Award. Her expertise in experimental high-energy physics and nuclear astrophysics, along with her involvement in global research collaborations, makes her a prime candidate to be recognized for her outstanding contributions to the scientific community.