Orfeu Bertolami | Physics | Outstanding Scientist Award

Prof. Orfeu Bertolami | Physics | Outstanding Scientist Award

Professor at Faculty of Sciences, University of Porto, Portugal

Orfeu Bertolami 🇧🇷🇮🇹 is a distinguished theoretical physicist born on January 3, 1959, in São Paulo, Brazil. He is a Full Professor at the Department of Physics and Astronomy, University of Porto 🇵🇹. With over 400 publications 📚 and deep expertise in cosmology, astroparticle physics, and quantum gravity 🌌, he’s recognized globally for advancing fundamental and applied physics in space 🚀. His academic journey spans Oxford, Cambridge, Heidelberg, and Lisbon 🎓, reflecting a rich career in top research institutions. A widower and proud father 👨‍👧, Prof. Bertolami also engages in science awareness through writings and outreach efforts 🌍.

Professional Profile:

Orcid

Scopus

Education and Experience 

  • 🎓 B.Sc. in Physics – University of São Paulo, 1980

  • 📚 M.Sc. in Theoretical Physics – Instituto de Física Teórica, São Paulo, 1983

  • 📐 Advanced Studies – Applied Mathematics and Theoretical Physics, University of Cambridge, UK, 1984

  • 🎓 Ph.D. in Theoretical Physics – University of Oxford, UK, 1987

  • 🧪 Postdoc – University of Heidelberg, Germany (1987–1989)

  • 🧬 Postdoc – Instituto Nacional de Investigação Científica, Portugal (1989–1991)

  • 👨‍🏫 Assistant Professor – Instituto Superior Técnico, Lisbon (1991–2002)

  • 🔬 Scientific Associate – CERN, Switzerland (1993–1995)

  • 🔬 Scientific Associate – INFN Torino, Italy (1994–1995)

  • 🧠 Habilitation (Agregação) – Instituto Superior Técnico, 1996

  • 🗽 Visiting Scholar – New York University, USA (1999)

  • 👨‍🔬 Associate Professor – Instituto Superior Técnico (2002–2010)

  • 🌠 Full Professor – University of Porto, Portugal (Since 2010)

  • 🌍 Visiting Scholar – Stockholm University, Sweden (2024)

Professional Development 

Prof. Bertolami has continuously advanced his academic and research pursuits through international collaborations and top-tier institutional appointments 🌐. From his early academic formation at Oxford and Cambridge 🏛️ to his research posts at CERN and Heidelberg 🧪, his career reflects a global commitment to scientific excellence. His visiting roles in the U.S. 🇺🇸 and Sweden 🇸🇪 further signify his engagement in cross-disciplinary dialogues. Actively involved in mentoring, publishing, and leading scientific dialogue 📢, he also contributes to public science education 📰. His dynamic career continues to evolve through projects at the intersection of physics, sustainability, and Earth system science 🌎.

Research Focus 

Prof. Orfeu Bertolami’s research bridges the realms of the very large and the very small ✨. He specializes in cosmology, astroparticle physics, quantum and classical gravity, and space-based fundamental physics 🚀. His interest in Earth system physics connects fundamental physics to sustainability and planetary resilience 🌍. His theoretical work provides insights into dark matter, dark energy, and spacetime structure 🌌. With hundreds of peer-reviewed publications 📝, he shapes the international scientific conversation on the origin, structure, and future of the universe 🔬. His interdisciplinary curiosity also integrates physics with broader existential and ecological questions 🌱.

Awards and Honors

  • 🥇 Scientific Associate, CERN Theory Division, Geneva 🇨🇭 (1993–1995)

  • 🏅 Scientific Associate, INFN – Torino, Italy 🇮🇹 (1994–1995)

  • 🎖️ Visiting Scholar, New York University 🇺🇸 (1999)

  • 🌍 Visiting Scholar, Stockholm Resilience Centre, Sweden 🇸🇪 (2024)

  • 📈 Recognized Author with 263+ ISI-indexed publications and over 300 entries in INSPIRE-HEP

  • 🧠 Habilitation (Agregação) in Physics – Portugal (1996)

  • 📚 400+ total publications including scientific outreach writings

Publication Top Notes

1. Is cosmological data suggesting a nonminimal coupling between matter and gravity?
  • Journal: Physics of the Dark Universe

  • Publication Date: May 2025

  • DOI: 10.1016/j.dark.2025.101861

  • Authors: Miguel Barroso Varela, Orfeu Bertolami

  • Summary: This paper investigates whether current cosmological data supports theories where matter and gravity interact via a nonminimal coupling. The authors compare observational data (e.g., from Pantheon+, DES, DESI, and eBOSS) with predictions from these alternative models and find stronger statistical evidence for nonminimal coupling over standard ΛCDM in several dataset combinations.

2. Gravitational wave polarizations in nonminimally coupled gravity
  • Journal: Physical Review D

  • Publication Date: January 6, 2025

  • DOI: 10.1103/PhysRevD.111.024014

  • Authors: Miguel Barroso Varela, Orfeu Bertolami

  • Summary: This paper explores how nonminimal matter-curvature coupling affects gravitational wave (GW) polarization modes. The analysis suggests that these modified gravity models introduce extra polarization modes, potentially observable by future GW detectors.

3. Chaotic behaviour of the Earth System in the Anthropocene
  • Journal: Evolving Earth

  • Publication Date: January 2025

  • DOI: 10.1016/j.eve.2025.100060

  • Summary: The paper discusses the Earth System’s dynamic instability in the Anthropocene epoch, emphasizing feedback loops and thresholds that could lead to chaotic planetary behavior under continued anthropogenic stress.

4. From a dynamic integrated climate economy (DICE) to a resilience integrated model of climate and economy (RIMCE)
  • Journal: The Anthropocene Review

  • Publication Date: December 2024

  • DOI: 10.1177/20530196231205486

  • Summary: Proposes a shift from Nordhaus’s DICE model to a more resilient framework (RIMCE) that incorporates climate tipping points and adaptive capacity, aiming for a more realistic integration of socio-economic and environmental risks.

5. Gravitational waves from a curvature-induced phase transition of a Higgs-portal dark matter sector
  • Journal: Journal of Cosmology and Astroparticle Physics (JCAP)

  • Publication Date: October 1, 2024

  • DOI: 10.1088/1475-7516/2024/10/104

  • Summary: Analyzes how a phase transition in a Higgs-portal dark matter model, induced by spacetime curvature, could produce detectable gravitational wave signatures. The results connect early-universe particle physics with gravitational wave astronomy.

Conclusion and Recommendation

Prof. Orfeu Bertolami embodies the ideals of an Outstanding Scientist Award recipient. His remarkable scientific output, international collaborations, pioneering work in cosmology and gravitation, and his dedication to science education and outreach make him an exceptional candidate. His career demonstrates visionary thinking, interdisciplinary engagement, and a deep commitment to advancing fundamental physics and inspiring future generations.Recommendation: Strongly recommended for the Outstanding Scientist Award or Best Researcher Award. His achievements are not only outstanding in volume but deeply impactful in shaping contemporary physics and space research.

Joshua Benjamin | Physics | Best Researcher Award

Mr. Joshua Benjamin | Physics | Best Researcher Award

Lagos Nigeria at TYDACOMM Nigeria Limited, Nigeria

benjamin, joshua olamide is a dedicated scholar and researcher passionate about space physics, ionospheric studies, and space weather. He holds a first-class degree in pure and applied physics from Ladoke Akintola University of Technology and a distinction in space physics from the African University of Science and Technology. With experience in RF network planning and optimization, teaching, and research, he combines technical expertise with strong analytical skills. Proficient in MATLAB, Microsoft Office, and data analysis tools, he is committed to innovation, leadership, and academic excellence. His research contributes to understanding ionospheric models and their impact on space weather. 🚀📡

Professional Profile

Education & Experience 🎓💼

  • [2022] MSc in Space Physics (Distinction) – African University of Science and Technology 📡
  • [2019] B.Tech in Pure and Applied Physics (First Class) – Ladoke Akintola University of Technology 🔬
  • [2023 – Present] RF Network Planning & Field Test Engineer – TYDACOMM Nigeria Limited 📶
  • [2020 – 2021] NYSC Mathematics & Economics Teacher – Jofegal International School 📚
  • [2018] Internship at Perfect Seven Solar Company – Solar System Maintenance ☀️
  • [2011 – 2012] Mathematics Teacher – Fountain of Knowledge Group of School 📏

Professional Development 📖🔍

benjamin, joshua olamide has actively participated in multiple international colloquiums and workshops related to space science, GNSS, and ionospheric studies. He has certifications in health, safety, and environment (HSE Levels 1-3) and has completed training in soft skills, entrepreneurship, and critical thinking. His involvement in research and development, coupled with hands-on experience in field testing, data collection, and RF network optimization, showcases his versatility. Passionate about academic excellence, he regularly engages in professional training, leadership roles, and mentorship programs to enhance his expertise in space physics and its applications. 🌍🛰️

Research Focus 🔬🌌

benjamin, joshua olamide specializes in ionospheric physics, space weather, and solar-terrestrial interactions. His research explores the global climatological performance of ionospheric models using Swarm satellite electron density measurements, evaluating their accuracy and implications for GNSS and communication systems. He has worked on latitudinal electron density profiles, comparing SWARM measurements with IRI models, and studying biophysics applications. His goal is to improve predictive models for space weather impacts on Earth, ensuring the safety and reliability of communication and navigation technologies. His research contributes to scientific advancements in space physics and atmospheric studies. 🌞🌍📡

Awards & Honors 🏆🎖️

  • [2022] Best Graduating Student – Institute of Space Science and Engineering 🏅
  • [2022] Best Graduating Student – Department of Space Physics 🏆
  • [2019] Akinrogun Trust Fund Award 💰
  • [2019] Best WAEC Result – New Era High School 🏅
  • [2007] One of the Best Junior WAEC Results – Greater Tomorrow College 🎓

Publication Top Notes

  1. “Investigation of the global climatologic performance of ionospheric models utilizing in-situ Swarm satellite electron density measurements”
    This paper was published in Advances in Space Research, Volume 75, Issue 5, pages 4274-4290, in 2025. The authors are:

    • D. Okoh
    • C. Cesaroni
    • J.B. Habarulema
    • Y. Migoya-Orué
    • B. Nava
    • L. Spogli
    • B. Rabiu
    • J. Benjamin

    The study offers a comprehensive investigation into the climatologic performance of three ionospheric models when compared to in-situ measurements from Swarm satellites. The models evaluated are the International Reference Ionosphere (IRI), NeQuick, and a 3-dimensional electron density model based on artificial neural network training of COSMIC satellite radio occultation measurements (3D-NN). The findings indicate that while all three models provide fairly accurate representations of the Swarm measurements, the 3D-NN model consistently performed better across various conditions.

  2. “Global Comparison of Instantaneous Electron Density Latitudinal Profiles from SWARM Satellites and IRI Model”
    This paper was published in Advances in Space Research in 2025. The authors are:

    • J.O. Benjamin
    • D.I. Okoh
    • B.A. Rabiu

    This study focuses on comparing instantaneous electron density latitudinal profiles obtained from Swarm satellites with predictions from the IRI model. The comparison aims to assess the accuracy of the IRI model in representing real-time electron density variations observed by the Swarm mission.

For full access to these publications, you may consider visiting the publisher’s website or accessing them through academic databases such as IEEE Xplore or ScienceDirect. If you are affiliated with an academic institution, you might have institutional access to these resources.

Conclusion

Benjamin, joshua olamide stands out as a promising researcher in space physics, with notable contributions to ionospheric studies, climatology models, and research-driven technological applications. His exceptional academic achievements, research output, leadership roles, and technical expertise position him as a deserving candidate for the Best Researcher Award.