Prof. Rishi Kumar Tiwari | Physics | Best Researcher Award

Prof. Rishi Kumar Tiwari | Physics | Best Researcher Award

Professor at Govt. Model Science College, Rewa (M.P.), India

Dr. Rishi Kumar Tiwari is a distinguished Professor of Mathematics with over 30 years of academic service, currently holding a post secured through the Madhya Pradesh Public Service Commission (2011). He earned his Ph.D. in Mathematics from A.P.S. University, Rewa, in 1998, following an M.Sc. with a Gold Medal. With a prolific research portfolio including 134 national and international publications and six authored books, he has supervised 21 Ph.D. scholars and continues to guide research in cosmology, general relativity, and differential geometry. Dr. Tiwari has presented his work globally, including in Italy, Germany, and South Africa, contributing to international scientific collaborations. His accolades include the DST-ICTP Fellowship (Italy), IASc-INSA-NASI Summer Research Fellowship, and the Shikshavid Samman (2023). Having served as Head of Departments and on multiple academic boards, Dr. Tiwari remains committed to advancing mathematics through education, research, and international cooperation in theoretical physics and cosmology.

Professional Profile 

Education 

Dr. Rishi Kumar Tiwari holds a strong academic background in science and mathematics. He completed his Higher Secondary education from the Board of Secondary Education, Bhopal, in 1985 with a focus on Physics, Chemistry, and Mathematics. He earned his B.Sc. from A.P.S. University, Rewa, in 1988, and later completed his M.Sc. in Mathematics from the same university in 1990, earning an outstanding, which earned him a Gold Medal. He was awarded a Ph.D. in Mathematics from A.P.S. University in 1998. His doctoral work laid the foundation for a research career focused on general relativity, cosmological modeling, and tensor analysis. Dr. Tiwari’s academic credentials reflect a consistent record of academic excellence and deep subject mastery, serving as the cornerstone for his teaching, research, and scholarly contributions to the field of mathematics and cosmology over the last three decades.

Professional Experience 

Dr. Rishi Kumar Tiwari brings with him over 30 years of extensive teaching experience at both undergraduate and postgraduate levels. He has held several significant academic leadership roles, including Head of the Department of Mathematics and Computer Science at Pt. S.N. Shukla University, Shahdol, and formerly at Govt. Model Science College, Rewa. He has also been a member of various Boards of Studies across reputed institutions like A.P.S. University and Govt. T.R.S. College, Rewa. Selected through the M.P. Public Service Commission in 2011, Dr. Tiwari has not only imparted knowledge but also shaped curricula and research agendas. Under his mentorship, 21 Ph.D. scholars have completed their doctorates, with others currently under supervision. His ability to blend deep mathematical theory with modern cosmological applications makes him a respected academic figure in India. He continues to engage students and researchers in exploring advanced topics in mathematical physics.

Research Interest

Dr. Tiwari’s research interest lies primarily in the fields of General Relativity, Cosmology, Tensor Analysis, and Differential Geometry, with a particular emphasis on exploring homogeneous cosmological models and conharmonic curvature tensors. His contributions to understanding the expanding universe and dark energy models have been presented at premier international conferences, including the TAUP Series and the Texas Symposium on Relativistic Astrophysics. With 134 research papers in reputed journals and conferences, Dr. Tiwari has carved a niche in the academic study of mathematical models underpinning astrophysical phenomena. His involvement in UGC-funded research projects on Bianchi Models and Robertson-Walker cosmologies illustrates his commitment to foundational and applied research. Collaborating with institutions in South Africa and Europe, he frequently shares findings on time-varying deceleration parameters and symmetry models. His international exposure and research depth continue to influence global discussions on theoretical physics and contribute to the development of cosmological theory.

Award and Honors

Throughout his illustrious career, Dr. Rishi Kumar Tiwari has received several awards and fellowships that affirm his academic excellence and research impact. He was awarded the DST-ICTP Fellowship (Italy, 2008), recognizing his work in mathematical physics. In 2012, he received the prestigious IASc-INSA-NASI Summer Research Fellowship, further solidifying his standing in the Indian scientific community. His most recent recognition, the Shikshavid Samman from the Department of Higher Education, Madhya Pradesh (2023), honors his decades-long contribution to higher education and mentorship in mathematics. Additionally, Dr. Tiwari has received two major UGC research grants for his projects on cosmological models. These accolades, combined with invitations for popular and technical talks at institutions like the University of KwaZulu-Natal and Mangosuthu University in South Africa, showcase his international academic reputation. His dedication to theoretical exploration and student development continues to garner respect and admiration in the fields of mathematics and cosmology.

Publications Top Notes

  • Title: Perfect fluid Bianchi Type-I cosmological models with time varying G and Λ
    Authors: JP Singh, RK Tiwari
    Year: 2008
    Citations: 63
    Source: Pramana – Journal of Physics, Vol. 70 (4), pp. 565–574

  • Title: Bianchi type-I cosmological models with time dependent G and Λ
    Authors: RK Tiwari
    Year: 2008
    Citations: 43
    Source: Astrophysics and Space Science, Vol. 318 (3), pp. 243–247

  • Title: Phase transition of LRS Bianchi type-I cosmological model in f(R,T)f(R, T) gravity
    Authors: RK Tiwari, D Sofuoğlu, VK Dubey
    Year: 2020
    Citations: 42
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 17 (12), Article ID: 2050187

  • Title: Cosmological tests of parametrization q(z)q(z) in FLRW cosmology
    Authors: A Bouali, BK Shukla, H Chaudhary, RK Tiwari, M Samar, G Mustafa
    Year: 2023
    Citations: 41
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 20 (09), Article ID: 2350152

  • Title: Scenario of two-fluid dark energy models in Bianchi type-III Universe
    Authors: RK Tiwari, A Beesham, BK Shukla
    Year: 2018
    Citations: 41
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 15 (11), Article ID: 1850189

  • Title: Cosmological model with variable deceleration parameter in f(R,T)f(R, T) modified gravity
    Authors: RK Tiwari, A Beesham, B Shukla
    Year: 2018
    Citations: 38
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 15 (07), Article ID: 1850115

  • Title: Bianchi type-III cosmological models with gravitational constant G and the cosmological constant Λ
    Authors: JP Singh, RK Tiwari, P Shukla
    Year: 2007
    Citations: 36
    Source: Chinese Physics Letters, Vol. 24 (12), pp. 3325

  • Title: Anisotropic model with decaying cosmological term
    Authors: RK Tiwari, A Beesham
    Year: 2018
    Citations: 33
    Source: Astrophysics and Space Science, Vol. 363 (11), Article: 234

  • Title: Some Robertson-Walker models with time dependent G and Λ
    Authors: RK Tiwari
    Year: 2009
    Citations: 33
    Source: Astrophysics and Space Science, Vol. 321 (2), pp. 147–150

  • Title: Time varying G and Λ cosmology in f(R,T)f(R, T) gravity theory
    Authors: RK Tiwari, A Beesham, R Singh, LK Tiwari
    Year: 2017
    Citations: 31
    Source: Astrophysics and Space Science, Vol. 362 (8), Article: 143

  • Title: Transit cosmological models with domain walls in f(R, T) gravity
    Authors: RK Tiwari, A Beesham, A Pradhan
    Year: 2017
    Citations: 30
    Source: Gravitation and Cosmology, Vol. 23 (4), pp. 392–400

  • Title: Cosmological models with viscous fluid and variable deceleration parameter
    Authors: RK Tiwari, A Beesham, BK Shukla
    Year: 2017
    Citations: 30
    Source: The European Physical Journal Plus, Vol. 132 (1), Article: 20

  • Title: An LRS Bianchi type-I cosmological model with time-dependent Λ term
    Authors: JP Singh, RK Tiwari
    Year: 2007
    Citations: 27
    Source: International Journal of Modern Physics D, Vol. 16 (04), pp. 745–754

  • Title: Cosmographic studies of q(z)q(z) parametrization in f(R,T)f(R, T) framework
    Authors: BK Shukla, A Bouali, H Chaudhary, RK Tiwari, MS Martín
    Year: 2023
    Citations: 24
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 20 (14), Article ID: 2450007

  • Title: Quadratically varying deceleration parameter in f(R,T)f(R, T) gravity
    Authors: RK Tiwari, D Sofuoğlu
    Year: 2020
    Citations: 24
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 17 (10), Article ID: 2030003

Conclusion 

Dr. Rishi Kumar Tiwari stands as a paragon of dedication, intellect, and international engagement in the realm of mathematical sciences. From earning a Gold Medal in his master’s studies to mentoring 21 Ph.D. scholars and producing an expansive body of scholarly work, he exemplifies the ideals of academic leadership. His prolific research, particularly in the areas of general relativity and cosmological modeling, has transcended national borders, earning him respect across continents. Participation in global scientific platforms and collaborations with African and European institutions underline his commitment to knowledge exchange and cross-cultural academic growth. With multiple leadership roles in universities and active contributions to curriculum development and academic governance, Dr. Tiwari continues to shape the future of mathematical education and research in India. His legacy is built not only on research excellence but also on his lifelong mission to inspire, educate, and innovate in the ever-evolving landscape of mathematical physics.

Prof. Marilyn E Noz |Physics |Best Researcher Award

Prof. Marilyn E Noz|Physics |Best Researcher Award

Professor. Marilyn E Noz at New York University, United States

Dr. Marilyn E. Noz 🇺🇸, born June 17, 1939, in New York City 🗽, is a trailblazing physicist and educator whose pioneering work bridges theoretical physics and medical imaging. With a Ph.D. in Physics from Fordham University 🎓, she emerged as a powerful voice in nuclear medicine and radiological research. Serving NYU’s School of Medicine for over four decades 🏥, she rose from Assistant Professor to Professor Emerita and Research Professor. Her accolades include awards from renowned bodies like the Society of Nuclear Medicine and Radiological Society of North America 🏆. A licensed Medical Physicist and diplomate of multiple scientific boards, Dr. Noz is recognized globally for CT/SPECT fusion advancements and nuclear magnetic resonance insights 💡. Her dedication to education, research, and clinical innovation marks her as a luminary in the intersection of physics and medicine 🌟.

Professional Profile 

🎓 Education

Dr. Marilyn E. Noz’s academic path is as illustrious as her career. She graduated summa cum laude in Mathematics from Marymount College in 1961, setting a strong foundation in analytical thinking and scientific curiosity 🧮. She pursued both her M.S. and Ph.D. in Physics at Fordham University, completing them in 1963 and 1969 respectively ⚛️. Her commitment to academic excellence was recognized through numerous fellowships and scholarships, including the National Defense Education Act Fellowship and the New York State Regents Fellowship 🏅. This scholarly journey laid the groundwork for her later groundbreaking contributions to nuclear medicine and radiological science. Her educational philosophy continues to inspire aspiring physicists and medical professionals alike 📚.

👩‍🔬 Professional Experience

Dr. Noz’s professional journey spans prestigious institutions and critical innovations. Beginning as a professor at Marymount College in the 1960s, she shaped young scientific minds while holding leadership roles 👩‍🏫. Her career blossomed at New York University’s Department of Radiology, where she spent over three decades—from Assistant Professor to Research Professor and Professor Emerita 🏛️. She held concurrent roles at Tisch Hospital and Bellevue Hospital, enhancing clinical radiology practice. Her adjunct positions at Manhattan College and Iona College reflect her dedication to sharing knowledge across disciplines 🌐. Notably, she played a pivotal role in advancing nuclear medicine physics and medical imaging integration, leaving an indelible mark on academic and clinical settings 🧬.

🔬 Research Interest

Dr. Noz’s research traverses the dynamic interface between physics and medicine. Her primary focus lies in nuclear medicine physics, SPECT/CT fusion, and nuclear magnetic resonance 🧠. She is known for pioneering the integration of cross-sectional imaging modalities, improving diagnostic accuracy and patient care through novel imaging algorithms and data interpretation techniques 🖥️. Her work in radiation protection and computational physics has also made significant contributions to the safety and efficacy of imaging technologies ☢️. As a physicist deeply invested in translational science, Dr. Noz has published extensively and mentored future leaders in medical physics, bridging theoretical insight with clinical innovation seamlessly 🔗.

🏅 Awards and Honors

Throughout her distinguished career, Dr. Noz has received numerous prestigious awards celebrating her research excellence and innovation 🌟. Highlights include the Giovanni DiChiro Award for outstanding research in the Journal of Computer Assisted Tomography, and several Cum Laude honors from the Society of Computed Body Tomography 🧾. Her work in CT/SPECT fusion earned multiple scientific exhibit awards, showcasing her ingenuity in imaging science 🎖️. She was a finalist for the ComputerWorld-Smithsonian Institute Awards and honored with a Senior International Research Fellowship by the NIH’s Fogarty International Center 🌍. These accolades underscore her enduring impact and peer recognition across interdisciplinary fields 🧪.

📚 Publications Top Note 

1. Can Na¹⁸F PET/CT bone scans help when deciding if early intervention is needed in patients being treated with a TSF attached to the tibia: insights from 41 patients


⚛️ 2. Integration of Dirac’s efforts to construct a quantum mechanics which is Lorentz‑covariant

  • Authors: Young S. Kim, Marilyn E. Noz

  • Year: 2020

  • Citations: 1

  • Source: Symmetry

  • Summary: This paper synthesizes Dirac’s 1927, 1945, 1949, and 1963 efforts to reconcile quantum mechanics with Lorentz covariance. It explains his use of Gaussian localization, light-cone coordinates, “instant form,” and coupled oscillators to derive Lorentz group representations, ultimately yielding a Lorentz‑covariant harmonic oscillator framework Colab+3arXiv+3arXiv+3bohr.physics.berkeley.edu+11MDPI+11arXiv+11.


🦴 3. Accuracy and precision of a CT method for assessing migration in shoulder arthroplasty: an experimental study


🧬 4. Einstein’s E = mc² derivable from Heisenberg’s uncertainty relations

  • Authors: Sibel Başkal, Young S. Kim, Marilyn E. Noz

  • Year: 2019

  • Citations: 5

  • Source: Quantum Reports

  • Summary: This theoretical paper demonstrates that the Lie algebra of the Poincaré group (and thus mass–energy equivalence) can emerge naturally from Heisenberg’s uncertainty relations. Using harmonic oscillators and signal‑space group contractions (O(3,2) → Poincaré), they derive E = mc² Inspire+15MDPI+15arXiv+15ysfine.com+1arXiv+1.


📷 5. Are low‑dose CT scans a satisfactory substitute for stereoradiographs for migration studies? A preclinical test…

  • Authors: Eriksson T, Maguire GQ Jr, Noz M.E., Zeleznik M.P., Olivecrona H., Shalabi A., Hänni M.

  • Year: 2019

  • Citations: 13

  • Source: Acta Radiologica

  • Summary: The authors tested multiple low‑dose CT protocols in a hip phantom and a pilot patient, finding that selected protocols (≈0.70 mSv) provided migration measurement precision comparable to standard RSA, demonstrating CT’s promise as a lower-dose, reliable tool link.springer.com+15PubMed+15Colab+15Colab+1ous-research.no+1.


🔄 6. Poincaré symmetry from Heisenberg’s uncertainty relations

  • Authors: (Likely similar to above)

  • Year: 2019

  • Citations: 4

  • Source: Symmetry

  • Summary: This related work further details how expanding from one to two oscillators in the Heisenberg framework leads to the de Sitter group, which can be contracted to the Poincaré group. It highlights a structural derivation of spacetime symmetries using quantum uncertainty Colabysfine.com+1arXiv+1.


🦴 7. Motion analysis in lumbar spinal stenosis with degenerative spondylolisthesis: A feasibility study of the 3DCT technique comparing laminectomy versus bilateral laminotomy

  • Authors: Not fully listed

  • Year: 2018

  • Citations: 6

  • Source: Clinical Spine Surgery

  • Summary: This feasibility study used 3D CT motion analysis to compare two spinal decompression techniques. Although article details are limited, it evaluated kinematic differences following laminectomy and bilateral laminotomy.


🦴 8. Prosthetic liner wear in total hip replacement: a longitudinal 13‑year study with computed tomography

  • Authors: Not fully listed

  • Year: 2018

  • Citations: 7

  • Source: Skeletal Radiology

  • Summary: This long-term CT-based evaluation tracked in vivo liner wear in total hip replacements over 13 years, offering valuable longitudinal data on implant durability and wear behavior.


📘 9. New perspectives on Einstein’s E = mc²

  • Authors: (Not specified)

  • Year: (Not specified, presumably recent)

  • Citations: 1

  • Source: Book

  • Summary: Presents fresh theoretical insights and interpretations surrounding mass–energy equivalence. Likely synthesizes recent research building on Dirac and uncertainty-related frameworks.


🔄 10. Loop representation of Wigner’s little groups

  • Authors: Not listed

  • Year: 2017

  • Citations: 3

  • Source: Symmetry

  • Summary: Investigates representations of Wigner’s little groups (subgroups of the Lorentz group preserving particle momentum) via loop structures, contributing to our understanding of relativistic particle symmetries.

🧭 Conclusion

Dr. Marilyn E. Noz stands as a beacon of scientific integrity, academic rigor, and humanistic contribution to medicine and physics 🌈. Her legacy is reflected not only in her groundbreaking research but also in her mentorship, teaching, and service to institutions that shape healthcare innovation 🏥. Through her interdisciplinary expertise and visionary leadership, she helped transform diagnostic imaging, elevate standards in medical physics, and inspire generations of scientists 📈. Even in emerita status, her influence resonates through her publications, innovations, and the many professionals she has mentored. A true pioneer, Dr. Noz exemplifies what it means to blend intellect, compassion, and purpose into a lifetime of contribution 🙌.

Pengxia Zhou | Physics | Best Researcher Award

Prof. Dr. Pengxia Zhou | Physics | Best Researcher Award

Associate professor at Nantong University, China

Zhou Pengxia (Zhou Pengxia) 🎓, born on October 24, 1977 🎂, is a dedicated physicist and educator at the School of Physical Science and Technology, Nantong University 🇨🇳. With over two decades of experience, she has contributed significantly to condensed matter physics and multiferroic materials research ⚛️. She earned her Ph.D. from Nanjing University and conducted postdoctoral research at leading institutions in Singapore 🌏. As the principal investigator of an NSFC-funded project, she explores octahedral rotations in perovskite superlattices 🧪. Her work bridges teaching and innovation, advancing the frontiers of physics through both academia and international collaboration 🌟.

Professional Profile:

Orcid

🔹 Education and Experience 

📘 Education:

  • 🎓 1997–2001: Bachelor’s Degree in Physics – Yanbei Normal College

  • 📚 2001–2004: Master’s Degree in Condensed Matter Physics – Yangzhou University

  • 🧠 2011–2015: Doctor’s Degree in Physics – Nanjing University

🧑‍🏫 Professional Experience:

  • 🏫 2004–Present: Lecturer – Nantong University

  • 🌏 2017.10–2018.02: Visiting Scholar – Singapore University of Technology and Design

  • 🌐 2018.09–2019.08: Research Fellow – National University of Singapore

🔹 Professional Development 

Dr. Zhou Pengxia’s professional journey reflects her passion for physics and global academic growth 🌍📈. She has participated in international collaborations in Singapore, enriching her research and teaching perspectives 🇸🇬🔬. At Nantong University, she not only teaches but also mentors students in advanced materials science 🎓🧪. Her participation in cutting-edge research on perovskite superlattices and multiferroicity has positioned her as a recognized contributor in her field ⚛️. Through continual learning, overseas exchanges, and scientific leadership, Dr. Zhou remains committed to academic excellence and innovation in physical science education and research 📘🌟.

🔹 Research Focus 

Dr. Zhou Pengxia’s research is centered around condensed matter physics with a specific emphasis on multiferroic materials and perovskite superlattices 🧲⚡. She investigates how octahedral rotation affects multiferroicity, exploring mechanisms to enhance functional properties of complex oxides 🧪🧬. Her work contributes to the understanding and engineering of materials that exhibit both ferroelectric and magnetic properties – critical for next-generation electronic devices 💻🔋. With a focus on crystal structures and symmetry interactions, her research bridges fundamental science and potential applications in sensors, memory devices, and spintronics 🌐🔧. Zhou’s interdisciplinary approach adds great value to material innovation 🔍🧠.

🔹 Awards and Honors 

🏆 Awards & Honors:

  • 🌟 Principal Investigator – National Natural Science Foundation of China (2017–2019) for research on perovskite superlattices

  • 🎓 Invited Research Fellow – National University of Singapore (2018–2019)

  • 🌍 International Collaboration Grant – Singapore University of Technology and Design (2017–2018)

Publication Top Notes

1. Employing interpretable multi-output machine learning to predict stable perovskites in photovoltaics

Journal: Materials Today Communications, 2025
DOI: 10.1016/j.mtcomm.2025.112552
Summary:
This study leverages interpretable multi-output machine learning models to predict thermodynamically stable perovskite materials for photovoltaic applications. The key innovation lies in the simultaneous prediction of multiple material properties (e.g., stability, band gap, defect tolerance) using models that offer transparency into decision-making (e.g., SHAP values, decision trees). This work contributes to faster and explainable discovery of efficient perovskites for solar cell design.

2. A first-principles study on the multiferroicity of semi-modified X₂M (X = C, Si; M = F, Cl) monolayers

Journal: Physical Chemistry Chemical Physics, 2023
DOI: 10.1039/D2CP04575C
Summary:
This DFT-based study explores multiferroic behavior in 2D monolayers composed of X₂M (X = C, Si; M = F, Cl), highlighting their coexisting ferroelectric and magnetic properties. The findings suggest semi-modified 2D materials could serve as candidates for spintronic and memory devices, due to their tunable multiferroic characteristics.

3. Theoretical investigation of the magnetic and optical properties in a transition metal-doped GaTeCl monolayer

Journal: Physical Chemistry Chemical Physics, 2023
DOI: 10.1039/D3CP02313C
Summary:
This study investigates how doping GaTeCl monolayers with transition metals (e.g., Mn, Fe, Co) affects their magnetic and optical behavior. Using DFT, the authors show enhanced magneto-optical properties, suggesting that doped GaTeCl systems are promising for optoelectronic and spintronic devices.

4. Magnetism and hybrid improper ferroelectricity in LaMO₃/YMO₃ superlattices

Journal: Phys. Chem. Chem. Phys., 2019
Author: Pengxia Zhou
Summary:
This work presents a theoretical analysis of LaMO₃/YMO₃ (M, Y = transition metals) superlattices, showing hybrid improper ferroelectricity arising from coupling between octahedral tilting and rotations, along with magnetic ordering. The results support the design of multifunctional oxide heterostructures combining electric and magnetic orderings.

5. The excitonic photoluminescence mechanism and lasing action in band-gap-tunable CdS₁−ₓSeₓ nanostructures

Journal: Nanoscale, 2016
Author: Pengxia Zhou
Summary:
This paper discusses CdS₁−ₓSeₓ nanostructures with tunable band gaps. The team demonstrates strong excitonic photoluminescence and low-threshold lasing, linking optical properties to composition and quantum confinement. It provides a foundational understanding for nanoscale optoelectronic and laser devices.

6. Ferroelectricity driven magnetism at domain walls in LaAlO₃/PbTiO₃ superlattices

Journal: Scientific Reports, 2015
Author: Pengxia Zhou
Summary:
This study reveals that in LaAlO₃/PbTiO₃ superlattices, ferroelectric domain walls can induce localized magnetic moments due to lattice distortions and charge redistributions. This domain-wall magnetism introduces the potential for non-volatile magnetic memory controlled by ferroelectric domains.

Conclusion:

Dr. Zhou Pengxia is a suitable candidate for a Best Researcher Award, particularly in the fields of condensed matter physics and material science. Her leadership in nationally funded research, international collaboration experience, and long-standing academic service reflect a researcher committed to scientific advancement and knowledge dissemination. While her publication record and citation metrics were not provided, her PI role on an NSFC project suggests peer recognition and scholarly maturity.

Orfeu Bertolami | Physics | Outstanding Scientist Award

Prof. Orfeu Bertolami | Physics | Outstanding Scientist Award

Professor at Faculty of Sciences, University of Porto, Portugal

Orfeu Bertolami 🇧🇷🇮🇹 is a distinguished theoretical physicist born on January 3, 1959, in São Paulo, Brazil. He is a Full Professor at the Department of Physics and Astronomy, University of Porto 🇵🇹. With over 400 publications 📚 and deep expertise in cosmology, astroparticle physics, and quantum gravity 🌌, he’s recognized globally for advancing fundamental and applied physics in space 🚀. His academic journey spans Oxford, Cambridge, Heidelberg, and Lisbon 🎓, reflecting a rich career in top research institutions. A widower and proud father 👨‍👧, Prof. Bertolami also engages in science awareness through writings and outreach efforts 🌍.

Professional Profile:

Orcid

Scopus

Education and Experience 

  • 🎓 B.Sc. in Physics – University of São Paulo, 1980

  • 📚 M.Sc. in Theoretical Physics – Instituto de Física Teórica, São Paulo, 1983

  • 📐 Advanced Studies – Applied Mathematics and Theoretical Physics, University of Cambridge, UK, 1984

  • 🎓 Ph.D. in Theoretical Physics – University of Oxford, UK, 1987

  • 🧪 Postdoc – University of Heidelberg, Germany (1987–1989)

  • 🧬 Postdoc – Instituto Nacional de Investigação Científica, Portugal (1989–1991)

  • 👨‍🏫 Assistant Professor – Instituto Superior Técnico, Lisbon (1991–2002)

  • 🔬 Scientific Associate – CERN, Switzerland (1993–1995)

  • 🔬 Scientific Associate – INFN Torino, Italy (1994–1995)

  • 🧠 Habilitation (Agregação) – Instituto Superior Técnico, 1996

  • 🗽 Visiting Scholar – New York University, USA (1999)

  • 👨‍🔬 Associate Professor – Instituto Superior Técnico (2002–2010)

  • 🌠 Full Professor – University of Porto, Portugal (Since 2010)

  • 🌍 Visiting Scholar – Stockholm University, Sweden (2024)

Professional Development 

Prof. Bertolami has continuously advanced his academic and research pursuits through international collaborations and top-tier institutional appointments 🌐. From his early academic formation at Oxford and Cambridge 🏛️ to his research posts at CERN and Heidelberg 🧪, his career reflects a global commitment to scientific excellence. His visiting roles in the U.S. 🇺🇸 and Sweden 🇸🇪 further signify his engagement in cross-disciplinary dialogues. Actively involved in mentoring, publishing, and leading scientific dialogue 📢, he also contributes to public science education 📰. His dynamic career continues to evolve through projects at the intersection of physics, sustainability, and Earth system science 🌎.

Research Focus 

Prof. Orfeu Bertolami’s research bridges the realms of the very large and the very small ✨. He specializes in cosmology, astroparticle physics, quantum and classical gravity, and space-based fundamental physics 🚀. His interest in Earth system physics connects fundamental physics to sustainability and planetary resilience 🌍. His theoretical work provides insights into dark matter, dark energy, and spacetime structure 🌌. With hundreds of peer-reviewed publications 📝, he shapes the international scientific conversation on the origin, structure, and future of the universe 🔬. His interdisciplinary curiosity also integrates physics with broader existential and ecological questions 🌱.

Awards and Honors

  • 🥇 Scientific Associate, CERN Theory Division, Geneva 🇨🇭 (1993–1995)

  • 🏅 Scientific Associate, INFN – Torino, Italy 🇮🇹 (1994–1995)

  • 🎖️ Visiting Scholar, New York University 🇺🇸 (1999)

  • 🌍 Visiting Scholar, Stockholm Resilience Centre, Sweden 🇸🇪 (2024)

  • 📈 Recognized Author with 263+ ISI-indexed publications and over 300 entries in INSPIRE-HEP

  • 🧠 Habilitation (Agregação) in Physics – Portugal (1996)

  • 📚 400+ total publications including scientific outreach writings

Publication Top Notes

1. Is cosmological data suggesting a nonminimal coupling between matter and gravity?
  • Journal: Physics of the Dark Universe

  • Publication Date: May 2025

  • DOI: 10.1016/j.dark.2025.101861

  • Authors: Miguel Barroso Varela, Orfeu Bertolami

  • Summary: This paper investigates whether current cosmological data supports theories where matter and gravity interact via a nonminimal coupling. The authors compare observational data (e.g., from Pantheon+, DES, DESI, and eBOSS) with predictions from these alternative models and find stronger statistical evidence for nonminimal coupling over standard ΛCDM in several dataset combinations.

2. Gravitational wave polarizations in nonminimally coupled gravity
  • Journal: Physical Review D

  • Publication Date: January 6, 2025

  • DOI: 10.1103/PhysRevD.111.024014

  • Authors: Miguel Barroso Varela, Orfeu Bertolami

  • Summary: This paper explores how nonminimal matter-curvature coupling affects gravitational wave (GW) polarization modes. The analysis suggests that these modified gravity models introduce extra polarization modes, potentially observable by future GW detectors.

3. Chaotic behaviour of the Earth System in the Anthropocene
  • Journal: Evolving Earth

  • Publication Date: January 2025

  • DOI: 10.1016/j.eve.2025.100060

  • Summary: The paper discusses the Earth System’s dynamic instability in the Anthropocene epoch, emphasizing feedback loops and thresholds that could lead to chaotic planetary behavior under continued anthropogenic stress.

4. From a dynamic integrated climate economy (DICE) to a resilience integrated model of climate and economy (RIMCE)
  • Journal: The Anthropocene Review

  • Publication Date: December 2024

  • DOI: 10.1177/20530196231205486

  • Summary: Proposes a shift from Nordhaus’s DICE model to a more resilient framework (RIMCE) that incorporates climate tipping points and adaptive capacity, aiming for a more realistic integration of socio-economic and environmental risks.

5. Gravitational waves from a curvature-induced phase transition of a Higgs-portal dark matter sector
  • Journal: Journal of Cosmology and Astroparticle Physics (JCAP)

  • Publication Date: October 1, 2024

  • DOI: 10.1088/1475-7516/2024/10/104

  • Summary: Analyzes how a phase transition in a Higgs-portal dark matter model, induced by spacetime curvature, could produce detectable gravitational wave signatures. The results connect early-universe particle physics with gravitational wave astronomy.

Conclusion and Recommendation

Prof. Orfeu Bertolami embodies the ideals of an Outstanding Scientist Award recipient. His remarkable scientific output, international collaborations, pioneering work in cosmology and gravitation, and his dedication to science education and outreach make him an exceptional candidate. His career demonstrates visionary thinking, interdisciplinary engagement, and a deep commitment to advancing fundamental physics and inspiring future generations.Recommendation: Strongly recommended for the Outstanding Scientist Award or Best Researcher Award. His achievements are not only outstanding in volume but deeply impactful in shaping contemporary physics and space research.

Joshua Benjamin | Physics | Best Researcher Award

Mr. Joshua Benjamin | Physics | Best Researcher Award

Lagos Nigeria at TYDACOMM Nigeria Limited, Nigeria

benjamin, joshua olamide is a dedicated scholar and researcher passionate about space physics, ionospheric studies, and space weather. He holds a first-class degree in pure and applied physics from Ladoke Akintola University of Technology and a distinction in space physics from the African University of Science and Technology. With experience in RF network planning and optimization, teaching, and research, he combines technical expertise with strong analytical skills. Proficient in MATLAB, Microsoft Office, and data analysis tools, he is committed to innovation, leadership, and academic excellence. His research contributes to understanding ionospheric models and their impact on space weather. 🚀📡

Professional Profile

Education & Experience 🎓💼

  • [2022] MSc in Space Physics (Distinction) – African University of Science and Technology 📡
  • [2019] B.Tech in Pure and Applied Physics (First Class) – Ladoke Akintola University of Technology 🔬
  • [2023 – Present] RF Network Planning & Field Test Engineer – TYDACOMM Nigeria Limited 📶
  • [2020 – 2021] NYSC Mathematics & Economics Teacher – Jofegal International School 📚
  • [2018] Internship at Perfect Seven Solar Company – Solar System Maintenance ☀️
  • [2011 – 2012] Mathematics Teacher – Fountain of Knowledge Group of School 📏

Professional Development 📖🔍

benjamin, joshua olamide has actively participated in multiple international colloquiums and workshops related to space science, GNSS, and ionospheric studies. He has certifications in health, safety, and environment (HSE Levels 1-3) and has completed training in soft skills, entrepreneurship, and critical thinking. His involvement in research and development, coupled with hands-on experience in field testing, data collection, and RF network optimization, showcases his versatility. Passionate about academic excellence, he regularly engages in professional training, leadership roles, and mentorship programs to enhance his expertise in space physics and its applications. 🌍🛰️

Research Focus 🔬🌌

benjamin, joshua olamide specializes in ionospheric physics, space weather, and solar-terrestrial interactions. His research explores the global climatological performance of ionospheric models using Swarm satellite electron density measurements, evaluating their accuracy and implications for GNSS and communication systems. He has worked on latitudinal electron density profiles, comparing SWARM measurements with IRI models, and studying biophysics applications. His goal is to improve predictive models for space weather impacts on Earth, ensuring the safety and reliability of communication and navigation technologies. His research contributes to scientific advancements in space physics and atmospheric studies. 🌞🌍📡

Awards & Honors 🏆🎖️

  • [2022] Best Graduating Student – Institute of Space Science and Engineering 🏅
  • [2022] Best Graduating Student – Department of Space Physics 🏆
  • [2019] Akinrogun Trust Fund Award 💰
  • [2019] Best WAEC Result – New Era High School 🏅
  • [2007] One of the Best Junior WAEC Results – Greater Tomorrow College 🎓

Publication Top Notes

  1. “Investigation of the global climatologic performance of ionospheric models utilizing in-situ Swarm satellite electron density measurements”
    This paper was published in Advances in Space Research, Volume 75, Issue 5, pages 4274-4290, in 2025. The authors are:

    • D. Okoh
    • C. Cesaroni
    • J.B. Habarulema
    • Y. Migoya-Orué
    • B. Nava
    • L. Spogli
    • B. Rabiu
    • J. Benjamin

    The study offers a comprehensive investigation into the climatologic performance of three ionospheric models when compared to in-situ measurements from Swarm satellites. The models evaluated are the International Reference Ionosphere (IRI), NeQuick, and a 3-dimensional electron density model based on artificial neural network training of COSMIC satellite radio occultation measurements (3D-NN). The findings indicate that while all three models provide fairly accurate representations of the Swarm measurements, the 3D-NN model consistently performed better across various conditions.

  2. “Global Comparison of Instantaneous Electron Density Latitudinal Profiles from SWARM Satellites and IRI Model”
    This paper was published in Advances in Space Research in 2025. The authors are:

    • J.O. Benjamin
    • D.I. Okoh
    • B.A. Rabiu

    This study focuses on comparing instantaneous electron density latitudinal profiles obtained from Swarm satellites with predictions from the IRI model. The comparison aims to assess the accuracy of the IRI model in representing real-time electron density variations observed by the Swarm mission.

For full access to these publications, you may consider visiting the publisher’s website or accessing them through academic databases such as IEEE Xplore or ScienceDirect. If you are affiliated with an academic institution, you might have institutional access to these resources.

Conclusion

Benjamin, joshua olamide stands out as a promising researcher in space physics, with notable contributions to ionospheric studies, climatology models, and research-driven technological applications. His exceptional academic achievements, research output, leadership roles, and technical expertise position him as a deserving candidate for the Best Researcher Award.