Prof. Rishi Kumar Tiwari | Physics | Best Researcher Award

Prof. Rishi Kumar Tiwari | Physics | Best Researcher Award

Professor at Govt. Model Science College, Rewa (M.P.), India

Dr. Rishi Kumar Tiwari is a distinguished Professor of Mathematics with over 30 years of academic service, currently holding a post secured through the Madhya Pradesh Public Service Commission (2011). He earned his Ph.D. in Mathematics from A.P.S. University, Rewa, in 1998, following an M.Sc. with a Gold Medal. With a prolific research portfolio including 134 national and international publications and six authored books, he has supervised 21 Ph.D. scholars and continues to guide research in cosmology, general relativity, and differential geometry. Dr. Tiwari has presented his work globally, including in Italy, Germany, and South Africa, contributing to international scientific collaborations. His accolades include the DST-ICTP Fellowship (Italy), IASc-INSA-NASI Summer Research Fellowship, and the Shikshavid Samman (2023). Having served as Head of Departments and on multiple academic boards, Dr. Tiwari remains committed to advancing mathematics through education, research, and international cooperation in theoretical physics and cosmology.

Professional Profile 

Education 

Dr. Rishi Kumar Tiwari holds a strong academic background in science and mathematics. He completed his Higher Secondary education from the Board of Secondary Education, Bhopal, in 1985 with a focus on Physics, Chemistry, and Mathematics. He earned his B.Sc. from A.P.S. University, Rewa, in 1988, and later completed his M.Sc. in Mathematics from the same university in 1990, earning an outstanding, which earned him a Gold Medal. He was awarded a Ph.D. in Mathematics from A.P.S. University in 1998. His doctoral work laid the foundation for a research career focused on general relativity, cosmological modeling, and tensor analysis. Dr. Tiwari’s academic credentials reflect a consistent record of academic excellence and deep subject mastery, serving as the cornerstone for his teaching, research, and scholarly contributions to the field of mathematics and cosmology over the last three decades.

Professional Experience 

Dr. Rishi Kumar Tiwari brings with him over 30 years of extensive teaching experience at both undergraduate and postgraduate levels. He has held several significant academic leadership roles, including Head of the Department of Mathematics and Computer Science at Pt. S.N. Shukla University, Shahdol, and formerly at Govt. Model Science College, Rewa. He has also been a member of various Boards of Studies across reputed institutions like A.P.S. University and Govt. T.R.S. College, Rewa. Selected through the M.P. Public Service Commission in 2011, Dr. Tiwari has not only imparted knowledge but also shaped curricula and research agendas. Under his mentorship, 21 Ph.D. scholars have completed their doctorates, with others currently under supervision. His ability to blend deep mathematical theory with modern cosmological applications makes him a respected academic figure in India. He continues to engage students and researchers in exploring advanced topics in mathematical physics.

Research Interest

Dr. Tiwari’s research interest lies primarily in the fields of General Relativity, Cosmology, Tensor Analysis, and Differential Geometry, with a particular emphasis on exploring homogeneous cosmological models and conharmonic curvature tensors. His contributions to understanding the expanding universe and dark energy models have been presented at premier international conferences, including the TAUP Series and the Texas Symposium on Relativistic Astrophysics. With 134 research papers in reputed journals and conferences, Dr. Tiwari has carved a niche in the academic study of mathematical models underpinning astrophysical phenomena. His involvement in UGC-funded research projects on Bianchi Models and Robertson-Walker cosmologies illustrates his commitment to foundational and applied research. Collaborating with institutions in South Africa and Europe, he frequently shares findings on time-varying deceleration parameters and symmetry models. His international exposure and research depth continue to influence global discussions on theoretical physics and contribute to the development of cosmological theory.

Award and Honors

Throughout his illustrious career, Dr. Rishi Kumar Tiwari has received several awards and fellowships that affirm his academic excellence and research impact. He was awarded the DST-ICTP Fellowship (Italy, 2008), recognizing his work in mathematical physics. In 2012, he received the prestigious IASc-INSA-NASI Summer Research Fellowship, further solidifying his standing in the Indian scientific community. His most recent recognition, the Shikshavid Samman from the Department of Higher Education, Madhya Pradesh (2023), honors his decades-long contribution to higher education and mentorship in mathematics. Additionally, Dr. Tiwari has received two major UGC research grants for his projects on cosmological models. These accolades, combined with invitations for popular and technical talks at institutions like the University of KwaZulu-Natal and Mangosuthu University in South Africa, showcase his international academic reputation. His dedication to theoretical exploration and student development continues to garner respect and admiration in the fields of mathematics and cosmology.

Publications Top Notes

  • Title: Perfect fluid Bianchi Type-I cosmological models with time varying G and Λ
    Authors: JP Singh, RK Tiwari
    Year: 2008
    Citations: 63
    Source: Pramana – Journal of Physics, Vol. 70 (4), pp. 565–574

  • Title: Bianchi type-I cosmological models with time dependent G and Λ
    Authors: RK Tiwari
    Year: 2008
    Citations: 43
    Source: Astrophysics and Space Science, Vol. 318 (3), pp. 243–247

  • Title: Phase transition of LRS Bianchi type-I cosmological model in f(R,T)f(R, T) gravity
    Authors: RK Tiwari, D Sofuoğlu, VK Dubey
    Year: 2020
    Citations: 42
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 17 (12), Article ID: 2050187

  • Title: Cosmological tests of parametrization q(z)q(z) in FLRW cosmology
    Authors: A Bouali, BK Shukla, H Chaudhary, RK Tiwari, M Samar, G Mustafa
    Year: 2023
    Citations: 41
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 20 (09), Article ID: 2350152

  • Title: Scenario of two-fluid dark energy models in Bianchi type-III Universe
    Authors: RK Tiwari, A Beesham, BK Shukla
    Year: 2018
    Citations: 41
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 15 (11), Article ID: 1850189

  • Title: Cosmological model with variable deceleration parameter in f(R,T)f(R, T) modified gravity
    Authors: RK Tiwari, A Beesham, B Shukla
    Year: 2018
    Citations: 38
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 15 (07), Article ID: 1850115

  • Title: Bianchi type-III cosmological models with gravitational constant G and the cosmological constant Λ
    Authors: JP Singh, RK Tiwari, P Shukla
    Year: 2007
    Citations: 36
    Source: Chinese Physics Letters, Vol. 24 (12), pp. 3325

  • Title: Anisotropic model with decaying cosmological term
    Authors: RK Tiwari, A Beesham
    Year: 2018
    Citations: 33
    Source: Astrophysics and Space Science, Vol. 363 (11), Article: 234

  • Title: Some Robertson-Walker models with time dependent G and Λ
    Authors: RK Tiwari
    Year: 2009
    Citations: 33
    Source: Astrophysics and Space Science, Vol. 321 (2), pp. 147–150

  • Title: Time varying G and Λ cosmology in f(R,T)f(R, T) gravity theory
    Authors: RK Tiwari, A Beesham, R Singh, LK Tiwari
    Year: 2017
    Citations: 31
    Source: Astrophysics and Space Science, Vol. 362 (8), Article: 143

  • Title: Transit cosmological models with domain walls in f(R, T) gravity
    Authors: RK Tiwari, A Beesham, A Pradhan
    Year: 2017
    Citations: 30
    Source: Gravitation and Cosmology, Vol. 23 (4), pp. 392–400

  • Title: Cosmological models with viscous fluid and variable deceleration parameter
    Authors: RK Tiwari, A Beesham, BK Shukla
    Year: 2017
    Citations: 30
    Source: The European Physical Journal Plus, Vol. 132 (1), Article: 20

  • Title: An LRS Bianchi type-I cosmological model with time-dependent Λ term
    Authors: JP Singh, RK Tiwari
    Year: 2007
    Citations: 27
    Source: International Journal of Modern Physics D, Vol. 16 (04), pp. 745–754

  • Title: Cosmographic studies of q(z)q(z) parametrization in f(R,T)f(R, T) framework
    Authors: BK Shukla, A Bouali, H Chaudhary, RK Tiwari, MS Martín
    Year: 2023
    Citations: 24
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 20 (14), Article ID: 2450007

  • Title: Quadratically varying deceleration parameter in f(R,T)f(R, T) gravity
    Authors: RK Tiwari, D Sofuoğlu
    Year: 2020
    Citations: 24
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 17 (10), Article ID: 2030003

Conclusion 

Dr. Rishi Kumar Tiwari stands as a paragon of dedication, intellect, and international engagement in the realm of mathematical sciences. From earning a Gold Medal in his master’s studies to mentoring 21 Ph.D. scholars and producing an expansive body of scholarly work, he exemplifies the ideals of academic leadership. His prolific research, particularly in the areas of general relativity and cosmological modeling, has transcended national borders, earning him respect across continents. Participation in global scientific platforms and collaborations with African and European institutions underline his commitment to knowledge exchange and cross-cultural academic growth. With multiple leadership roles in universities and active contributions to curriculum development and academic governance, Dr. Tiwari continues to shape the future of mathematical education and research in India. His legacy is built not only on research excellence but also on his lifelong mission to inspire, educate, and innovate in the ever-evolving landscape of mathematical physics.

Sergei Badulin | Physics | Best Paper Award

Dr. Sergei Badulin | Physics | Best Paper Award

Head of laboratory at P.P.Shirshov Institute of Oceanology, Russia

Sergei I. Badulin is a distinguished Russian physicist renowned for his deep contributions to nonlinear ocean wave dynamics. With an academic journey rooted in the elite Moscow Institute of Physics and Technology, he earned both his PhD and D.Sc. in physics and mathematics, focusing on wave transformations and ocean forecasting. He currently leads the Nonlinear Wave Processes Laboratory at the P.P. Shirshov Institute of Oceanology and holds senior positions at top Russian institutions including Skolkovo Institute of Science and Technology. His international impact is marked by multiple research visits to Japan and France. Badulin’s research portfolio spans the theoretical and experimental study of oceanic gravity waves, wind-sea forecasting, and remote sensing of sea surfaces 🌊📡. Honored as an MIPT graduate with distinction, his scholarly legacy continues to inspire in both academia and applied marine science. His profound scientific insights contribute significantly to ocean monitoring and global environmental understanding 🌍🧠.

Professional Profile 

Orcid

Scopus

Google Scholar

🎓 Education

Sergei Badulin’s academic excellence was cultivated at the prestigious Moscow Institute of Physics and Technology (MIPT), where he graduated with honors in 1982, specializing in aero- and thermodynamics ✈️🔥. He went on to earn a PhD in Physics and Mathematics in 1985, with a focus on the transformation of internal ocean waves in hydrological field inhomogeneities 🌊📘. Demonstrating an enduring commitment to academic excellence, he further achieved a Doctor of Science (D.Sc.) degree in 2009, centered on wave dynamics for ocean forecasting and monitoring. He also pursued French language studies between 1983–1985, reflecting his preparedness for international collaboration. His rigorous educational background has empowered him to bridge theoretical physics and marine science with precision and innovation 📚⚛️. This strong foundation continues to underpin his impactful research across global oceanographic institutions.

👨‍🔬 Professional Experience

Prof. Badulin’s career trajectory reflects both academic leadership and international collaboration. Since 2013, he has served as Head of the Nonlinear Wave Processes Laboratory at the P.P. Shirshov Institute of Oceanology. Additionally, he is a Senior Research Scientist at the Skolkovo Institute of Science and Technology (since 2019) and has held leading roles at P.N. Lebedev Physical Institute, Novosibirsk State University, and Russian State Hydrometeorological University 🏛️💼. Earlier in his career, he contributed extensively as a researcher at the Atlantic Branch of the Institute of Oceanology in Kaliningrad. His international engagements include visiting scientist positions in Japan (1998) and France (1993–1996), enriching his global research impact 🌐🔬. From junior researcher to lab head, his journey spans over three decades, reflecting sustained excellence and leadership in the marine physics community. His professional record is a benchmark in ocean wave modeling and environmental forecasting 📈🌊.

🔬 Research Interests

Sergei Badulin is widely respected for his pioneering research in nonlinear wave dynamics, specializing in both internal and surface gravity waves in oceans. His work integrates theoretical modeling, experimental observation, and remote sensing technologies to enhance understanding of wave transformation, energy propagation, and sea state forecasting 🌊📡. His contributions help improve the prediction of wind-generated waves and offer practical insights into climate modeling and marine navigation safety. Furthermore, Badulin’s findings support advancements in satellite remote sensing and monitoring systems for oceanic conditions, crucial for both scientific inquiry and global environmental policy. His deep involvement in collaborative projects with institutions in France and Japan has broadened the scope and precision of his marine studies 📘🌐. Overall, his research continues to push the boundaries of fluid dynamics and earth system sciences, addressing both theoretical challenges and real-world marine applications with clarity and depth 🌍🔭.

🏅 Awards and Honors

Sergei I. Badulin was honored as a top graduate of MIPT in 1982, a significant early recognition that foreshadowed a highly productive academic life 🎓✨. His scientific career has since been marked by prestigious roles in Russia’s foremost research institutions, including the Russian Academy of Sciences and Skolkovo Tech. Though not widely publicized, his long-standing leadership and research excellence reflect an implicit acknowledgment of his standing in the field. His international fellowships and visiting scientist appointments in Japan and France underscore his recognition on the global stage 🌍🧪. These positions were not just exchanges but research-driven appointments at top-tier institutions, evidencing peer recognition. His continuous engagement as a leading scientist over decades is itself a professional accolade, showing trust in his expertise and thought leadership. Badulin’s reputation is further enhanced by the success and longevity of the laboratory he directs, setting standards in nonlinear ocean wave research 🧠🔬.

📚 Publications Top Note 

1. Altimetry for the future: Building on 25 years of progress

  • Authors: S. Abdalla, A.A. Kolahchi, M. Ablain, S. Adusumilli, S.A. Bhowmick, et al.

  • Year: 2021

  • Citations: 227

  • Source: Advances in Space Research, Vol. 68(2), pp. 319–363

  • Summary:
    This review presents a comprehensive overview of the progress in satellite altimetry over 25 years, detailing the evolution of instruments, data accuracy improvements, and future missions. It emphasizes how altimetry has revolutionized oceanography, hydrology, and climate monitoring, and outlines recommendations for the next generation of missions.


2. Weakly turbulent laws of wind-wave growth

  • Authors: S.I. Badulin, A.V. Babanin, V.E. Zakharov, D. Resio

  • Year: 2007

  • Citations: 167

  • Source: Journal of Fluid Mechanics, Vol. 591, pp. 339–378

  • Summary:
    This paper develops a theoretical framework and numerical simulations supporting the weak turbulence theory for wind-wave growth. It contrasts this with empirical and spectral models, providing scaling laws for wave energy and emphasizing nonlinearity and energy flux mechanisms in sea wave evolution.


3. Self-similarity of wind-driven seas

  • Authors: S.I. Badulin, A.N. Pushkarev, D. Resio, V.E. Zakharov

  • Year: 2005

  • Citations: 146

  • Source: Nonlinear Processes in Geophysics, Vol. 12(6), pp. 891–945

  • Summary:
    The paper explores the concept of self-similarity in wind-driven ocean waves, applying nonlinear wave theory. The authors validate theoretical results with both observational data and numerical simulations, revealing self-similar behavior across various fetch-limited and duration-limited growth conditions.


4. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth

  • Authors: E. Gagnaire-Renou, M. Benoit, S.I. Badulin

  • Year: 2011

  • Citations: 70

  • Source: Journal of Fluid Mechanics, Vol. 669, pp. 178–213

  • Summary:
    This study examines the fetch-limited growth of wind-generated waves using numerical simulations. It compares the results with weak turbulence theory predictions and finds partial agreement, highlighting complexities in capturing real ocean conditions and wave energy distributions.


5. A model of water wave ‘horse-shoe’ patterns

  • Authors: V.I. Shrira, S.I. Badulin, C. Kharif

  • Year: 1996

  • Citations: 69

  • Source: Journal of Fluid Mechanics, Vol. 318, pp. 375–405

  • Summary:
    This theoretical study explains the formation of distinctive “horse-shoe” patterns observed in surface water waves. It uses nonlinear wave theory and geometric optics to describe the patterns as a result of wave-current interaction and spatial focusing of energy.


6. On two approaches to the problem of instability of short-crested water waves

  • Authors: S.I. Badulin, V.I. Shrira, C. Kharif, M. Ioualalen

  • Year: 1995

  • Citations: 63

  • Source: Journal of Fluid Mechanics, Vol. 303, pp. 297–326

  • Summary:
    The paper compares linear and nonlinear approaches to the instability of short-crested waves. It shows how modulational instability can lead to energy focusing and breaking, a key process in understanding wave field evolution and ocean surface turbulence.


7. A physical model of sea wave period from altimeter data

  • Author: S.I. Badulin

  • Year: 2014

  • Citations: 61

  • Source: Journal of Geophysical Research: Oceans, Vol. 119(2), pp. 856–869

  • Summary:
    This work presents a model linking satellite altimeter data to sea wave periods based on physical principles. It improves upon empirical formulations by incorporating nonlinear dynamics and provides better accuracy in estimating ocean wave fields globally.


8. Universality of sea wave growth and its physical roots

  • Authors: V.E. Zakharov, S.I. Badulin, P.A. Hwang

  • Year: 2015

  • Citations: 60

  • Source: Journal of Fluid Mechanics, Vol. 780, pp. 503–535

  • Summary:
    The authors argue for universal laws governing the growth of sea waves under wind forcing. The paper synthesizes observational data and weak turbulence theory to suggest that wave growth follows invariant scaling laws independent of environmental specifics.


9. On the irreversibility of internal-wave dynamics due to wave trapping by mean flow inhomogeneities. Part 1. Local analysis

  • Authors: S.I. Badulin, V.I. Shrira

  • Year: 1993

  • Citations: 53

  • Source: Journal of Fluid Mechanics, Vol. 251, pp. 21–53

  • Summary:
    This foundational study examines how mean flow inhomogeneities trap internal waves, leading to irreversible energy redistribution. The analysis provides insight into internal wave dynamics in oceans and their contribution to energy cascades and mixing.


10. A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows

  • Authors: S.I. Badulin, K.V. Pokazayev, A.D. Rozenberg

  • Year: 1983

  • Citations: 44

  • Source: Izvestiya Atmospheric and Oceanic Physics, Vol. 19(10), pp. 782–787

  • Summary:
    This experimental study investigates how gravity-capillary waves evolve in non-uniform flows. It reveals transformation effects such as amplitude modulation and wave steepening, contributing to the understanding of wave behavior in natural fluid systems.

Conclusion

Dr. Sergei I. Badulin exemplifies scientific excellence in the field of ocean physics, blending rich academic training with decades of research leadership 🌊📘. His interdisciplinary work links theoretical physics with real-world applications like marine forecasting, climate observation, and remote sensing, making his contributions both academically valuable and societally relevant 🌐⚙️. His international presence and collaborative projects reflect an openness to scientific exchange and a commitment to advancing global knowledge. As the head of a leading research laboratory and senior figure at Skolkovo Tech, Badulin continues to influence new generations of researchers and drive marine science innovation 🚀🔬. While his awards may be understated publicly, his career achievements, scholarly depth, and ongoing research activities make him an exceptional candidate for recognition such as the Best Researcher Award. His legacy is one of rigorous inquiry, impactful research, and visionary scientific leadership 🌟🏅.