Dr. Meri Algarni | Condensed Matter Physics | Best Researcher Award

Dr. Meri Algarni | Condensed Matter Physics | Best Researcher Award

Associate Professor | Al-Baha University | Saudi Arabia

Dr. Meri Algarni is an accomplished researcher in Condensed Matter Physics, recognized for her innovative work on magnetic and topological phenomena in low-dimensional materials. Her contributions have significantly advanced the understanding of electronic and magnetic properties in van der Waals heterostructures, bridging theoretical insights with experimental discoveries in Condensed Matter Physics. With a strong research background in Condensed Matter Physics, she has explored carrier-mediated ferromagnetism, gate-controlled phase transitions, and quantum effects that underpin next-generation spintronic and energy-efficient devices. Dr. Algarni’s expertise in Condensed Matter Physics encompasses nanoscale characterization techniques such as SEM, AFM, and PPMS, enabling her to investigate magnetic and structural behaviors at the atomic scale. Her research in Condensed Matter Physics has been published in high-impact journals, including Physical Review Letters, Nature Communications, and ACS Nano Letters, reflecting global recognition of her scientific contributions. Through her work on tunable artificial topological Hall effects and gate-tuned magnetic transitions, she continues to make influential contributions to Condensed Matter Physics, advancing the development of future quantum materials and low-energy electronic technologies. In addition to her research achievements, Dr. Algarni has actively participated in international conferences and collaborations, strengthening global scientific networks within Condensed Matter Physics. Her dedication to advancing Condensed Matter Physics extends to mentoring and teaching, inspiring emerging scientists to engage in experimental and theoretical studies within the field. Her scholarly impact in Condensed Matter Physics demonstrates a rare combination of technical mastery, analytical rigor, and interdisciplinary insight that drives innovation in material science and nanotechnology. Her Google Scholar profile records 530 citations, an h-index of 11, and an i10-index of 12, underscoring her substantial and growing influence in Condensed Matter Physics worldwide.

Profiles: Google Scholar | ORCID

Featured Publications

1. Zheng, G., Xie, W. Q., Albarakati, S., Algarni, M., Tan, C., Wang, Y., Peng, J., … (2020). Gate-tuned interlayer coupling in van der Waals ferromagnet nanoflakes. Physical Review Letters, 125(4), 047202.

2. Tan, C., Xie, W. Q., Zheng, G., Aloufi, N., Albarakati, S., Algarni, M., Li, J., … (2021). Gate-controlled magnetic phase transition in a van der Waals magnet Fe₅GeTe₂. Nano Letters, 21(13), 5599–5605.

3. Albarakati, S., Xie, W. Q., Tan, C., Zheng, G., Algarni, M., Li, J., Partridge, J., … (2022). Electric control of exchange bias effect in FePS₃–Fe₅GeTe₂ van der Waals heterostructures. Nano Letters, 22(15), 6166–6172.

4. Zheng, G., Wang, M., Zhu, X., Tan, C., Wang, J., Albarakati, S., Aloufi, N., … (2021). Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation. Nature Communications, 12(1), 3639.

5. Zheng, G., Tan, C., Chen, Z., Wang, M., Zhu, X., Albarakati, S., Algarni, M., … (2023). Electrically controlled superconductor-to-failed insulator transition and giant anomalous Hall effect in kagome metal CsV₃Sb₅ nanoflakes. Nature Communications, 14(1), 678.

Dr. Mohsin Rafique | Condensed Matter Physics | Excellence in Research Award 

Dr. Mohsin Rafique | Condensed Matter Physics | Excellence in Research Award 

Assistant Research Scientist | Beijing Academy of Quantum Information Sciences | China

Dr. Mohsin Rafique is an accomplished researcher in the field of Condensed Matter Physics, currently serving as a Research Scientist (Assistant) at the Beijing Academy of Quantum Information Sciences, China. His academic foundation in physics, including a PhD and MS from COMSATS Institute of Information Technology, has enabled him to explore critical areas of Condensed Matter Physics, particularly focusing on quantum transport, superconductivity, and magnetoelectric materials. Throughout his professional journey, he has contributed extensively to Condensed Matter Physics research through postdoctoral work at Tsinghua University and collaborative projects in Germany and Italy. His research interests encompass quantum phase transitions, magnetism, and multiferroic thin films all deeply rooted in Condensed Matter Physics principles. Dr. Rafique has received multiple awards and fellowships, including the Tsinghua University Postdoctoral Fellowship and COMSATS Research Productivity Award, reflecting his excellence in Condensed Matter Physics research and innovation. His research skills span quantum material fabrication, magnetoelectric measurements, and nanoscale device development, further demonstrating his command of Condensed Matter Physics methodologies. His work has been published in top-tier journals like Nano Letters, Applied Physics Letters, and Nature Communications, showcasing significant contributions to Condensed Matter Physics and related interdisciplinary fields. With his dedication to advancing scientific understanding in Condensed Matter Physics, Dr. Mohsin Rafique stands as a prominent figure whose expertise continues to influence modern material science.Google Scholar profile of 553 Citations, 13 h-index, 18 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Rashid, J., Abbas, A., Chang, L. C., Iqbal, A., Haq, I. U., Rehman, A., Awan, S. U., & others. (2019). Butterfly cluster like lamellar BiOBr/TiO₂ nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Science of the Total Environment, 665, 668–677.

2. Rashid, J., Saleem, S., Awan, S. U., Iqbal, A., Kumar, R., Barakat, M. A., Arshad, M., & others. (2018). Stabilized fabrication of anatase-TiO₂/FeS₂ (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue. RSC Advances, 8(22), 11935–11945.

3. Liao, M., Wang, H., Zhu, Y., Shang, R., Rafique, M., Yang, L., Zhang, H., Zhang, D., & others. (2021). Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe₂ superconductor. Nature Communications, 12(1), 5342.

4. Awan, S. U., Hasanain, S. K., Rashid, J., Hussain, S., Shah, S. A., Hussain, M. Z., & others. (2018). Structural, optical, electronic and magnetic properties of multiphase ZnO/Zn(OH)₂/ZnO₂ nanocomposites and hexagonal prism shaped ZnO nanoparticles synthesized by pulse laser. Materials Chemistry and Physics, 211, 510–521.

5. Rafique, M., Feng, Z., Lin, Z., Wei, X., Liao, M., Zhang, D., Jin, K., & Xue, Q. K. (2019). Ionic liquid gating induced protonation of electron-doped cuprate superconductors. Nano Letters, 19(11), 7775–7780.*