Muqaddar Abbas | Quantum Optics | Best Researcher Award

Assist. Prof. Dr. Muqaddar Abbas | Quantum Optics | Best Researcher Award

Assistant Professor at xian jiaotong university, China.

Dr. Muqaddar Abbas ๐Ÿ‘จโ€๐Ÿ”ฌ is an Assistant Professor at the School of Physics, Xiโ€™an Jiaotong University ๐Ÿ‡จ๐Ÿ‡ณ. Born on November 8, 1985 ๐Ÿ‡ต๐Ÿ‡ฐ, he specializes in Quantum Optics and Information Physics ๐ŸŒŒ. With a strong academic foundation and over a decade of research and teaching experience, Dr. Abbas has published extensively in prestigious journals ๐Ÿ“š and actively participates in global conferences ๐ŸŒ. His work explores cutting-edge quantum technologies including cavity quantum electrodynamics and photonic effects ๐Ÿ’ก. Beyond academia, he enjoys badminton ๐Ÿธ, hiking ๐Ÿฅพ, and reading ๐Ÿ“–. He is known for his collaborative spirit and scientific curiosity.

Professional Profile:

Scopus

๐Ÿ…Suitability for Best Researcher Award – Assist. Prof. Dr. Muqaddar Abbasย 

Dr. Muqaddar Abbas exemplifies excellence in research through his deep engagement with cutting-edge topics in Quantum Optics and Information Physics. With a Ph.D. focused on nonlinear quantum systems and over a decade of progressive academic roles, he has consistently contributed to both the theoretical and applied facets of quantum science. His international exposure, interdisciplinary collaborations, and strong publication record in reputed journals strengthen his candidature.

๐Ÿ“˜ Education & Experience

  • ๐Ÿง‘โ€๐ŸŽ“ Ph.D. in Physics (Quantum Optics) โ€“ COMSATS University Islamabad, Pakistan (2012โ€“2017)
    ๐Ÿ“˜ Thesis: Effect of Kerr Nonlinearity

  • ๐Ÿ“˜ M.Phil. in Physics โ€“ Quaid-i-Azam University Islamabad (2009โ€“2011)
    ๐Ÿงช Thesis: Non-Markovian Dynamics

  • ๐Ÿ“˜ M.Sc. in Physics โ€“ Quaid-i-Azam University Islamabad (2006โ€“2008)

  • ๐Ÿ“˜ B.Sc. in Physics & Math โ€“ University of Punjab, Lahore (2004โ€“2006)

๐Ÿ’ผ Professional Experience

  • ๐Ÿ‘จโ€๐Ÿซ Assistant Professor, Xiโ€™an Jiaotong University (2021โ€“Present)

  • ๐Ÿ”ฌ Senior Scientific Officer, COMSATS University Islamabad (2018โ€“2021)

  • ๐Ÿง‘โ€๐Ÿ”ฌ Research Associate, COMSATS University Islamabad (2011โ€“2018)

๐Ÿ“ˆ Professional Development

Dr. Abbas continually enhances his academic and professional expertise through active participation in international conferences and workshops ๐ŸŒ, including presentations in Germany ๐Ÿ‡ฉ๐Ÿ‡ช, China ๐Ÿ‡จ๐Ÿ‡ณ, and Pakistan ๐Ÿ‡ต๐Ÿ‡ฐ. He has contributed to scientific events like ICEQT, ICQFT, and Quantum 2020 ๐Ÿ“ก. His technical toolkit includes MATLAB, Mathematica, Python, and LaTeX ๐Ÿ’ป. Additionally, his soft skillsโ€”teamwork, leadership, and problem-solvingโ€”complement his technical acumen ๐Ÿง . With fluency in English and Urdu, and basic Chinese skills ๐Ÿ—ฃ๏ธ, he collaborates effectively across global platforms. His commitment to learning ensures he remains at the forefront of quantum research and education ๐Ÿ“š๐ŸŒŸ.

๐Ÿ”ฌ Research Focus Area

Dr. Muqaddar Abbasโ€™s research is rooted in Quantum Optics and Quantum Information Science ๐ŸŒ . His work spans advanced areas such as Cavity Quantum Electrodynamics, Bose-Einstein Condensates, Cavity-Optomechanics, and Electromagnetically Induced Transparency (EIT) ๐Ÿ”. He also explores modern phenomena like the Photonic Spin Hall Effect and Rydberg Atom Control Theory ๐ŸŒ€. His aim is to develop innovative solutions in optical memory, sensing, and slow/fast light control ๐Ÿ“ก. By combining theoretical modeling with experimental insight, he contributes to advancing quantum technologies for the future of communication and computation ๐Ÿ’ก๐Ÿงฌ.

๐Ÿ… Honors & Awards

  • ๐Ÿ† Research Productivity Awards โ€“ COMSATS University (2016โ€“2018)

  • ๐ŸŽ“ Razmi Fellowship โ€“ Quaid-i-Azam University (2009โ€“2010)

  • ๐ŸŽ–๏ธ Merit Fellowship โ€“ Quaid-i-Azam University (2010โ€“2011)

Publication Top Notes

๐Ÿ“˜ 1. Double-frequency photonic spin Hall effect in a tripod atomic system

Authors: M. Abbas, Y. Wang, F. Wang, P. Zhang, H.R. Hamedi
Journal: Optics Communications (2025)
Summary:
This paper reports the realization of a double-frequency photonic spin Hall effect (PSHE) using a tripod atomic configuration. By carefully designing the atomic energy levels and their coupling with external fields, the authors demonstrate that two distinct frequency components of the PSHE can be produced and controlled. This study offers new avenues for developing advanced photonic spintronic devices with enhanced frequency diversity and control.

๐Ÿ“˜ 2. Coherent- and dissipative-coupling control of photonic spin Hall effect in cavity magnomechanical system

Authors: A. Munir, M. Abbas, Ziauddin, C. Wang
Journal: Optics and Laser Technology (2025)
Summary:
This work explores how both coherent and dissipative couplings in a cavity magnomechanical system can be exploited to control the PSHE. Through theoretical modeling and simulations, the paper demonstrates how coupling strengths and detunings impact the spin-dependent light deflection, providing a flexible mechanism for dynamic photonic modulation.

๐Ÿ“˜ 3. Tuning the Photonic Spin Hall Effect through vacuum-induced transparency in an atomic cavity

Authors: M. Abbas, Y. Wang, F. Wang, H.R. Hamedi, P. Zhang
Journal: Chaos, Solitons & Fractals (2025)
Citations: 1
Summary:
The study presents a scheme to enhance and tune the PSHE using vacuum-induced transparency (VIT) in a cavity containing atomic media. The authors analyze how quantum interference and vacuum field interactions can be manipulated to control spin-dependent beam shifts, offering promising applications in quantum metrology and optical switches.

๐Ÿ“˜ 4. Manipulation of the photonic spin Hall effect in a cavity magnomechanical system

Authors: M. Abbas, G. Din, H.R. Hamedi, P. Zhang
Journal: Physical Review A (2025)
Summary:
This article investigates the manipulation of the PSHE within a hybrid magnomechanical system, where magnons and phonons interact with cavity photons. The authors demonstrate the ability to control the lightโ€™s spin-dependent trajectory via external magnetic fields and mechanical resonances, offering novel functionalities for nonreciprocal light propagation.

๐Ÿ“˜ 5. Coherent control of Surface Plasmon Polaritons Excitation via tunneling-induced transparency in quantum dots

Authors: F. Badshah, M. Abbas, Y. Zhou, H. Huang, Rahmatullah
Journal: Optics and Laser Technology (2025)
Citations: 7
Summary:
This paper proposes a method to control the excitation of surface plasmon polaritons (SPPs) in quantum dot systems using tunneling-induced transparency (TIT). Through careful modulation of electron tunneling parameters, the authors achieve precise control over SPP excitation, enhancing prospects for quantum plasmonic circuits and sensing applications.

๐Ÿ“˜ 6. Tunable photonic spin Hall effect in a tripod atom-light configuration

Authors: M. Abbas, P. Zhang, H.R. Hamedi
Journal: Physical Review A (2025)
Summary:
This study introduces a tunable PSHE mechanism based on a tripod atomic level structure interacting with light. By adjusting the control field parameters, the authors show how the spin-dependent deflection angle and direction of the transmitted beam can be precisely regulated, enabling potential use in spin-controlled photonic routing systems.

๐Ÿ“˜ 7. Nonreciprocal cavity magnonics system for amplification of photonic spin Hall effect

Authors: A. Munir, M. Abbas, C. Wang
Journal: Chaos, Solitons & Fractals (2025)
Summary:
This article explores a nonreciprocal cavity magnonics system that significantly amplifies the PSHE. By leveraging nonreciprocal magnon-photon coupling, the system allows for enhanced spin-controlled light propagation. The approach provides a promising framework for designing isolators and circulators in integrated quantum optical devices.

๐Ÿงพ Conclusion

Dr. Muqaddar Abbasโ€™s work stands at the forefront of quantum technology research, with practical implications for the future of secure communication, quantum computing, and photonic systems. His sustained publication record, international collaborations, research excellence, and mentorship contributions make him a deserving recipient of the Best Researcher Award.

Ovidiu Cristinel Stoica | Quantum Mechanics | Best Researcher Award

Dr. Ovidiu Cristinel Stoica | quantum mechanics | Best Researcher Award

Dr. Ovidiu Cristinel Stoica, National Institute of Physics and Nuclear Engineering – Horia Hulube, Romania

Dr. Ovidiu Cristinel Stoica is a researcher at the National Institute of Physics and Nuclear Engineering – Horia Hulubei in Bucharest, Romania. He specializes in theoretical physics, focusing on quantum foundations, general relativity, and particle physics. With a PhD in Geometry from the University Politehnica of Bucharest, Dr. Stoica’s research interests include the ontological aspects of the wavefunction, black holes, and the mathematical frameworks underlying modern physics, such as semi-Riemannian geometry and differential topology. He has contributed to various research initiatives, including the CANTATA network, aimed at advancing theoretical astrophysics and cosmology.

 

Orcid Profile

Educational Details

Dr. Ovidiu Cristinel Stoica earned his PhD in Geometry from the University Politehnica of Bucharest in 2013, focusing on “Singular General Relativity” under the supervision of Prof. Dr. Constantin Udriศ™te. Prior to this, he was a PhD candidate at the Institute of Mathematics of the Romanian Academy, where he specialized in the Geometry of Fiber Bundles. He holds a Masterโ€™s degree in Differential Geometry from the University of Bucharest, where he wrote a thesis on “Spinors in Geometry and Physics.” Dr. Stoica also completed his undergraduate studies at the University of Bucharest, majoring in Mathematicsโ€“Research, with a specialization in Differential Geometry.

Professional Experience

Since 2014, Dr. Stoica has been a researcher at the National Institute of Physics and Nuclear Engineering – Horia Hulubei in Bucharest, Romania, where he focuses on theoretical physics. His previous roles include being a PhD student supported by a Romanian Government grant from 2009 to 2011. He has a strong foundation in both theoretical physics and mathematics, combining rigorous mathematical frameworks with physical theories.

Research Interest

Dr. Stoica’s research spans various fundamental areas of theoretical physics and mathematics, including:

Quantum Foundations: Examining the ontological aspects of the wavefunction, entanglement, the measurement problem, and the interplay between quantum mechanics and relativity.

General Relativity: Investigating singularities, Einstein’s equations, black holes, and the Big Bang, as well as quantum gravity and quantum field theory on curved backgrounds.

Particle Physics: Exploring the Standard Model, gauge theories, Yang-Mills equations, grand unified theories, and the geometric properties of particles, including the Dirac equation and Kaluza-Klein theories.

Mathematics: Researching semi-Riemannian geometry, differential topology, representation theory, Clifford algebras, and various other advanced mathematical structures relevant to physics.

Top Notable Publications

Is the Wavefunction Already an Object on Space?

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Symmetry

DOI: 10.3390/sym16101379

Freedom in the Many-Worlds Interpretation

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Foundations of Physics

DOI: 10.1007/s10701-024-00802-5

Empirical adequacy of the time operator canonically conjugate to a Hamiltonian generating translations

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Physica Scripta

DOI: 10.1088/1402-4896/ad59d2

Does Quantum Mechanics Require โ€œConspiracyโ€?

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Entropy

DOI: 10.3390/e26050411

Does a computer think if no one is around to see it?

Authors: Ovidiu Cristinel Stoica

Year: 2024

Type: Preprint

DOI: 10.36227/techrxiv.170785780.04523688/v1

The Relation between Wavefunction and 3D Space Implies Many Worlds with Local Beables and Probabilities

Authors: Ovidiu Cristinel Stoica

Year: 2023

Journal: Quantum Reports

DOI: 10.3390/quantum5010008

Conclusion

Overall, Dr. Ovidiu Cristinel Stoicaโ€™s extensive research interests, significant contributions to quantum mechanics and relativity, solid educational background, collaborative spirit, and technical skills make him exceptionally well-suited for the Research for Best Researcher Award. His work not only enriches the scientific community but also paves the way for future advancements in physics.

 

Adrian Cheok | Quantum Physics | Best Researcher Award

Prof Dr. Adrian Cheok | Quantum Physics | Best Researcher Award

Prof Dr. Adrian Cheok, Nanjing University of Information Science and Technology,ย  Australia

Adrian David Cheok AM is a distinguished researcher and academic specializing in mixed reality and human-computer interaction. With a robust background in engineering and extensive experience across international institutions, Cheok leads pioneering work in wearable computing and mixed reality. He has received numerous accolades, including Australia’s highest honor, the Order of Australia, for his significant contributions to global research and education. His innovative work, recognized globally, continues to impact and advance the fields of technology and interactive media.

PROFILE

Scopus Profile

Orcid Profile

Educational Details

Adrian David Cheok AM, born and raised in Adelaide, Australia, has a distinguished educational background. He earned his Bachelor of Engineering (Electrical and Electronic) with First Class Honours from the University of Adelaide in 1993. He continued his studies at the same institution, obtaining a Ph.D. in Electrical and Electronic Engineering in 1998. In addition to his engineering qualifications, Cheok pursued a Graduate Diploma in Global Leadership and Public Policy for the 21st Century from Harvard University in 2010. This diverse academic foundation underpins his extensive career in research and leadership in technology and innovation.

Professional Experience:

Adrian David Cheok is a prominent figure in the fields of mixed reality and human-computer interaction. He is the Director of the Imagineering Institute in Malaysia and holds multiple academic positions, including Full Professor at i-University Tokyo, Visiting Professor at Raffles University Malaysia and the University of Novi Sad, Serbia. Additionally, he serves on the Technical Faculty at โ€œMihailo Pupinโ€ in Serbia and Ducere Business School, and is the CEO of Nikola Tesla Technologies Corporation.

Previously, Cheok was Professor of Pervasive Computing at the University of London, Full Professor and Executive Dean at Keio Universityโ€™s Graduate School of Media Design, and Associate Professor at the National University of Singapore. He has also worked at Mitsubishi Electric Research Labs in Japan focusing on real-time systems, soft computing, and embedded computing.

Research Interest

Cheokโ€™s research encompasses mixed reality, human-computer interfaces, wearable computers, and ubiquitous computing. His work also spans fuzzy systems, embedded systems, and power electronics. He has successfully secured approximately $130 million in funding for projects from notable organizations such as the Daiwa Foundation, Khazanah National, and various government and private entities. His innovative research has been featured in high-profile media outlets, international exhibitions, and has garnered numerous awards and recognitions, including the Order of Australia in 2019 for his contributions to international education and research.

Research Goals

Adrian David Cheok AM reflects on the transformative impact of interactive media, emphasizing its role in revolutionizing communication and human-computer interaction. He draws inspiration from pioneers like Douglas Engelbart and Alan Kay, advocating for a multidisciplinary approach to research that blends imaginative envisioning, future-casting, and creative engineering. Cheok’s passion lies in pushing the boundaries of interactive media to create innovative technologies that enhance communication, learning, and entertainment. His goal is to drive impactful, cutting-edge research that benefits society and inspires future generations of researchers.

Top Notable Publications

On the Same Origin of Quantum Physics and General Relativity from Riemannian Geometry and Planck Scale Formalism

Journal: Astroparticle Physics

Year: 2025

DOI: 10.1016/j.astropartphys.2024.103036

Optimal Design and Control of a Decoupled Multifrequency Multiphase Wireless Switched Reluctance Motor Drive System

Journal: IEEE Transactions on Power Electronics

Year: 2024

DOI: 10.1109/TPEL.2024.3399737

Magnetic Coupled Wireless Motor Driving Systemsโ€“An Overview

Journal: IEEE Transactions on Power Electronics

Year: 2024

DOI: 10.1109/TPEL.2024.3372312

The Convergence of Traditionalism and Populism in American Politics

Book: IGI Global

Year: 2024

DOI: 10.4018/978-1-6684-9290-1

Unraveling Populism: Senator Fraser Anning and the Australian Political Landscape

Preprint

Year: 2024

DOI: 10.32388/L3ED9I

A Soft Decoding Strategy For The Resolver in Motor Drive System

Journal: IEEE Transactions on Transportation Electrification

Year: 2024

DOI: 10.1109/TTE.2024.3415433

Flux-Linkage Loop-Based Model Predictive Torque Control for Switched Reluctance Motor

Journal: IEEE Transactions on Industrial Electronics

Year: 2024

DOI: 10.1109/TIE.2024.3443955

Model Predictive Control Strategies in Switched Reluctance Motor Drives โ€“ An Overview

Journal: IEEE Transactions on Power Electronics

Year: 2024

DOI: 10.1109/TPEL.2024.3454819

Overview of the Direct Torque Control Strategy in Switched Reluctance Motor Drives

Journal: IEEE Transactions on Transportation Electrification

Year: 2024

DOI: 10.1109/TTE.2024.3408647

From Turing to Transformers: A Comprehensive Review and Tutorial on the Evolution and Applications of Generative Transformer Models

Journal: Sci

Year: 2023

DOI: 10.3390/sci5040046