Dr Rajendra Patil | Chemistry | Excellence in Research Award

Dr Rajendra Patil | Chemistry | Excellence in Research Award

Assistant Professor at M H Shinde Mahavidyalaya, Tisangi, India

Dr. Rajendra Pandurang Patil, a distinguished academician and gold-medalist 🥇 from GATE, is currently serving as an Assistant Professor of Chemistry at M. H. Shinde Mahavidyalaya, Tisangi, Kolhapur, he has consistently showcased brilliance from undergraduate to doctoral levels, achieving distinction in both B.Sc. and M.Sc., and earning his Ph.D. in 2012 with a focus on “Synthesis, Characterization and Applications of Mixed-Metal Oxides.” With 15 years of research and 13 years of teaching experience 📚, Dr. Patil has cultivated an impressive academic legacy. His contributions in advanced materials chemistry are echoed through 109 international publications and 4 granted patents 🧪. A stalwart in nanotechnology and energy materials, his scholarly excellence is reflected in a Google Scholar h-index of 22 and over 1700 citations 📈. A dedicated educator, innovator, and scientist, Dr. Patil continues to push the frontiers of applied and fundamental chemistry.

Professional Profile 

🎓 Education

Dr. Rajendra Patil’s academic journey is a remarkable story of perseverance and achievement 🏅. Starting with a first-class distinction in B.Sc. and M.Sc. in Inorganic Chemistry  from Shivaji University, Kolhapur, he went on to secure an exceptional GATE score of 89.66 at IIT Guwahati. His passion for material science drove him to complete his Ph.D. in 2012 under Prof. P. P. Hankare, focusing on mixed-metal oxides—vital compounds in catalysis and energy systems. Alongside these degrees, Dr. Patil also holds a certification in MS-CIT, showcasing his digital proficiency 🖥️. His early academic projects, such as synthesizing PbSe thin films, laid the groundwork for a robust research career. The depth and continuity in his academic pursuits have positioned him as a thought leader in material and nanoscience, blending classical chemical principles with modern applications 🌡️.

👨‍🏫 Professional Experience

Dr. Patil brings over 13 years of dedicated teaching experience as a permanent Assistant Professor since March 2013 📘. Prior to this, he honed his analytical and practical skills during his 2-year tenure as a laboratory chemist in the industrial sector 🧪. His research journey began as a Junior Research Fellow on two major UGC and DAE-BRNS projects from 2008 to 2012, focusing on functional oxides and nanomaterials. With a comprehensive background that bridges academic theory and industrial practice, Dr. Patil’s pedagogy is enriched by real-world relevance and cutting-edge innovation. His commitment to students and research has made him an integral figure in the chemistry community of Kolhapur. Whether guiding undergraduates or contributing to national seminars, his influence resonates across laboratories, classrooms, and scholarly platforms 📖. His interdisciplinary approach makes him a bridge between classical chemistry education and modern research development 🌍.

🔍 Research Interests

Dr. Patil’s research specialization lies in the dynamic fields of ferrites, mixed-metal oxides, and their futuristic applications 🚀. His work spans nanocomposites used in photocatalysis, supercapacitor development, and magnetic hyperthermia—a promising therapy for cancer treatment. With a clear emphasis on applied material science, his innovations address global challenges in renewable energy and health. Notably, his patents reflect breakthroughs in nanoparticle-based cancer diagnostics, surface-functionalized ferrites for hyperthermia, and composite materials for energy storage. These fields align with global priorities in sustainable development and nanotechnology 🔋🧬. His publications—over 100 in international journals—demonstrate the scholarly impact and real-world relevance of his research. Dr. Patil is also a prolific presenter, with over 40 seminars to his name, continuously advocating for the integration of chemistry into practical, life-enhancing solutions 🌐. His work is a fusion of scientific curiosity and societal need, driven by precision, ethics, and innovation.

🏅 Awards and Honors

Among Dr. Patil’s many accolades, the GATE Gold Medal 🎖️ stands out as a testament to his academic excellence. His receipt of four granted patents speaks volumes about his contributions to chemical innovation and real-world applications. With over 1700 citations and a Scopus h-index of 22, Dr. Patil has earned significant recognition in the global research community 📊. He has been instrumental in multiple government-funded research projects and has continuously engaged with national and international seminars. His work in magnetic nanomaterials for cancer therapy and sustainable energy solutions marks him as a pioneering figure in applied chemistry. These achievements are not only a recognition of his research output but also a reflection of his dedication to advancing science in meaningful and impactful ways. His honors affirm his position as one of the emerging leaders in the field of material science and nanotechnology 🔬.

📚 Publications Top Note 

1. Title: Enhanced photocatalytic degradation of methyl red and thymol blue using titania–alumina–zinc ferrite nanocomposite
Authors: PP Hankare, RP Patil, AV Jadhav, KM Garadkar, R Sasikala
Year: 2011
Citations: 213
Source: Applied Catalysis B: Environmental
Summary: This study focuses on the photocatalytic degradation of organic dyes using a composite nanomaterial made from titania, alumina, and zinc ferrite. It demonstrates effective treatment of water pollutants like methyl red and thymol blue under light irradiation.


2. Title: Magnetic and dielectric properties of nanophase manganese-substituted lithium ferrite
Authors: PP Hankare, RP Patil, UB Sankpal, SD Jadhav, IS Mulla, KM Jadhav, and others
Year: 2009
Citations: 123
Source: Journal of Magnetism and Magnetic Materials
Summary: This research explores the magnetic and dielectric behavior of lithium ferrite materials that are substituted with manganese. The study highlights their potential in applications involving magnetic storage and high-frequency devices.


3. Title: Gas sensing properties of magnesium ferrite prepared by co-precipitation method
Authors: PP Hankare, SD Jadhav, UB Sankpal, RP Patil, R Sasikala, IS Mulla
Year: 2009
Citations: 113
Source: Journal of Alloys and Compounds
Summary: The paper investigates the gas sensing performance of magnesium ferrite nanoparticles synthesized through the co-precipitation method. It demonstrates sensitivity to specific gases, indicating usefulness in sensor technology.


4. Title: Effect of sintering on photocatalytic degradation of methyl orange using zinc ferrite
Authors: SD Jadhav, PP Hankare, RP Patil, R Sasikala
Year: 2011
Citations: 90
Source: Materials Letters
Summary: This work analyzes how sintering temperature influences the photocatalytic degradation activity of zinc ferrite materials. It focuses on removing the dye methyl orange from wastewater, offering insights for optimizing material processing.


5. Title: Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite
Authors: RP Patil, SD Delekar, DR Mane, PP Hankare
Year: 2013
Citations: 86
Source: Results in Physics
Summary: This study synthesizes and characterizes zinc ferrite nanoparticles substituted with various metal ions. The research evaluates their structural and magnetic properties, contributing to the understanding of ferrite-based nanomaterials.


6. Title: Investigation of structural and magnetic properties of nanocrystalline manganese substituted lithium ferrites
Authors: PP Hankare, RP Patil, UB Sankpal, SD Jadhav, PD Lokhande, and others
Year: 2009
Citations: 85
Source: Journal of Solid State Chemistry
Summary: This research explores the structural and magnetic characteristics of lithium ferrite materials substituted with manganese, aiming at enhancing their magnetic performance for advanced applications.


7. Title: Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferrites
Authors: PP Hankare, UB Sankpal, RP Patil, AV Jadhav, KM Garadkar, and others
Year: 2011
Citations: 83
Source: Journal of Magnetism and Magnetic Materials
Summary: This study presents a detailed investigation into the magnetic and dielectric properties of Cu–Mn ferrites modified with zinc, suggesting possible use in electronic devices.


8. Title: Synthesis and characterization of CoCrₓFe₂−ₓO₄ nanoparticles
Authors: PP Hankare, UB Sankpal, RP Patil, IS Mulla, PD Lokhande, NS Gajbhiye
Year: 2009
Citations: 66
Source: Journal of Alloys and Compounds
Summary: The article reports on the synthesis and structural analysis of cobalt-chromium substituted spinel ferrite nanoparticles, contributing to materials design for magnetic and catalytic purposes.


9. Title: Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite
Authors: RP Patil, PP Hankare, KM Garadkar, R Sasikala
Year: 2012
Citations: 65
Source: Journal of Alloys and Compounds
Summary: This work investigates how sintering temperature influences the microstructure and magnetic properties of lithium chromium ferrites, guiding optimal processing conditions.


10. Title: Synthesis, dielectric behavior and impedance measurement studies of Cr-substituted Zn–Mn ferrites
Authors: PP Hankare, RP Patil, KM Garadkar, R Sasikala, BK Chougule
Year: 2011
Citations: 65
Source: Materials Research Bulletin
Summary: The study examines the dielectric and impedance properties of chromium-substituted Zn–Mn ferrites, providing insights for their potential use in electronics and sensors.

✅ Conclusion

In summation, Dr. Rajendra Pandurang Patil is a well-rounded academician whose journey from a student in Kolhapur to a nationally recognized researcher exemplifies passion and persistence 💼. With a rich background in education, extensive research output, practical industrial experience, and pioneering contributions to nanoscience, he stands out as a deserving candidate for any Best Researcher Award 🏆. His intellectual curiosity, combined with a deep commitment to educational excellence and real-world application, positions him as a beacon of inspiration for aspiring scientists. Whether in the lab, classroom, or scholarly community, Dr. Patil embodies the values of innovation, integrity, and impact. As chemistry advances into new frontiers, his work continues to resonate—fueling progress and shaping the future of sustainable science 🌱🔬.

Ran Wang | Materials Science | Women Researcher Award

Ms. Ran Wang | Materials Science | Women Researcher Award

Student at Beijing Institute of Technology, China

Wang Ran is a dedicated master’s student in Materials Science and Engineering at Beijing Institute of Technology. She completed her undergraduate studies at Shandong University. With a keen interest in absorbing materials, she is committed to advancing research in this field. Though at an early stage in her academic journey, she is eager to contribute to scientific advancements. Wang Ran aspires to explore innovative materials with potential applications in energy absorption and electromagnetic shielding. Her passion for scientific discovery drives her ambition to make significant contributions to materials engineering. She is applying for the Women Research Award or Young Scientist Award. 🌟

Professional Profile 

Education & Experience 📚🔍

  • 🎓 Master’s Degree (Ongoing) – Beijing Institute of Technology, Materials Science and Engineering
  • 🎓 Bachelor’s Degree – Shandong University, Materials Science and Engineering

Professional Development 📖🔬

Wang Ran is in the early stages of her academic career, focusing on developing expertise in absorbing materials. She actively engages in coursework, laboratory experiments, and independent research projects to build a strong foundation in material science. Passionate about innovation, she continuously explores the latest advancements in materials engineering. Though she has not yet published any journals or patents, she is eager to collaborate with experts in her field. Her long-term goal is to contribute groundbreaking research that enhances the performance of absorbing materials in practical applications such as stealth technology and electromagnetic interference shielding. 🚀

Research Focus🏗️🔬

Wang Ran’s research interests lie in the field of absorbing materials, a crucial area in materials science that plays a significant role in energy dissipation, stealth technology, and electromagnetic shielding. She is particularly interested in developing new materials that can efficiently absorb electromagnetic waves and reduce interference in electronic devices. By studying the structural and compositional properties of these materials, she aims to optimize their absorption efficiency and enhance their performance in real-world applications. Her research has potential implications in defense, aerospace, and communication industries, where advanced absorbing materials are essential for improving stealth and signal integrity. 📡🛡️

Awards & Honors 🏆🎖️

  • 🌟 Nominee – Women Research Award (2025)
  • 🌟 Nominee – Young Scientist Award (2025)
  • 🎓 Bachelor’s Degree Completion – Shandong University
  • 📖 Master’s Degree Pursuit – Beijing Institute of Technology

Publication Top Notes

  • “Resonantly pumped acousto-optic Q-switched Er:YAG lasers at 1617 and 1645 nm”

    • Authors: R. Wang, Q. Ye, C. Gao
    • Journal: Applied Optics, 2014
    • Citations: 5
    • Summary:
      • Discusses the development of acousto-optic Q-switched Er:YAG lasers emitting at 1617 nm and 1645 nm.
      • The lasers are resonantly pumped, enhancing efficiency.
      • These wavelengths are valuable for medical, LIDAR, and optical communication applications.
  • “Single-frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser”

    • Authors: R. Wang, Q. Ye, Y. Zheng, M. Gao, C. Gao
    • Type: Conference Paper
    • Citations: 13
    • Summary:
      • Focuses on achieving single-frequency operation of an Er:YAG laser at 1645 nm.
      • Uses resonant pumping and a Q-switching technique for better performance.
      • Suitable for high-precision applications such as spectroscopy and atmospheric sensing.

Conclusion

While Wang Ran shows potential in her research field, she currently lacks the extensive academic contributions and professional engagement necessary to compete for a “Best Researcher” or “Women Researcher” award. She would be a more suitable candidate for a “Young Scientist Award” in the future, provided she enhances her publication record, citations, collaborations, and industry engagement.