Nayantara Gupta | Astrophysics | Best Researcher Award

Prof. Nayantara Gupta | Astrophysics | Best Researcher Award

Professor at Raman Research Institute, India.

Dr. Reetanjali Moharana is an Associate Professor at IIT Jodhpur, specializing in Astronomy and Astrophysics 🌌. Her research focuses on astroparticle physics, high-energy cosmic rays, gamma rays, and neutrinos. She earned her Ph.D. from IIT Bombay in 2014 🎓 and has published 44 research articles, accumulating 199 citations with an h-index of 8 📊. Before her current role, she served as an Assistant Professor at IIT Jodhpur (2019-2023). Dr. Moharana is an active researcher contributing to multi-messenger astrophysics, expanding our understanding of the high-energy universe 🚀.

Professional Profile:

Scopus

Suitability for Best Researcher Award – Dr. Reetanjali Moharana

Dr. Reetanjali Moharana is a highly deserving candidate for the Best Researcher Award due to her impactful contributions to astroparticle physics and multi-messenger astrophysics. As an Associate Professor at IIT Jodhpur, she has made significant strides in high-energy cosmic ray, gamma-ray, and neutrino research. With 44 publications, 199 citations, and an h-index of 8, her research has advanced our understanding of the most energetic processes in the universe, making her a key figure in her field.

📚 Education & Experience

  • 🎓 Ph.D. in Physics, IIT Bombay, 2014
  • 🎓 Master’s & Bachelor’s in Physics, (Institution details unavailable)
  • 🏫 Associate Professor, IIT Jodhpur (2023-Present)
  • 🏫 Assistant Professor, IIT Jodhpur (2019-2023)

📈 Professional Development

Dr. Moharana is actively involved in advancing multi-messenger astrophysics, bridging observational data with theoretical insights ✨. She has participated in national and international conferences, collaborating with astrophysicists worldwide 🌍. Her research contributions have enhanced our understanding of cosmic ray origins, gamma-ray bursts, and neutrino astrophysics 💡. She mentors students and researchers, fostering academic growth at IIT Jodhpur 🏫. Her expertise extends to cutting-edge computational techniques used for analyzing high-energy cosmic phenomena, making significant contributions to astrophysical modeling and simulation 🖥️.

🌠 Research Focus

Dr. Moharana’s research revolves around astroparticle physics, particularly high-energy cosmic rays, gamma rays, and neutrinos 🌌. She investigates their sources, interactions, and propagation through space to understand the universe’s most energetic processes ⚡. Her work contributes to identifying astrophysical accelerators, such as supernova remnants and active galactic nuclei 🔭. She also explores multi-messenger signals, combining data from different cosmic messengers (photons, neutrinos, and cosmic rays) to solve key astrophysical mysteries 🔬. Her research aids in understanding fundamental physics beyond the Standard Model, including dark matter and exotic particle interactions 🛸.

🏆 Awards & Honors

  • 🏅 Recognized Researcher with 199 citations and an h-index of 8
  • 🎖️ Key Contributor to Multi-Messenger Astrophysics Research
  • 🏆 Invited Speaker at Various National & International Conferences
  • 📜 Published 44 Research Articles in Reputed Journals

Publication Top Notes

📄 Unraveling the Nature of HAWC J1844-034 with Fermi-LAT Data Analysis and Multiwavelength ModelingAstrophysical Journal 📅 2025 🔍

📄 Multiple Emission Regions in Jets of the Low-Luminosity Active Galactic Nucleus in NGC 4278Astrophysical Journal 📅 2024 🔍 Cited by: 1

📄 Unraveling the Emission Mechanism of the HBL Source Mrk 180 with Multi-Wavelength DataConference Paper 📅 [No source info] 🔍

📄 Emission from the Jets of Low-Luminosity Active Galactic NucleiConference Paper 📅 [No source info] 🔍 Cited by: 1

📄 HESS J1809-193: Gamma-Ray Emission by Cosmic Rays from a Past ExplosionAstrophysical Journal 📅 2024 🔍 Cited by: 3

📄 Dissecting the Broad-Band Emission from γ-Ray Blazar PKS 0735+178 in Search of NeutrinosMonthly Notices of the Royal Astronomical Society 📅 2024 🔍 Cited by: 5

📄 X-Ray Flares in the Long-Term Light Curve of Low-Luminosity Active Galactic Nucleus M81Astrophysical Journal 📅 2023 🔍 Cited by: 3

📄 Exploring the Emission Mechanisms of Mrk 180 with Long-Term X-Ray and γ-Ray DataAstrophysical Journal 📅 2023 🔍 Cited by: 1

Joshua Benjamin | Physics | Best Researcher Award

Mr. Joshua Benjamin | Physics | Best Researcher Award

Lagos Nigeria at TYDACOMM Nigeria Limited, Nigeria

benjamin, joshua olamide is a dedicated scholar and researcher passionate about space physics, ionospheric studies, and space weather. He holds a first-class degree in pure and applied physics from Ladoke Akintola University of Technology and a distinction in space physics from the African University of Science and Technology. With experience in RF network planning and optimization, teaching, and research, he combines technical expertise with strong analytical skills. Proficient in MATLAB, Microsoft Office, and data analysis tools, he is committed to innovation, leadership, and academic excellence. His research contributes to understanding ionospheric models and their impact on space weather. 🚀📡

Professional Profile

Education & Experience 🎓💼

  • [2022] MSc in Space Physics (Distinction) – African University of Science and Technology 📡
  • [2019] B.Tech in Pure and Applied Physics (First Class) – Ladoke Akintola University of Technology 🔬
  • [2023 – Present] RF Network Planning & Field Test Engineer – TYDACOMM Nigeria Limited 📶
  • [2020 – 2021] NYSC Mathematics & Economics Teacher – Jofegal International School 📚
  • [2018] Internship at Perfect Seven Solar Company – Solar System Maintenance ☀️
  • [2011 – 2012] Mathematics Teacher – Fountain of Knowledge Group of School 📏

Professional Development 📖🔍

benjamin, joshua olamide has actively participated in multiple international colloquiums and workshops related to space science, GNSS, and ionospheric studies. He has certifications in health, safety, and environment (HSE Levels 1-3) and has completed training in soft skills, entrepreneurship, and critical thinking. His involvement in research and development, coupled with hands-on experience in field testing, data collection, and RF network optimization, showcases his versatility. Passionate about academic excellence, he regularly engages in professional training, leadership roles, and mentorship programs to enhance his expertise in space physics and its applications. 🌍🛰️

Research Focus 🔬🌌

benjamin, joshua olamide specializes in ionospheric physics, space weather, and solar-terrestrial interactions. His research explores the global climatological performance of ionospheric models using Swarm satellite electron density measurements, evaluating their accuracy and implications for GNSS and communication systems. He has worked on latitudinal electron density profiles, comparing SWARM measurements with IRI models, and studying biophysics applications. His goal is to improve predictive models for space weather impacts on Earth, ensuring the safety and reliability of communication and navigation technologies. His research contributes to scientific advancements in space physics and atmospheric studies. 🌞🌍📡

Awards & Honors 🏆🎖️

  • [2022] Best Graduating Student – Institute of Space Science and Engineering 🏅
  • [2022] Best Graduating Student – Department of Space Physics 🏆
  • [2019] Akinrogun Trust Fund Award 💰
  • [2019] Best WAEC Result – New Era High School 🏅
  • [2007] One of the Best Junior WAEC Results – Greater Tomorrow College 🎓

Publication Top Notes

  1. “Investigation of the global climatologic performance of ionospheric models utilizing in-situ Swarm satellite electron density measurements”
    This paper was published in Advances in Space Research, Volume 75, Issue 5, pages 4274-4290, in 2025. The authors are:

    • D. Okoh
    • C. Cesaroni
    • J.B. Habarulema
    • Y. Migoya-Orué
    • B. Nava
    • L. Spogli
    • B. Rabiu
    • J. Benjamin

    The study offers a comprehensive investigation into the climatologic performance of three ionospheric models when compared to in-situ measurements from Swarm satellites. The models evaluated are the International Reference Ionosphere (IRI), NeQuick, and a 3-dimensional electron density model based on artificial neural network training of COSMIC satellite radio occultation measurements (3D-NN). The findings indicate that while all three models provide fairly accurate representations of the Swarm measurements, the 3D-NN model consistently performed better across various conditions.

  2. “Global Comparison of Instantaneous Electron Density Latitudinal Profiles from SWARM Satellites and IRI Model”
    This paper was published in Advances in Space Research in 2025. The authors are:

    • J.O. Benjamin
    • D.I. Okoh
    • B.A. Rabiu

    This study focuses on comparing instantaneous electron density latitudinal profiles obtained from Swarm satellites with predictions from the IRI model. The comparison aims to assess the accuracy of the IRI model in representing real-time electron density variations observed by the Swarm mission.

For full access to these publications, you may consider visiting the publisher’s website or accessing them through academic databases such as IEEE Xplore or ScienceDirect. If you are affiliated with an academic institution, you might have institutional access to these resources.

Conclusion

Benjamin, joshua olamide stands out as a promising researcher in space physics, with notable contributions to ionospheric studies, climatology models, and research-driven technological applications. His exceptional academic achievements, research output, leadership roles, and technical expertise position him as a deserving candidate for the Best Researcher Award.