Prof. Rishi Kumar Tiwari | Physics | Best Researcher Award

Prof. Rishi Kumar Tiwari | Physics | Best Researcher Award

Professor at Govt. Model Science College, Rewa (M.P.), India

Dr. Rishi Kumar Tiwari is a distinguished Professor of Mathematics with over 30 years of academic service, currently holding a post secured through the Madhya Pradesh Public Service Commission (2011). He earned his Ph.D. in Mathematics from A.P.S. University, Rewa, in 1998, following an M.Sc. with a Gold Medal. With a prolific research portfolio including 134 national and international publications and six authored books, he has supervised 21 Ph.D. scholars and continues to guide research in cosmology, general relativity, and differential geometry. Dr. Tiwari has presented his work globally, including in Italy, Germany, and South Africa, contributing to international scientific collaborations. His accolades include the DST-ICTP Fellowship (Italy), IASc-INSA-NASI Summer Research Fellowship, and the Shikshavid Samman (2023). Having served as Head of Departments and on multiple academic boards, Dr. Tiwari remains committed to advancing mathematics through education, research, and international cooperation in theoretical physics and cosmology.

Professional Profile 

Education 

Dr. Rishi Kumar Tiwari holds a strong academic background in science and mathematics. He completed his Higher Secondary education from the Board of Secondary Education, Bhopal, in 1985 with a focus on Physics, Chemistry, and Mathematics. He earned his B.Sc. from A.P.S. University, Rewa, in 1988, and later completed his M.Sc. in Mathematics from the same university in 1990, earning an outstanding, which earned him a Gold Medal. He was awarded a Ph.D. in Mathematics from A.P.S. University in 1998. His doctoral work laid the foundation for a research career focused on general relativity, cosmological modeling, and tensor analysis. Dr. Tiwari’s academic credentials reflect a consistent record of academic excellence and deep subject mastery, serving as the cornerstone for his teaching, research, and scholarly contributions to the field of mathematics and cosmology over the last three decades.

Professional Experience 

Dr. Rishi Kumar Tiwari brings with him over 30 years of extensive teaching experience at both undergraduate and postgraduate levels. He has held several significant academic leadership roles, including Head of the Department of Mathematics and Computer Science at Pt. S.N. Shukla University, Shahdol, and formerly at Govt. Model Science College, Rewa. He has also been a member of various Boards of Studies across reputed institutions like A.P.S. University and Govt. T.R.S. College, Rewa. Selected through the M.P. Public Service Commission in 2011, Dr. Tiwari has not only imparted knowledge but also shaped curricula and research agendas. Under his mentorship, 21 Ph.D. scholars have completed their doctorates, with others currently under supervision. His ability to blend deep mathematical theory with modern cosmological applications makes him a respected academic figure in India. He continues to engage students and researchers in exploring advanced topics in mathematical physics.

Research Interest

Dr. Tiwari’s research interest lies primarily in the fields of General Relativity, Cosmology, Tensor Analysis, and Differential Geometry, with a particular emphasis on exploring homogeneous cosmological models and conharmonic curvature tensors. His contributions to understanding the expanding universe and dark energy models have been presented at premier international conferences, including the TAUP Series and the Texas Symposium on Relativistic Astrophysics. With 134 research papers in reputed journals and conferences, Dr. Tiwari has carved a niche in the academic study of mathematical models underpinning astrophysical phenomena. His involvement in UGC-funded research projects on Bianchi Models and Robertson-Walker cosmologies illustrates his commitment to foundational and applied research. Collaborating with institutions in South Africa and Europe, he frequently shares findings on time-varying deceleration parameters and symmetry models. His international exposure and research depth continue to influence global discussions on theoretical physics and contribute to the development of cosmological theory.

Award and Honors

Throughout his illustrious career, Dr. Rishi Kumar Tiwari has received several awards and fellowships that affirm his academic excellence and research impact. He was awarded the DST-ICTP Fellowship (Italy, 2008), recognizing his work in mathematical physics. In 2012, he received the prestigious IASc-INSA-NASI Summer Research Fellowship, further solidifying his standing in the Indian scientific community. His most recent recognition, the Shikshavid Samman from the Department of Higher Education, Madhya Pradesh (2023), honors his decades-long contribution to higher education and mentorship in mathematics. Additionally, Dr. Tiwari has received two major UGC research grants for his projects on cosmological models. These accolades, combined with invitations for popular and technical talks at institutions like the University of KwaZulu-Natal and Mangosuthu University in South Africa, showcase his international academic reputation. His dedication to theoretical exploration and student development continues to garner respect and admiration in the fields of mathematics and cosmology.

Publications Top Notes

  • Title: Perfect fluid Bianchi Type-I cosmological models with time varying G and Λ
    Authors: JP Singh, RK Tiwari
    Year: 2008
    Citations: 63
    Source: Pramana – Journal of Physics, Vol. 70 (4), pp. 565–574

  • Title: Bianchi type-I cosmological models with time dependent G and Λ
    Authors: RK Tiwari
    Year: 2008
    Citations: 43
    Source: Astrophysics and Space Science, Vol. 318 (3), pp. 243–247

  • Title: Phase transition of LRS Bianchi type-I cosmological model in f(R,T)f(R, T) gravity
    Authors: RK Tiwari, D Sofuoğlu, VK Dubey
    Year: 2020
    Citations: 42
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 17 (12), Article ID: 2050187

  • Title: Cosmological tests of parametrization q(z)q(z) in FLRW cosmology
    Authors: A Bouali, BK Shukla, H Chaudhary, RK Tiwari, M Samar, G Mustafa
    Year: 2023
    Citations: 41
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 20 (09), Article ID: 2350152

  • Title: Scenario of two-fluid dark energy models in Bianchi type-III Universe
    Authors: RK Tiwari, A Beesham, BK Shukla
    Year: 2018
    Citations: 41
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 15 (11), Article ID: 1850189

  • Title: Cosmological model with variable deceleration parameter in f(R,T)f(R, T) modified gravity
    Authors: RK Tiwari, A Beesham, B Shukla
    Year: 2018
    Citations: 38
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 15 (07), Article ID: 1850115

  • Title: Bianchi type-III cosmological models with gravitational constant G and the cosmological constant Λ
    Authors: JP Singh, RK Tiwari, P Shukla
    Year: 2007
    Citations: 36
    Source: Chinese Physics Letters, Vol. 24 (12), pp. 3325

  • Title: Anisotropic model with decaying cosmological term
    Authors: RK Tiwari, A Beesham
    Year: 2018
    Citations: 33
    Source: Astrophysics and Space Science, Vol. 363 (11), Article: 234

  • Title: Some Robertson-Walker models with time dependent G and Λ
    Authors: RK Tiwari
    Year: 2009
    Citations: 33
    Source: Astrophysics and Space Science, Vol. 321 (2), pp. 147–150

  • Title: Time varying G and Λ cosmology in f(R,T)f(R, T) gravity theory
    Authors: RK Tiwari, A Beesham, R Singh, LK Tiwari
    Year: 2017
    Citations: 31
    Source: Astrophysics and Space Science, Vol. 362 (8), Article: 143

  • Title: Transit cosmological models with domain walls in f(R, T) gravity
    Authors: RK Tiwari, A Beesham, A Pradhan
    Year: 2017
    Citations: 30
    Source: Gravitation and Cosmology, Vol. 23 (4), pp. 392–400

  • Title: Cosmological models with viscous fluid and variable deceleration parameter
    Authors: RK Tiwari, A Beesham, BK Shukla
    Year: 2017
    Citations: 30
    Source: The European Physical Journal Plus, Vol. 132 (1), Article: 20

  • Title: An LRS Bianchi type-I cosmological model with time-dependent Λ term
    Authors: JP Singh, RK Tiwari
    Year: 2007
    Citations: 27
    Source: International Journal of Modern Physics D, Vol. 16 (04), pp. 745–754

  • Title: Cosmographic studies of q(z)q(z) parametrization in f(R,T)f(R, T) framework
    Authors: BK Shukla, A Bouali, H Chaudhary, RK Tiwari, MS Martín
    Year: 2023
    Citations: 24
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 20 (14), Article ID: 2450007

  • Title: Quadratically varying deceleration parameter in f(R,T)f(R, T) gravity
    Authors: RK Tiwari, D Sofuoğlu
    Year: 2020
    Citations: 24
    Source: International Journal of Geometric Methods in Modern Physics, Vol. 17 (10), Article ID: 2030003

Conclusion 

Dr. Rishi Kumar Tiwari stands as a paragon of dedication, intellect, and international engagement in the realm of mathematical sciences. From earning a Gold Medal in his master’s studies to mentoring 21 Ph.D. scholars and producing an expansive body of scholarly work, he exemplifies the ideals of academic leadership. His prolific research, particularly in the areas of general relativity and cosmological modeling, has transcended national borders, earning him respect across continents. Participation in global scientific platforms and collaborations with African and European institutions underline his commitment to knowledge exchange and cross-cultural academic growth. With multiple leadership roles in universities and active contributions to curriculum development and academic governance, Dr. Tiwari continues to shape the future of mathematical education and research in India. His legacy is built not only on research excellence but also on his lifelong mission to inspire, educate, and innovate in the ever-evolving landscape of mathematical physics.

Prof. Dr. Robert Nesbet | Physics | Lifetime achievement Award

Prof. Dr. Robert Nesbet | Physics | Lifetime achievement Award

Prof. Dr. at IBM Almaden Research Center, United States

Robert K. Nesbet , a distinguished theoretical physicist born in Cleveland, Ohio, is celebrated for his pioneering work across physics, chemistry, and cosmology. After earning his BA in physics from Harvard College in 1951 and a PhD from the University of Cambridge in 1954  supported as both a Henry Fellow and NSF Predoctoral Fellow he embarked on a remarkable global scientific journey. His academic tenures included posts at MIT, Boston University, and several prestigious institutions worldwide . He contributed extensively at IBM’s Almaden Research Center and published over 300 scientific papers, influencing atomic theory, computational physics, and astrophysical models . Even after his formal retirement in 1994, Nesbet continued exploring the cosmos, bridging microscopic and cosmic scales in his work. He is the author of foundational texts like Variational Principles and Methods in Theoretical Physics and Chemistry . His lifelong curiosity, scholarly rigor, and contributions remain deeply impactful across disciplines.

Professional Profile 

Education

Robert K. Nesbet’s educational path exemplifies brilliance and ambition . Born in Cleveland, he graduated from Harvard College in 1951 with a BA in Physics , reflecting an early commitment to foundational science. Soon after, he earned his PhD in 1954 from the University of Cambridge , supported as a Henry Fellow at St. John’s College and an NSF Predoctoral Fellow—a rare dual honor showcasing both academic excellence and promise. At Cambridge, he cultivated deep theoretical insight that shaped his lifelong trajectory. His transatlantic education merged American analytical precision with British theoretical traditions, laying the groundwork for interdisciplinary ventures in quantum mechanics and beyond . The convergence of elite mentorship, international exposure, and competitive fellowships not only sharpened his research skills but also infused his approach with global perspective . Nesbet’s academic formation remains a testament to how early opportunities and prestigious institutions can shape a transformative scientific voice.

Professional Experience

Nesbet’s professional odyssey traversed elite laboratories, esteemed universities, and global institutions . After a two-year research post at MIT, he became Assistant Professor of Physics at Boston University . His research later spanned continents—from the RIAS at the Martin Company in Baltimore and the Institut Pasteur in Paris  to Brookhaven National Laboratory in New York . In 1962, he joined IBM’s San Jose Research Center (later Almaden) as a Research Staff Member, where he solidified his legacy in computational physics and theoretical chemistry . Throughout his career, he held visiting professorships at top universities worldwide, inspiring students and researchers alike . His dual role as a scholar and editor—serving the Journal of Computational Physics and the Journal of Chemical Physics—reflected both his intellectual authority and collaborative ethos . Nesbet’s decades-long career fused industrial innovation with academic inquiry, shaping generations of theory, simulation, and scientific thought.

Research Interests

Nesbet’s research universe is vast, spanning from atomic orbitals to cosmic curvature . Initially focused on interacting electrons, his contributions in quantum mechanics, computational physics, and molecular theory were groundbreaking . Over 300 publications capture his deep engagement with variational principles, density functional theory, and theoretical chemistry . With mathematical precision, he modeled complex systems—from atomic interactions to crystalline solids—often bridging physics and chemistry in elegant, predictive frameworks . Post-retirement, he boldly pivoted to galactic astrophysics and cosmology, applying quantum insights to gravitational theories and universal expansion . This shift reflected his enduring quest for fundamental understanding—seeking unity between the quantum and cosmic realms. His interdisciplinary fluency allowed him to translate tools across fields, contributing uniquely to gravitational theory and cosmological modeling . Nesbet’s intellectual curiosity and flexible thinking enabled a rare breadth of exploration, making him not just a physicist but a scientific explorer across scales and domains.

Awards and Honors

Robert K. Nesbet’s accolades mirror his extraordinary scholarly influence . From early recognition as a Henry Fellow and NSF Predoctoral Fellow to leadership roles in prestigious journals, his contributions have earned sustained academic reverence . As Associate Editor of both the Journal of Computational Physics and the Journal of Chemical Physics (1969–1974), Nesbet was entrusted with shaping scholarly discourse in two pivotal domains . Though less focused on collecting formal awards, his honor resides in impact—measured by citations, collaborations, and the continued relevance of his models and methods. His long tenure at IBM’s Almaden Research Center underscores the respect of the scientific and industrial communities alike . Author of foundational texts like Variational Principles and Methods in Theoretical Physics and Chemistry, his work is recognized not only in labs and lecture halls but in textbooks and international symposia. Nesbet’s career is rich with intellectual distinction and peer recognition .

Publications Top Note 

1. Conformal Theory of Gravitation and Cosmic Expansion

  • Author: R. K. Nesbet

  • Year: 2023 (arXiv), published in Symmetry in 2024

  • Citations: Currently very low (preprint shows ~1 citation)

  • Source: arXiv preprint (arXiv:2308.10399), final version published in MDPI journal Symmetry

  • Summary: This paper extends the framework of conformal symmetry to build a unified theory that combines Conformal Gravity (CG) and the Conformal Higgs Model (CHM). The author shows that this model explains galactic rotation curves and cosmic acceleration without requiring dark matter or dark energy. It further constrains the Higgs sector, proposing that the 125 GeV resonance observed experimentally might be due to gauge field interactions, not a Standard Model Higgs boson. The theory aligns with empirical laws such as the baryonic Tully–Fisher relation and predicts finite-size galactic halos based on non-classical gravitational effects.

2. Conformal Theory of Gravitation and Cosmology

  • Author: R. K. Nesbet

  • Year: 2020

  • Citations: Approximately 7 citations

  • Source: Published in Europhysics Letters (EPL)

  • Summary: This article introduces and formalizes the application of conformal symmetry in gravitation and cosmology. The gravitational theory replaces Einstein’s field equations with equations derived from the conformal Weyl tensor, leading to a solution that fits galactic rotation curves without dark matter. Simultaneously, the Conformal Higgs Model modifies the cosmological Friedmann equation to fit supernova-based Hubble expansion data, offering a single-parameter explanation for cosmic acceleration. The paper also addresses the radial acceleration relation observed in galaxies and predicts a definite boundary to galactic halos beyond which centripetal acceleration drops to zero.

3. Conformal Gravity: Newton’s Constant Is Not Universal

  • Author: R. K. Nesbet

  • Year: 2022

  • Source: EPL (Europhysics Letters)

  • Summary: This article argues that in the conformal framework, Newton’s gravitational constant emerges from spontaneous symmetry breaking and is not universally fixed. It challenges the standard cosmological model’s assumption of a constant G and suggests variability in gravitational coupling at galactic and cosmological scales.

4. Weyl Conformal Symmetry Model of the Dark Galactic Halo

  • Author: R. K. Nesbet

  • Year: 2022

  • Citations: 1

  • Source: Galaxies (MDPI)

  • Summary: This study focuses on modeling dark galactic halos using Weyl conformal symmetry. The proposed model eliminates the need for dark matter by explaining gravitational effects purely through modified gravitational dynamics. It aligns with observed galaxy data and presents an alternative framework to traditional dark matter theories.

5. Implications of the Conformal Higgs Model

  • Author: R. K. Nesbet

  • Year: 2022

  • Source: Particles (MDPI)

  • Summary: This paper discusses the broader implications of the Conformal Higgs Model, particularly how spontaneous symmetry breaking in a conformal theory can generate the observed properties of particles and vacuum energy without a fundamental Higgs boson mass term. It aims to connect cosmological observations with particle physics.

6. Conformal Higgs Model: Gauge Fields Can Produce a 125 GeV Resonance

  • Author: R. K. Nesbet

  • Year: 2021

  • Citations: 3

  • Source: Modern Physics Letters A

  • Summary: Here, the author argues that the 125 GeV resonance observed in experiments (usually attributed to the Higgs boson) could instead arise from gauge field effects in a conformally symmetric theory. This provides an alternative view of electroweak symmetry breaking and the Higgs mechanism.

7. Dark Energy Density Predicted and Explained

  • Author: R. K. Nesbet

  • Year: 2019

  • Citations: 6

  • Source: EPL (Europhysics Letters)

  • Summary: This article claims to explain the observed value of dark energy density within the conformal Higgs framework. The energy density arises naturally from the modified gravitational equations, potentially solving one of the most challenging problems in cosmology without invoking a cosmological constant.

8. Theoretical Implications of the Galactic Radial Acceleration Relation of McGaugh, Lelli, and Schombert

  • Author: R. K. Nesbet

  • Year: 2018

  • Citations: 8

  • Source: Monthly Notices of the Royal Astronomical Society: Letters

  • Summary: This paper analyzes the empirical radial acceleration relation in galaxies, as reported by McGaugh and collaborators, through the lens of conformal gravity. It suggests that the correlation between baryonic and observed acceleration can be derived from conformal gravitational dynamics, providing a theoretical foundation for the empirical results.

9. Dark Galactic Halos without Dark Matter

  • Author: R. K. Nesbet

  • Year: 2015

  • Citations: 10

  • Source: EPL (Europhysics Letters)

  • Summary: In this foundational work, Nesbet uses conformal gravity to explain the existence and properties of galactic halos without invoking dark matter. The model accounts for the observed flat rotation curves and offers a novel interpretation of gravitational effects in galaxies.

10. Conformal Gravity: Dark Matter and Dark Energy

  • Author: R. K. Nesbet

  • Year: Not clearly specified, but before 2022

  • Citations: 23

  • Source: Appears to be a review or survey article, possibly based on earlier EPL papers

  • Summary: This comprehensive overview summarizes Nesbet’s work on conformal gravity as an alternative to dark matter and dark energy. It synthesizes previous results and places them in the context of observational cosmology, arguing for the viability of conformal symmetry as a fundamental principle in physics.

Conclusion

In the arc of Robert K. Nesbet’s journey, we find the essence of a true scientific visionary—unbound by discipline or decade . His path from Harvard and Cambridge to IBM, Pasteur Institute, and beyond reflects both depth and versatility . Even in retirement, Nesbet’s mind continued to explore—from quantum intricacies to cosmic enigmas, revealing the enduring passion of a thinker driven by fundamental truths . With over 300 publications, editorial leadership, and international teaching, he stands as a pillar of 20th and 21st-century theoretical inquiry . His legacy lives not only in published equations or computational models but in the questions he dared to ask—bridging micro and macro, matter and meaning . As both scholar and mentor, Nesbet’s work offers a timeless reminder: curiosity knows no retirement, and the search for understanding is a lifelong pursuit .

Dr. Mona Jani | Physics | Best Researcher Award

Dr. Mona Jani | Physics | Best Researcher Award

Senior Researcher at University of Latvia, Latvia

Dr. Mona Jani is a globally recognized physicist with a vibrant career spanning research, teaching, and innovation in material science and quantum technologies . She holds a Ph.D. in Physics from Savitribai Phule Pune University, India, with pioneering work on manganite nanoparticles. Her postdoctoral and research journey led her through premier institutes in Taiwan , Brazil, Czech Republic, Poland, and Germany, showcasing her versatility in nanodiamond biosensing, superconductivity, and quantum magnetometry. With teaching stints in India and Ecuador, she brings a blend of academic rigor and global perspective to classrooms. Her impactful work in photonic quantum biosensing and NV-center diamond research positions her at the cutting edge of future bio-diagnostic technologies. Honored with prestigious fellowships and awards including the FORTHEM Award  and several international grants, Dr. Jani continues to mentor, publish, and innovate, leaving a legacy of excellence in physical sciences and beyond.

Professional Profile 

Education

Dr. Mona Jani’s academic foundation is deeply rooted in excellence and exploration. She earned her Ph.D. in Physics (2005–2010) from Savitribai Phule Pune University, India, supported by a CSIR-SRF fellowship under UGC regulations. Her thesis focused on “Manganite Nanoparticles: Synthesis and Applications”—a frontier topic in condensed matter physics. Prior to her doctoral pursuit, she completed her M.Sc. in Physics from Fergusson College, Pune, with a remarkable and distinction honors. She holds a B.Sc. in Physics, Mathematics, and Statistics from H.V. Desai College, securing —also with distinction. Her educational path reveals a consistent record of academic brilliance paired with early involvement in research activities, setting the stage for a multidisciplinary research career. From nanoparticle synthesis to cutting-edge quantum sensing, her learning journey showcases both depth and diversity, building a robust knowledge base that fuels her innovative pursuits in material science and quantum technology.

Professional Experience

Dr. Mona Jani’s professional career is a tapestry woven with global collaborations, research breakthroughs, and transformative teaching. Post-Ph.D., she served as a research scientist and postdoc at premier institutes including the University of Campinas, National Dong Hwa University, IOCB Prague, and Jagiellonian University. Her work spans nanodiamond biosensing, superconducting materials, and magneto-transport phenomena. At DESY (Germany), she was a visiting scientist, mastering advanced synchrotron techniques. As a faculty member, she taught physics and materials science courses at Yachay Tech University and Ahmedabad University, enriching students with her global insights. Her technical expertise includes spectroscopic techniques, ODMR, and magnetization studies—skills honed across continents and disciplines. Dr. Jani’s career reflects a powerful synergy between research and teaching, marked by innovation and student mentorship. Her ability to traverse academia and advanced labs exemplifies a rare scientific versatility and global engagement.

Research Interests

Dr. Mona Jani’s research compass points boldly toward the quantum frontier and materials innovation . Her central interests lie in Quantum Diamond Magnetometry, employing NV centers in diamonds for ultra-sensitive magnetic field detection and nanoscale imaging. She’s a trailblazer in Photonic Quantum Biosensing, using quantum effects in nanodiamonds to revolutionize bio-diagnostics and medical imaging. With foundational expertise in Superconductivity and Magneto-Transport, she investigates how exotic states emerge in semimetals and functional materials. She also explores Structural and Spectroscopic Characterization using Raman, IR, and PL spectroscopy to decode material behavior. Her earlier research explored surface-modified nanodiamonds for biomedical imaging and manganites for multifunctional device applications. Dr. Jani’s curiosity-driven science bridges physics, biology, and chemistry—demonstrating how quantum principles can enable transformative real-world solutions. With every project, she dives deeper into matter’s smallest scales to uncover phenomena that could redefine sensing, imaging, and materials engineering .

Awards and Honors

Dr. Mona Jani’s scientific odyssey is decorated with prestigious awards and recognitions that affirm her excellence and impact . In 2025, she received the FORTHEM Award from Germany—honoring her quantum biosensing innovations. Earlier, she earned competitive postdoctoral fellowships from FAPESP (Brazil), NSC (Taiwan), and IOCB (Czech Republic)—testimonies to her international research caliber. She was also awarded the DST Inspire Faculty Fellowship in India and fellowships from CSIR as both SRF and RA. Beyond fellowships, she clinched first prizes at top scientific symposiums including the DAE-BRNS ISMC 2008 and the Raman Memorial Conference 2005 . These accolades highlight not just her academic brilliance, but also her presentation skills, innovation, and peer recognition. Her research projects—often institutionally funded—underscore the trust placed in her by top scientific bodies worldwide. Through dedication and visionary work, Dr. Jani continues to raise the bar in quantum materials science and biosensing frontiers.

Publications Top Notes

  • Title: Quantum diamond microscopy of individual vaterite microspheres containing magnetite nanoparticles
    Authors: M. Jani, H. Barhum, J. Alnis, M. Attrash, T. Amro, N. Bar-Gill, T. Salgals, …
    Year: 2025
    Citation: – (Preprint, no citation data yet)
    Source: Preprint (not yet peer-reviewed/published)

  • Title: Multi-parameter study of a diamond magnetometer
    Authors: M. Jani, R. Lazda, F. Gāhbauer, A. Asare, M. Mrózek, A.M. Wojciechowski, …
    Year: 2025
    Citation: 1
    Source: Peer-reviewed journal (exact journal not specified)

  • Title: Optically detected magnetic resonance study of thermal effects due to absorbing environment around nitrogen-vacancy-nanodiamond powders
    Authors: M. Jani, Z. Orzechowska, M. Mrózek, M. Mitura-Nowak, W. Gawlik, …
    Year: 2024
    Citation: 1
    Source: Peer-reviewed journal (exact journal not specified)

  • Title: Sensing of magnetic-field gradients with nanodiamonds on optical glass-fiber facets
    Authors: M. Jani, P. Czarnecka, Z. Orzechowska, M. Mrózek, W. Gawlik, …
    Year: 2023
    Citation: 8
    Source: Peer-reviewed journal (likely Sensors or similar)

  • Title: FND-glass Fiber Interfaces and Their Optically Detectable Magnetic Resonance Studies
    Authors: M. Jani, P. Czarnecka, A. Filipkowski, S. Sengottuvel, M. Mrózek, …
    Year: 2022
    Citation:
    Source: Peer-reviewed journal (exact source not provided)

  • Title: Magnetically-sensitive nanodiamond thin-films on glass fibers
    Authors: P. Czarnecka, M. Jani, S. Sengottuvel, M. Mrózek, P. Dąbczyński, …
    Year: 2022
    Citation: 14
    Source: Peer-reviewed journal (possibly Applied Physics Letters or Scientific Reports)

  • Title: Role of high nitrogen‐vacancy concentration on the photoluminescence and Raman spectra of diamond
    Authors: M. Jani, M. Mrózek, A.M. Nowakowska, P. Leszczenko, W. Gawlik, …
    Year: 2022
    Citation: 11
    Source: Peer-reviewed journal (likely Physica Status Solidi or equivalent)

  • Title: Engineered zero-dimensional fullerene/carbon dots-polymer based nanocomposite membranes for wastewater treatment
    Authors: M. Jani, J.A. Arcos-Pareja, M. Ni
    Year: 2020
    Citation: 60
    Source: Journal of Hazardous Materials or similar environmental nanotech journal

  • Title: Using Polymers to Enhance the Carbon Nanomaterial Biointerface
    Authors: G. Pramanik, J. Neburkova, V. Vanek, M. Jani, M. Kindermann, P. Cigler
    Year: 2019
    Citation: 2
    Source: Book Chapter in Springer/Nanotechnology series

  • Title: Long-Term Imaging: Supported Lipid Bilayers on Fluorescent Nanodiamonds: A Structurally Defined and Versatile Coating for Bioapplications
    Authors: J. Vavra, I. Rehor, T. Rendler, M. Jani, J. Bednar, M.M. Baksh, A. Zappe, …
    Year: 2018
    Citation: 2
    Source: Nano Letters (communication/short format)

  • Title: Supported lipid bilayers on fluorescent nanodiamonds: A structurally defined and versatile coating for bioapplications
    Authors: J. Vavra, I. Rehor, T. Rendler, M. Jani, J. Bednar, M.M. Baksh, A. Zappe, …
    Year: 2018
    Citation: 28
    Source: ACS Nano or similar high-impact journal

  • Title: Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli
    Authors: A. Chatterjee, E. Perevedentseva, M. Jani, C.Y. Cheng, Y.S. Ye, P.H. Chung, …
    Year: 2015
    Citation: 70
    Source: Nanoscience and Nanotechnology Letters or Scientific Reports

Conclusion

Dr. Mona Jani emerges as a beacon in the world of quantum physics and material sciences, harmonizing knowledge, innovation, and mentorship. Her cross-continental academic journey is not just a tale of scientific exploration but one of intellectual courage and global outreach. With contributions spanning superconductors to nanodiamonds, she exemplifies how fundamental physics can translate into impactful technologies for healthcare, imaging, and diagnostics . A seasoned mentor and educator, she fosters scientific curiosity in students while shaping next-gen researchers across India, Latin America, and Europe. Her awards reflect both her trailblazing science and her community engagement. By bridging quantum theory with real-world bioapplications, she is at the vanguard of shaping a smarter, more sensitive scientific future. In every role—researcher, teacher, or mentor—Dr. Jani continues to inspire with depth, precision, and vision, leaving an indelible mark on modern science and education.