Dr. Maria Hasan | Carbon Nanomaterials | Research Excellence Award

Dr. Maria Hasan | Carbon Nanomaterials | Research Excellence Award

Researcher | Technical University of Ostrava | Czech Republic

Dr. Maria Hasan is a distinguished researcher whose work in Carbon Nanomaterials has established her as a leading contributor to advanced material chemistry and two dimensional material innovation. Her research journey reflects a sustained commitment to exploring Carbon Nanomaterials through controlled synthesis, structural analysis, functional modification, and application oriented studies. Dr. Maria Hasan has produced influential work on graphene growth, heteroatom doping, electrical property evaluation, and large area fabrication, all rooted in deep expertise in Carbon Nanomaterials. Her publication record spans reputable international journals where Carbon Nanomaterials form the core of her scientific inquiry. She has contributed significantly to collaborative research across global laboratories, integrating Carbon Nanomaterials with emerging approaches in electrochemistry and catalytic systems. Her contributions extend to chromium based nanoparticles and electrocatalytic applications, yet Carbon Nanomaterials remain central to her scientific trajectory. As part of major research programmes supported by international grant frameworks, she continues to advance Carbon Nanomaterials within high technology environments where precision growth of two dimensional heterostructures is essential. Her involvement in supervising research projects and mentoring early career scientists highlights her commitment to strengthening the scientific community through knowledge sharing grounded in Carbon Nanomaterials. Her work is further enriched by peer review service for respected journals, reflecting scholarly integrity and academic responsibility. With an expanding citation record and recognized impact in material science, Dr. Maria Hasan continues to demonstrate how Carbon Nanomaterials can contribute to sustainable technological progress and scientific advancement. Her professional presence in global research networks reinforces the relevance of Carbon Nanomaterials in modern innovation. Scopus profile of 477 Citations, 9 Documents, 7 h index.

Profile: Scopus

Featured Publication

1. Hasan, M., Ta, H. Q., Ullah, S., Yang, X., Luo, J., Bachmatiuk, A., Gemming, T., Trzebicka, B., Mahmood, A., Zeng, M., Fu, L., Liu, L., & Rümmeli, M. H. (2023). Crystal structure, synthesis and characterization of different chromium-based two-dimensional compounds. Arabian Journal of Chemistry, 16(8), Article 104973.

Dr. Mubasher | Condensed Matter Physics | Best Researcher Award

Dr. Mubasher | Condensed Matter Physics | Best Researcher Award

Assistant Professor | IQRA University | Pakistan

Dr. Mubasher is an accomplished researcher whose scholarly foundation is deeply rooted in Condensed Matter Physics, demonstrating sustained contributions across material synthesis, nanostructure development, and energy-related applications. His body of work reflects a rigorous command of Condensed Matter Physics, particularly in the modification and enhancement of electrode materials, nanohybrids, ferrite systems, graphene derivatives, and multi-walled carbon nanotube composites. With an outstanding record of more than thirty international publications in reputable journals, his research in Condensed Matter Physics exhibits strong emphasis on advanced functional materials and experimental analysis involving impedance spectroscopy, dielectric behavior, cyclic voltammetry, and supercapacitive performance. His professional career represents both academic depth and laboratory capability, further sustained by collaborative research involving interdisciplinary interfaces within Condensed Matter Physics. As an Assistant Professor, his ongoing efforts are directed toward supervising postgraduate and doctoral candidates, enriching the academic environment through applied research in Condensed Matter Physics. His supervision and co-supervision of multiple thesis projects underline a dedication to knowledge transfer, research mentoring, and strengthening the scientific community. His contributions to Condensed Matter Physics extend into peer-review activity for high-impact journals, section editorial work, and involvement in advanced material development with direct relevance to lithium-ion storage and emerging electrochemical technologies. Extensive involvement in composites, doped systems, and material optimization further highlights his innovative approach toward energy-oriented Condensed Matter Physics research. Dr. Mubasher continues to advance the scientific landscape through impactful publications, collaborative research culture, multi-disciplinary integration, and sustained commitment to the global progression of Condensed Matter Physics, reflecting both intellectual maturity and research leadership. His portfolio stands as a remarkable example of academic excellence in the evolving domain of Condensed Matter Physics. Google Scholar profile of 412 Citations, 11 h-index, 12 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Mujahid, M., Khan, R. U., Mumtaz, M., Soomro, S. A., & Ullah, S. (2019). NiFe₂O₄ nanoparticles/MWCNTs nanohybrid as anode material for lithium-ion battery. Ceramics International, 45(7), 8486–8493.

2. Mubasher, Mumtaz, M., Hassan, M., Ali, L., Ahmad, Z., Imtiaz, M. A., & Aamir, M. F. (2020). Comparative study of frequency-dependent dielectric properties of ferrites MFe₂O₄ (M = Co, Mg, Cr and Mn) nanoparticles. Applied Physics A, 126(5), 334.

3. Mumtaz, M. (2021). Nanocomposites of multi-walled carbon nanotubes/cobalt ferrite nanoparticles: Synthesis, structural, dielectric and impedance spectroscopy. Journal of Alloys and Compounds, 866, 158750.

4. Mumtaz, M., Hassan, M., Ullah, S., & Ahmad, Z. (2021). Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: High performance anode material for lithium-ion batteries. Carbon, 171, 179–187.

5. Mubasher, Mumtaz, M., & Ali, M. (2021). Structural, dielectric and electric modulus studies of MnFe₂O₄/(MWCNTs)x nanocomposites. Journal of Materials Engineering and Performance, 30(6), 4494–4503.