Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary | Nuclear Physics | Research Excellence Award

Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary | Nuclear Physics | Research Excellence Award

Associate professor | Egyptian Atomic Energy Authority | Egypt

Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary is a distinguished researcher recognized for her impactful scientific contributions and advanced work in radiobiology, radiation biochemistry, radioprotection, and translational cancer research within the broader sphere of Nuclear Physics applications. Her research output reflects a strong foundation in experimental radiation science and therapeutic modulation, anchored in Nuclear Physics principles and developed through extensive laboratory, preclinical, and molecular investigations. She has established a significant academic footprint through peer-reviewed publications, collaborative research activities, and innovative projects that support safe and beneficial integration of Nuclear Physics in medicine, health, and radiation-based disease management. Her professional trajectory demonstrates leadership in the interface between biochemical systems and ionizing radiation mechanisms, bringing the precision of Nuclear Physics into cancer therapy, oxidative stress regulation, radiotracer development, radiosensitization, and tissue-protective strategies. Her multidisciplinary approach links biochemical pathways, immune regulation, molecular signaling, and toxicological markers with radiation exposure outcomes, reinforcing the translational value of Nuclear Physics in understanding cellular responses and advancing therapeutic interventions. Through research collaborations across biochemistry, molecular oncology, pharmacology, and imaging sciences, she has contributed to improved diagnostic and therapeutic solutions that benefit public health and global scientific progress. Her publications, experimental investigations, and continuous participation in scientific conferences reflect her commitment to expanding knowledge in Nuclear Physics, supporting the development of new radioprotectants, natural compounds, radiopharmaceuticals, and imaging tools. Her academic service includes research supervision, manuscript review for recognized journals, laboratory and project management, and active contribution to scientific communities working in radiation-linked biomedical innovation. Her work strengthens the strategic role of Nuclear Physics in clinical safety, cancer therapeutics, biological protection, and medical advancement, generating outcomes of scientific and societal importance. Her Google Scholar profile indicates 327 Citations, 12 h-index, 12 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. El Bakary, N. M., Alsharkawy, A. Z., Shouaib, Z. A., & Barakat, E. M. S. (2020). Role of bee venom and melittin on restraining angiogenesis and metastasis in γ-irradiated solid Ehrlich carcinoma-bearing mice. Integrative Cancer Therapies, 19, 1534735420944476.

2. Medhat, A. M., Azab, K. S., Said, M. M., El Fatih, N. M., & El Bakary, N. M. (2017). Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumor Biology, 39(10), 1010428317728480.

3. Hafez, E. N., Moawed, F. S. M., Abdel-Hamid, G. R., & Elbakary, N. M. (2020). Gamma radiation-attenuated Toxoplasma gondii provokes apoptosis in Ehrlich ascites carcinoma-bearing mice generating long-lasting immunity. Technology in Cancer Research & Treatment, 19, 1533033820926593.

4. Azab, K. S., Maarouf, R. E., Abdel-Rafei, M. K., El Bakary, N. M., & Thabet, N. M. (2022). Withania somnifera (Ashwagandha) root extract counteract acute and chronic impact of γ-radiation on liver and spleen of rats. Human & Experimental Toxicology, 41, 09603271221106344.

5. Elbakry, M. M. M., ElBakary, N. M., Hagag, S. A., & Hemida, E. H. A. (2023). Pomegranate peel extract sensitizes hepatocellular carcinoma cells to ionizing radiation, induces apoptosis and inhibits MAPK, JAK/STAT3, β-catenin/NOTCH, and SOCS3 signaling. Integrative Cancer Therapies, 22, 15347354221151021.

Dr. Mubasher | Condensed Matter Physics | Best Researcher Award

Dr. Mubasher | Condensed Matter Physics | Best Researcher Award

Assistant Professor | IQRA University | Pakistan

Dr. Mubasher is an accomplished researcher whose scholarly foundation is deeply rooted in Condensed Matter Physics, demonstrating sustained contributions across material synthesis, nanostructure development, and energy-related applications. His body of work reflects a rigorous command of Condensed Matter Physics, particularly in the modification and enhancement of electrode materials, nanohybrids, ferrite systems, graphene derivatives, and multi-walled carbon nanotube composites. With an outstanding record of more than thirty international publications in reputable journals, his research in Condensed Matter Physics exhibits strong emphasis on advanced functional materials and experimental analysis involving impedance spectroscopy, dielectric behavior, cyclic voltammetry, and supercapacitive performance. His professional career represents both academic depth and laboratory capability, further sustained by collaborative research involving interdisciplinary interfaces within Condensed Matter Physics. As an Assistant Professor, his ongoing efforts are directed toward supervising postgraduate and doctoral candidates, enriching the academic environment through applied research in Condensed Matter Physics. His supervision and co-supervision of multiple thesis projects underline a dedication to knowledge transfer, research mentoring, and strengthening the scientific community. His contributions to Condensed Matter Physics extend into peer-review activity for high-impact journals, section editorial work, and involvement in advanced material development with direct relevance to lithium-ion storage and emerging electrochemical technologies. Extensive involvement in composites, doped systems, and material optimization further highlights his innovative approach toward energy-oriented Condensed Matter Physics research. Dr. Mubasher continues to advance the scientific landscape through impactful publications, collaborative research culture, multi-disciplinary integration, and sustained commitment to the global progression of Condensed Matter Physics, reflecting both intellectual maturity and research leadership. His portfolio stands as a remarkable example of academic excellence in the evolving domain of Condensed Matter Physics. Google Scholar profile of 412 Citations, 11 h-index, 12 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Mujahid, M., Khan, R. U., Mumtaz, M., Soomro, S. A., & Ullah, S. (2019). NiFe₂O₄ nanoparticles/MWCNTs nanohybrid as anode material for lithium-ion battery. Ceramics International, 45(7), 8486–8493.

2. Mubasher, Mumtaz, M., Hassan, M., Ali, L., Ahmad, Z., Imtiaz, M. A., & Aamir, M. F. (2020). Comparative study of frequency-dependent dielectric properties of ferrites MFe₂O₄ (M = Co, Mg, Cr and Mn) nanoparticles. Applied Physics A, 126(5), 334.

3. Mumtaz, M. (2021). Nanocomposites of multi-walled carbon nanotubes/cobalt ferrite nanoparticles: Synthesis, structural, dielectric and impedance spectroscopy. Journal of Alloys and Compounds, 866, 158750.

4. Mumtaz, M., Hassan, M., Ullah, S., & Ahmad, Z. (2021). Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: High performance anode material for lithium-ion batteries. Carbon, 171, 179–187.

5. Mubasher, Mumtaz, M., & Ali, M. (2021). Structural, dielectric and electric modulus studies of MnFe₂O₄/(MWCNTs)x nanocomposites. Journal of Materials Engineering and Performance, 30(6), 4494–4503.

Dr. Meri Algarni | Condensed Matter Physics | Best Researcher Award

Dr. Meri Algarni | Condensed Matter Physics | Best Researcher Award

Associate Professor | Al-Baha University | Saudi Arabia

Dr. Meri Algarni is an accomplished researcher in Condensed Matter Physics, recognized for her innovative work on magnetic and topological phenomena in low-dimensional materials. Her contributions have significantly advanced the understanding of electronic and magnetic properties in van der Waals heterostructures, bridging theoretical insights with experimental discoveries in Condensed Matter Physics. With a strong research background in Condensed Matter Physics, she has explored carrier-mediated ferromagnetism, gate-controlled phase transitions, and quantum effects that underpin next-generation spintronic and energy-efficient devices. Dr. Algarni’s expertise in Condensed Matter Physics encompasses nanoscale characterization techniques such as SEM, AFM, and PPMS, enabling her to investigate magnetic and structural behaviors at the atomic scale. Her research in Condensed Matter Physics has been published in high-impact journals, including Physical Review Letters, Nature Communications, and ACS Nano Letters, reflecting global recognition of her scientific contributions. Through her work on tunable artificial topological Hall effects and gate-tuned magnetic transitions, she continues to make influential contributions to Condensed Matter Physics, advancing the development of future quantum materials and low-energy electronic technologies. In addition to her research achievements, Dr. Algarni has actively participated in international conferences and collaborations, strengthening global scientific networks within Condensed Matter Physics. Her dedication to advancing Condensed Matter Physics extends to mentoring and teaching, inspiring emerging scientists to engage in experimental and theoretical studies within the field. Her scholarly impact in Condensed Matter Physics demonstrates a rare combination of technical mastery, analytical rigor, and interdisciplinary insight that drives innovation in material science and nanotechnology. Her Google Scholar profile records 530 citations, an h-index of 11, and an i10-index of 12, underscoring her substantial and growing influence in Condensed Matter Physics worldwide.

Profiles: Google Scholar | ORCID

Featured Publications

1. Zheng, G., Xie, W. Q., Albarakati, S., Algarni, M., Tan, C., Wang, Y., Peng, J., … (2020). Gate-tuned interlayer coupling in van der Waals ferromagnet nanoflakes. Physical Review Letters, 125(4), 047202.

2. Tan, C., Xie, W. Q., Zheng, G., Aloufi, N., Albarakati, S., Algarni, M., Li, J., … (2021). Gate-controlled magnetic phase transition in a van der Waals magnet Fe₅GeTe₂. Nano Letters, 21(13), 5599–5605.

3. Albarakati, S., Xie, W. Q., Tan, C., Zheng, G., Algarni, M., Li, J., Partridge, J., … (2022). Electric control of exchange bias effect in FePS₃–Fe₅GeTe₂ van der Waals heterostructures. Nano Letters, 22(15), 6166–6172.

4. Zheng, G., Wang, M., Zhu, X., Tan, C., Wang, J., Albarakati, S., Aloufi, N., … (2021). Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation. Nature Communications, 12(1), 3639.

5. Zheng, G., Tan, C., Chen, Z., Wang, M., Zhu, X., Albarakati, S., Algarni, M., … (2023). Electrically controlled superconductor-to-failed insulator transition and giant anomalous Hall effect in kagome metal CsV₃Sb₅ nanoflakes. Nature Communications, 14(1), 678.

Dr. Mohsin Rafique | Condensed Matter Physics | Excellence in Research Award 

Dr. Mohsin Rafique | Condensed Matter Physics | Excellence in Research Award 

Assistant Research Scientist | Beijing Academy of Quantum Information Sciences | China

Dr. Mohsin Rafique is an accomplished researcher in the field of Condensed Matter Physics, currently serving as a Research Scientist (Assistant) at the Beijing Academy of Quantum Information Sciences, China. His academic foundation in physics, including a PhD and MS from COMSATS Institute of Information Technology, has enabled him to explore critical areas of Condensed Matter Physics, particularly focusing on quantum transport, superconductivity, and magnetoelectric materials. Throughout his professional journey, he has contributed extensively to Condensed Matter Physics research through postdoctoral work at Tsinghua University and collaborative projects in Germany and Italy. His research interests encompass quantum phase transitions, magnetism, and multiferroic thin films all deeply rooted in Condensed Matter Physics principles. Dr. Rafique has received multiple awards and fellowships, including the Tsinghua University Postdoctoral Fellowship and COMSATS Research Productivity Award, reflecting his excellence in Condensed Matter Physics research and innovation. His research skills span quantum material fabrication, magnetoelectric measurements, and nanoscale device development, further demonstrating his command of Condensed Matter Physics methodologies. His work has been published in top-tier journals like Nano Letters, Applied Physics Letters, and Nature Communications, showcasing significant contributions to Condensed Matter Physics and related interdisciplinary fields. With his dedication to advancing scientific understanding in Condensed Matter Physics, Dr. Mohsin Rafique stands as a prominent figure whose expertise continues to influence modern material science.Google Scholar profile of 553 Citations, 13 h-index, 18 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Rashid, J., Abbas, A., Chang, L. C., Iqbal, A., Haq, I. U., Rehman, A., Awan, S. U., & others. (2019). Butterfly cluster like lamellar BiOBr/TiO₂ nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Science of the Total Environment, 665, 668–677.

2. Rashid, J., Saleem, S., Awan, S. U., Iqbal, A., Kumar, R., Barakat, M. A., Arshad, M., & others. (2018). Stabilized fabrication of anatase-TiO₂/FeS₂ (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue. RSC Advances, 8(22), 11935–11945.

3. Liao, M., Wang, H., Zhu, Y., Shang, R., Rafique, M., Yang, L., Zhang, H., Zhang, D., & others. (2021). Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe₂ superconductor. Nature Communications, 12(1), 5342.

4. Awan, S. U., Hasanain, S. K., Rashid, J., Hussain, S., Shah, S. A., Hussain, M. Z., & others. (2018). Structural, optical, electronic and magnetic properties of multiphase ZnO/Zn(OH)₂/ZnO₂ nanocomposites and hexagonal prism shaped ZnO nanoparticles synthesized by pulse laser. Materials Chemistry and Physics, 211, 510–521.

5. Rafique, M., Feng, Z., Lin, Z., Wei, X., Liao, M., Zhang, D., Jin, K., & Xue, Q. K. (2019). Ionic liquid gating induced protonation of electron-doped cuprate superconductors. Nano Letters, 19(11), 7775–7780.*