Keumo Tsiaze Roger Magloire | Physics | Best Researcher Award

Dr. Keumo Tsiaze Roger Magloire | Physics | Best Researcher Award

Dr. Keumo Tsiaze Roger Magloire at University of Yaoundé I, Cameroon

Dr.Keumo Tsiaze Roger Magloire is a dynamic and passionate physicist 🎓, blending solid academic roots with hands-on research and pedagogical experience. Holding a Master’s, Bachelor’s, and a Teaching Diploma in Physics from the University of Yaoundé I 🇨🇲, he has demonstrated flexibility, innovation, and team spirit throughout his academic and professional journey. Currently serving as an Associate Researcher at the prestigious ICMPA-UNESCO Chair in Benin 🇧🇯, he excels in theoretical and computational physics, with interests in quantum information theory and the structure-property relationship of novel materials. Proficient in LaTeX, MATLAB, and Maple 💻, he balances his scientific rigor with humanitarian activities and sports ⚽🏐. His multilingual skills (native in French, C1 in English) add to his global research engagement 🌍. Driven by curiosity and commitment, Dr. KEUMO contributes meaningfully to cutting-edge research projects in superconductivity, magnetism, and nanostructures.

Professional Profile 

Orcid

Google Scholar

🎓 Education

Dr. Keumo’s academic foundation is rooted in excellence. He earned his Bachelor’s and Master’s degrees in Physics, along with a Second Grade Teaching Diploma, from the University of Yaoundé I 🏛️. This blend of scientific and pedagogical training empowers him with both technical depth and classroom agility. His education cultivated a strong understanding of mechanics, materials, and structural behavior under diverse conditions 🧪. The teaching diploma gave him a professional edge in delivering complex concepts clearly and effectively 🗣️. Dr. KEUMO’s educational journey reflects resilience, curiosity, and dedication to learning, which he continues to apply in his research and teaching. His capacity to work across academic disciplines is a reflection of the comprehensive scientific preparation he received during his formative academic years.

💼 Professional Experience

Currently, Dr. Keumo holds a distinguished position as Associate Researcher at the International Chair of Mathematical Physics and Applications (ICMPA-UNESCO) in Cotonou, Benin 🌐. His role involves advanced theoretical investigations into quantum materials and superconducting phenomena. With strong computational skills in LaTeX, MATLAB, and Maple, he effectively navigates complex modeling and simulations ⚙️. His earlier experience at the University of Yaoundé I included laboratory research in mechanics and material sciences, where he honed his adaptability and team collaboration skills. Known for his creative and critical thinking, he consistently demonstrates the ability to engage with multidisciplinary challenges. The teaching dimension of his profile, grounded in a second-grade diploma, gives him a unique pedagogical strength 📚, allowing him to contribute effectively in both research and academic mentoring environments.

🔬 Research Interests

Dr. Keumo’s research landscape is vast and profound 🌌. He explores structure-property relationships in novel materials, emphasizing their behavior in complex environments. His work in quantum information theory delves into the heart of modern physics, pushing boundaries in areas like quantum dots and superconducting qubits. His current projects focus on superconducting ferromagnets, tunneling wire qubits, and two-dimensional TMDCs (like MoS₂, WS₂) used in Josephson junction laser systems ⚡. He is deeply invested in understanding multiferroic systems, exchange interactions, and size effects in amorphous magnetic materials. Dr. KEUMO’s theoretical models aim to predict new phenomena and aid technological advancements in quantum computing and nanoscale magnetism 💡. His interdisciplinary vision positions him at the intersection of theoretical physics and material science, making his research both futuristic and applicable.

🏅 Awards and Honors

Though specific awards are not listed, Dr. Keumo’s esteemed roles and affiliations speak volumes 🌟. Being appointed an Associate Researcher at ICMPA-UNESCO Chair is itself a testament to his scholarly merit and recognition in the international physics community. His achievements in teaching and research demonstrate a blend of academic honor and societal contribution. His pedagogical credentials, coupled with his involvement in humanitarian outreach, reflect a commitment to uplifting others through knowledge and service 🙌. His bilingual abilities in French and English 🗨️ also enhance his global academic engagement. The respect he commands in both francophone and anglophone research circles adds a multicultural dimension to his scholarly persona.

📚 Publications Top Note 

1. The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots

  • Authors: L. Belamkadem, O. Mommadi, R. Boussetta, S. Chouef, M. Chnafi, …

  • Year: 2022

  • Citations: 31

  • Source: Thin Solid Films, Vol. 757, 139396

  • Summary: Investigates how varying the intensity and direction of electric fields alters the binding energy of off-center shallow donor impurities in wedge-shaped cylindrical quantum dots. It reveals key insights into impurity localization and tunability of electronic properties in nanostructures.


2. Tunable potentials and decoherence effect on polaron in nanostructures

  • Authors: A.J. Fotue, M.F.C. Fobasso, S.C. Kenfack, M. Tiotsop, J.R.D. Djomou, …

  • Year: 2016

  • Citations: 29

  • Source: The European Physical Journal Plus, Vol. 131, 1–15

  • Summary: Explores how tunable potential wells and decoherence mechanisms affect polarons in quantum dots and other nanostructures. It provides theoretical frameworks to understand energy loss and coherence in nanomaterials.


3. Deformation and size effects on electronic properties of toroidal quantum dot in the presence of an off-center donor atom

  • Authors: R. Boussetta, O. Mommadi, L. Belamkadem, S. Chouef, M. Hbibi, …

  • Year: 2022

  • Citations: 26

  • Source: Micro and Nanostructures, Vol. 165, 207209

  • Summary: Analyzes how geometric deformations and scaling influence the electronic structure of toroidal quantum dots with embedded donor atoms. Provides guidance for quantum device engineering at nanoscale dimensions.


4. Renormalized Gaussian approach to critical fluctuations in the Landau–Ginzburg–Wilson model and finite-size scaling

  • Authors: R.M.K. Tsiaze, S.E.M. Tchouobiap, J.E. Danga, S. Domngang, …

  • Year: 2011

  • Citations: 12

  • Source: Journal of Physics A: Mathematical and Theoretical, Vol. 44 (28), 285002

  • Summary: Develops a renormalized Gaussian approximation to analyze critical fluctuations and finite-size effects in systems governed by the Landau-Ginzburg-Wilson model. Useful in studying phase transitions in condensed matter.


5. Thermodynamic properties of a monolayer transition metal dichalcogenide (TMD) quantum dot in the presence of magnetic field

  • Authors: T.V. Diffo, A.J. Fotue, S.C. Kenfack, R.M.K. Tsiaze, E. Baloitcha, …

  • Year: 2021

  • Citations: 11

  • Source: Physics Letters A, Vol. 385, 126958

  • Summary: Examines the influence of magnetic fields on the thermodynamic behavior of TMD-based quantum dots. Highlights changes in specific heat, entropy, and magnetization, which are key for quantum computing and thermoelectric devices.


6. Cumulative effects of fluctuations and magnetoelectric coupling in two-dimensional RMnO₃ (R = Tb, Lu and Y) multiferroics

  • Authors: G.E.T. Magne, R.M.K. Tsiaze, A.J. Fotué, N.M. Hounkonnou, L.C. Fai

  • Year: 2021

  • Citations: 10

  • Source: Physics Letters A, Vol. 400, 127305

  • Summary: Studies the interaction of critical fluctuations and magnetoelectric coupling in rare-earth manganite multiferroics. Offers theoretical support for the development of multifunctional spintronic devices.


7. Dynamics and decoherence of exciton polaron in monolayer transition metal dichalcogenides

  • Authors: C. Kenfack-Sadem, A.K. Teguimfouet, A. Kenfack-Jiotsa, R.M.K. Tsiaze

  • Year: 2021

  • Citations: 6

  • Source: Journal of Electronic Materials, Vol. 50 (5), 2911–2921

  • Summary: Investigates exciton-polaron behavior in 2D TMDs, especially focusing on quantum coherence loss and dynamical evolution. Provides insight into carrier dynamics relevant for optoelectronic device design.


8. Renormalized Gaussian approach to size effects and exchange interactions: Application to localized ferromagnets and amorphous magnets

  • Authors: R.M.K. Tsiaze, A.V. Wirngo, S.E.M. Tchouobiap, E. Baloïtcha, M.N. Hounkonnou

  • Year: 2018

  • Citations: 5

  • Source: Journal of Magnetism and Magnetic Materials, Vol. 465, 611–620

  • Summary: Applies Gaussian field methods to analyze magnetic size effects and exchange interactions, contributing to understanding localized and amorphous magnetic materials.


9. Effects of critical fluctuations and dimensionality on the jump in specific heat at the superconducting transition temperature: Application to YBa₂Cu₃O₇−δ, Bi₂Sr₂CaCu₂O₈, …

  • Authors: R.M. Keumo Tsiaze, A.V. Wirngo, S.E. Mkam Tchouobiap, A.J. Fotue, …

  • Year: 2016

  • Citations: 5

  • Source: Physical Review E, Vol. 93 (6), 062105

  • Summary: Explores how fluctuations and system dimensionality influence the heat capacity jump during superconducting transitions, offering insight into the thermodynamics of high-Tc materials.


10. Landau-Zener tunneling of qubit states and Aharonov-Bohm interferometry in double quantum wires

  • Authors: J.E. Danga, S.C. Kenfack, R.M.K. Tsiaze, L.C. Fai

  • Year: 2019

  • Citations: 4

  • Source: Physica E: Low-dimensional Systems and Nanostructures, Vol. 108, 123–134

  • Summary: Theoretically examines quantum state tunneling and interference phenomena in coupled quantum wires. Relevant for future quantum information transport systems.


11. Coherent nonlinear low-frequency Landau–Zener tunneling induced by magnetic control of a spin qubit in a quantum wire

  • Authors: S.E. Mkam Tchouobiap, J.E. Danga, R.M. Keumo Tsiaze, L.C. Fai

  • Year: 2018

  • Citations: 4

  • Source: International Journal of Quantum Information, Vol. 16 (06), 1850049

  • Summary: Studies the coherent control of qubit tunneling using low-frequency magnetic fields. Highlights prospects for non-destructive quantum gate operations.


12. Theoretical study of two biquadratically coupled order parameters: Application to two-dimensional multiferroics

  • Authors: G.E.T. Magne, R.M.K. Tsiaze, A.J. Fotué, L.C. Fai

  • Year: 2020

  • Citations: 2

  • Source: Journal of Magnetism and Magnetic Materials, Vol. 504, 166661

  • Summary: The paper develops a theoretical model for analyzing the coupling between electric and magnetic orders in 2D multiferroic materials. Crucial for the design of multifunctional materials in nanoelectronics.

📌 Conclusion

Dr. Keumo Tsiaze Roger Magloire is a well-rounded, visionary researcher and educator whose work transcends borders 🌍. With a strong educational base, active involvement in cutting-edge theoretical research, and an innate ability to communicate scientific ideas, he continues to make significant strides in physics. His current investigations into superconductivity, magnetism, and quantum systems reflect his deep curiosity and scientific rigor 🔍. Committed to both science and humanity, Dr. KEUMO balances his intellectual pursuits with a love for sports and social engagement ⚽. Fluent in multiple languages, skilled in computation, and grounded in pedagogy, he exemplifies the modern physicist-scholar. His journey is marked by innovation, adaptability, and impact—qualities that promise continued contributions to the global scientific community 🔬✨.

Joshua Benjamin | Physics | Best Researcher Award

Mr. Joshua Benjamin | Physics | Best Researcher Award

Lagos Nigeria at TYDACOMM Nigeria Limited, Nigeria

benjamin, joshua olamide is a dedicated scholar and researcher passionate about space physics, ionospheric studies, and space weather. He holds a first-class degree in pure and applied physics from Ladoke Akintola University of Technology and a distinction in space physics from the African University of Science and Technology. With experience in RF network planning and optimization, teaching, and research, he combines technical expertise with strong analytical skills. Proficient in MATLAB, Microsoft Office, and data analysis tools, he is committed to innovation, leadership, and academic excellence. His research contributes to understanding ionospheric models and their impact on space weather. 🚀📡

Professional Profile

Education & Experience 🎓💼

  • [2022] MSc in Space Physics (Distinction) – African University of Science and Technology 📡
  • [2019] B.Tech in Pure and Applied Physics (First Class) – Ladoke Akintola University of Technology 🔬
  • [2023 – Present] RF Network Planning & Field Test Engineer – TYDACOMM Nigeria Limited 📶
  • [2020 – 2021] NYSC Mathematics & Economics Teacher – Jofegal International School 📚
  • [2018] Internship at Perfect Seven Solar Company – Solar System Maintenance ☀️
  • [2011 – 2012] Mathematics Teacher – Fountain of Knowledge Group of School 📏

Professional Development 📖🔍

benjamin, joshua olamide has actively participated in multiple international colloquiums and workshops related to space science, GNSS, and ionospheric studies. He has certifications in health, safety, and environment (HSE Levels 1-3) and has completed training in soft skills, entrepreneurship, and critical thinking. His involvement in research and development, coupled with hands-on experience in field testing, data collection, and RF network optimization, showcases his versatility. Passionate about academic excellence, he regularly engages in professional training, leadership roles, and mentorship programs to enhance his expertise in space physics and its applications. 🌍🛰️

Research Focus 🔬🌌

benjamin, joshua olamide specializes in ionospheric physics, space weather, and solar-terrestrial interactions. His research explores the global climatological performance of ionospheric models using Swarm satellite electron density measurements, evaluating their accuracy and implications for GNSS and communication systems. He has worked on latitudinal electron density profiles, comparing SWARM measurements with IRI models, and studying biophysics applications. His goal is to improve predictive models for space weather impacts on Earth, ensuring the safety and reliability of communication and navigation technologies. His research contributes to scientific advancements in space physics and atmospheric studies. 🌞🌍📡

Awards & Honors 🏆🎖️

  • [2022] Best Graduating Student – Institute of Space Science and Engineering 🏅
  • [2022] Best Graduating Student – Department of Space Physics 🏆
  • [2019] Akinrogun Trust Fund Award 💰
  • [2019] Best WAEC Result – New Era High School 🏅
  • [2007] One of the Best Junior WAEC Results – Greater Tomorrow College 🎓

Publication Top Notes

  1. “Investigation of the global climatologic performance of ionospheric models utilizing in-situ Swarm satellite electron density measurements”
    This paper was published in Advances in Space Research, Volume 75, Issue 5, pages 4274-4290, in 2025. The authors are:

    • D. Okoh
    • C. Cesaroni
    • J.B. Habarulema
    • Y. Migoya-Orué
    • B. Nava
    • L. Spogli
    • B. Rabiu
    • J. Benjamin

    The study offers a comprehensive investigation into the climatologic performance of three ionospheric models when compared to in-situ measurements from Swarm satellites. The models evaluated are the International Reference Ionosphere (IRI), NeQuick, and a 3-dimensional electron density model based on artificial neural network training of COSMIC satellite radio occultation measurements (3D-NN). The findings indicate that while all three models provide fairly accurate representations of the Swarm measurements, the 3D-NN model consistently performed better across various conditions.

  2. “Global Comparison of Instantaneous Electron Density Latitudinal Profiles from SWARM Satellites and IRI Model”
    This paper was published in Advances in Space Research in 2025. The authors are:

    • J.O. Benjamin
    • D.I. Okoh
    • B.A. Rabiu

    This study focuses on comparing instantaneous electron density latitudinal profiles obtained from Swarm satellites with predictions from the IRI model. The comparison aims to assess the accuracy of the IRI model in representing real-time electron density variations observed by the Swarm mission.

For full access to these publications, you may consider visiting the publisher’s website or accessing them through academic databases such as IEEE Xplore or ScienceDirect. If you are affiliated with an academic institution, you might have institutional access to these resources.

Conclusion

Benjamin, joshua olamide stands out as a promising researcher in space physics, with notable contributions to ionospheric studies, climatology models, and research-driven technological applications. His exceptional academic achievements, research output, leadership roles, and technical expertise position him as a deserving candidate for the Best Researcher Award.

Orchidea Maria Lecian | Physics | Best Researcher Award

Assoc. Prof. Dr. Orchidea Maria Lecian | Physics | Best Researcher Award  

Assoc. Prof. Dr. Orchidea Maria Lecian, Sapienza University of Rome, Italy

Assoc. Prof. Dr. Orchidea Maria Lecian is a distinguished academic specializing in general relativity, astrophysics, quantum systems, and mathematical physics. She currently holds academic positions at Sapienza University of Rome, Italy, where she is involved with the Department of Clinical and Molecular Medicine, as well as the Department of Civil and Industrial Engineering. Additionally, she has been a visiting professor at Kursk State University in Russia. Her extensive research covers a wide array of topics in theoretical physics, including cosmology, quantum gravity, dark matter, black-hole physics, and advanced mathematical theories like differential geometry and operator algebras.

PROFILE

Orcid Profile

Educational Details

Sapienza University of Rome, Italy

Department of Clinical and Molecular Medicine

Department of Civil and Industrial Engineering

Department of Information Engineering

Professorship in Experimental Physics, Fundamentals of Physics I

Kursk State University, Russia

Faculty of Physics, Mathematics, and Information Sciences

Chair of Algebra, Geometry, and Didactics of Mathematics Theory (Visiting Professor, 2022-2023)

Comenius University in Bratislava, Slovakia

Faculty of Mathematics, Physics, and Informatics

Department of Theoretical Physics and Physics Education (KTFDF)

Professional Experience

Present:

Associate Professor in the Department of Clinical and Molecular Medicine, Sapienza University of Rome, specializing in experimental physics and applied sciences.

1 March 2023–31 August 2024:

Professorship in Fundamentals of Physics I, Department of Civil and Industrial Engineering, Sapienza University of Rome.

Professorship in Fundamentals of Physics I, Department of Information Engineering, Sapienza University of Rome.

1 October 2022–28 February 2023:

Visiting Professor, Faculty of Physics, Mathematics, and Information Sciences, Kursk State University, Russia, as part of the Ministry of Science and Higher Education of the Russian Federation’s educational program for foreign nationals.

Research Interests

General Relativity & Relativistic Astrophysics: Exploration of gravitational phenomena in the universe, including black holes, modified theories of gravity, and early cosmology.

Quantum Gravity & Quantum Cosmology: Study of the unification of quantum mechanics and general relativity, addressing issues such as dark matter and the nature of quantum systems.

Mathematical Physics & Applied Mathematics: Areas such as differential geometry, group theory, algebraic geometry, and quantum field theory.

Astrophysical Systems: Analysis of galactic and extragalactic physics, focusing on optical systems and high-energy phenomena.

Applied Instrumentation & Satellite Experimentation: Development of experimental setups and instruments for space and laboratory research, particularly in cosmology and particle physics.

Top Notable Publications

Generalized Schwarzschild Spacetimes with a Linear Term and a Cosmological Constant

Journal: Universe

Publication Date: October 30, 2024

DOI: 10.3390/universe10110408

The Generalised Reissner–Nordstrom Spacetimes, the Cosmological Constant and the Linear Term

Journal: Computation

Publication Date: August 11, 2023

DOI: 10.3390/computation11080157

Retrieval of phonemes and Kohonen algorithm

Preprint

Publication Date: July 14, 2023

DOI: 10.32388/3XRVTN

Stellar dynamics

Preprint

Publication Date: June 21, 2023

DOI: 10.32388/DZFWDZ

Depolarization block of interneurons

Preprint

Publication Date: June 6, 2023

DOI: 10.32388/XZ2QVQ

The Desymmetrized PSL(2, Z) Group; Its ‘Square-Box’ One-Cusp Congruence Subgroups

Conference Paper: Proceedings of the International Conference on Mathematical and Analytical Methods

Publication Date: April 28, 2023

DOI: 10.3390/IOCMA2023-14428

The Formalism of Milky-Way Antimatter-Domains Evolution

Journal: Galaxies

Publication Date: March 22, 2023

DOI: 10.3390/galaxies11020050

Baryon-Antibaryon Annihilation in the Evolution of Antimatter Domains in Baryon-Asymmetric Universe

Journal: Universe

Publication Date: September 15, 2021

DOI: 10.3390/universe7090347

Effects of Baryon-Antibaryon Annihilation in the Evolution of Antimatter Domains in Baryon Asymmetrical Universe

Conference Paper: Proceedings of the European Conference on Cosmology

Publication Date: February 22, 2021

DOI: 10.3390/ECU2021-09267

Conclusion

Assoc. Prof. Dr. Orchidea Maria Lecian’s extensive research output, interdisciplinary expertise, and international academic contributions make her an exemplary candidate for the Best Researcher Award. Her work not only advances understanding in core areas of physics and mathematics but also bridges academic and research communities across borders.

 

 

 

 

Yang Han | Condensed Matter Physics | Best Researcher Award

Prof Dr.Yang Han | Condensed Matter Physics | Best Researcher Award

Google Scholar Profile

Orcid Profile

Educational Details:

Yang Han completed her Ph.D. in 2014 from Nanjing University, China. Following her doctorate, she pursued postdoctoral research at RWTH Aachen University, Germany, from 2014 to 2016, where she focused on [research focus, e.g., materials science, mechanical properties, etc.]. She then continued her postdoctoral work at the University of Lorraine, France, from 2016 to 2018, concentrating on [research focus, e.g., thermoelectric properties, molecular dynamics simulations, etc.]. With a strong background in first-principles calculations and numerical simulations, she now serves as a professor and Ph.D. supervisor at Harbin Engineering University.

Research and Innovations:

Yang Han has made significant contributions to the fields of material science and computational modeling, particularly through her innovative research using numerical simulations to understand the mechanical, thermal transport, electronic, magnetic, and thermoelectric properties of advanced materials. Her groundbreaking work has centered on the following key research innovations:

  1. Topological Defects and Heterojunctions in 3D Graphene Structures: Through the support of the National Natural Science Foundation of China (Project No. 12104111), Yang’s research has provided vital insights into the stability and physical properties of three-dimensional graphene structures. By exploring the influence of topological defects and heterojunctions, her research has enhanced the understanding of how these factors contribute to material performance, with potential applications in advanced electronics and nanotechnology.
  2. Natural Gas Hydrate Self-Protection Mechanisms: Under the Basic Research Funds for Central Universities, Yang’s research on natural gas hydrates has delved into the microscopic mechanisms that enable these structures to self-protect, which has crucial implications for energy storage and environmental sustainability. Her molecular dynamics simulations have uncovered novel pathways for optimizing the extraction and stability of natural gas hydrates.
  3. Combustible Ice Formation Mechanism: Another major contribution is her simulation study on the formation mechanism and physical properties of combustible ice. This research, funded by Central Universities’ Free Exploration Support Program, sheds light on the potential of combustible ice as a future energy source by providing a detailed understanding of its formation at the molecular level.
  4. Thermal Conductivity in Carbon Honeycomb Structures: At RWTH Aachen University, Yang’s work using high-performance computing resources has advanced the understanding of how tensile strain impacts the thermal conductivity of carbon-based materials. This research has potential implications for the development of advanced materials with tailored thermal properties for use in electronics and energy systems.
  5. Ab initio Calculations for Predicting Thermal Materials: Yang’s predictive models using ab initio calculations to discover new thermal materials have been pivotal in the design and application of next-generation materials with enhanced heat conduction properties. This project at RWTH Aachen University led to the development of methods that could revolutionize industries ranging from electronics to aerospace by providing better materials for thermal management.

These research innovations demonstrate Yang HAN’s pioneering contributions to material science, leveraging cutting-edge computational techniques to solve complex problems with wide-ranging impacts across multiple scientific and industrial domains.

Research Interest: 

Yang Han research focuses on utilizing numerical simulations to investigate the formation mechanisms and physical properties of natural gas hydrates. Her work delves into understanding how these hydrates form and stabilize at the molecular level, which has significant implications for energy storage and environmental applications. By employing molecular dynamics simulations, she provides crucial insights into the self-preservation behaviors of natural gas hydrates, aiding in their practical extraction and use as alternative energy sources.

Additionally, Yang has made substantial contributions to the study of the mechanical, thermal, electronic, magnetic, and thermoelectric properties of materials. Using a combination of first-principles calculations, molecular dynamics simulations, and analytical models, her research investigates how various materials behave under different physical conditions. This includes exploring their conductivity, structural stability, and magnetic properties, which are essential for designing advanced materials for electronics, thermoelectric devices, and other high-performance applications. Her multi-disciplinary approach is instrumental in advancing the field of material science, offering potential innovations across a wide range of industries.

Contributions: 

Yang Han is a seasoned researcher with over 10 years of experience in the field of numerical simulations, specializing in the mechanical, thermal transport, electronic, magnetic, and thermoelectric properties of materials. Her work primarily involves first-principles calculations and molecular dynamics simulations, which allow her to explore and predict the behavior of materials under various conditions. Her research also extends to water clathrate structures, such as methane hydrate, which have significant implications for energy storage and environmental conservation.

Yang’s academic contributions include 29 SCI-indexed papers, with two of her publications being specially highlighted by the editorial office of Nanotechnology and one chosen as a SCIlight by the Journal of Applied Physics. These recognitions underscore the impact and innovation of her work in material science, particularly in advancing the understanding of material properties for real-world applications in energy and technology.

Top Notable Publications

Rapid growth of CO2 hydrate as a promising way to mitigate the greenhouse effect
Authors: S. Jia, L. Yang, Y. Han, T. Zhang, X. Zhang, P. Gong, S. Du, Y. Chen, J. Ding
Year: 2024
Journal: Materials Today Physics, Article No. 101548
Citations: Not yet available (2024 publication)

Buckling Hydrogenated Biphenylene Network with Tremendous Stretch Extent and Anomalous Thermal Transport Properties
Authors: X. Zhang, M. Poulos, K. Termentzidis, Y. Han, D. Zhao, T. Zhang, X. Liu, S. Jia
Year: 2024
Journal: The Journal of Physical Chemistry C, 128 (13), 5632-5643
Citations: Not yet available (2024 publication)

Ferroelectricity of ice nanotube forests grown in three-dimensional graphene: the electric field effect
Authors: T. Zhang, Y. Han, C. Luo, X. Liu, X. Zhang, Y. Song, Y. T. Chen, S. Du
Year: 2024
Journal: Nanoscale, 16 (3), 1188-1196
Citations: 2

DFT characterization of a new possible two-dimensional BN allotrope with a biphenylene network structure
Authors: Y. Han, T. Hu, X. Liu, S. Jia, H. Liu, J. Hu, G. Zhang, L. Yang, G. Hong, Y. T. Chen
Year: 2023
Journal: Physical Chemistry Chemical Physics, 25 (16), 11613-11619
Citations: 5

Modulating thermal transport in a porous carbon honeycomb using cutting and deformation techniques
Authors: Y. Han, C. Zhao, H. Bai, Y. Li, J. Yang, Y. T. Chen, G. Hong, D. Lacroix, M. Isaiev
Year: 2022
Journal: Physical Chemistry Chemical Physics, 24 (5), 3207-3215
Citations: 1

Stretched three-dimensional white graphene with a tremendous lattice thermal conductivity increase rate
Authors: Y. Han, Y. Liang, X. Liu, S. Jia, C. Zhao, L. Yang, J. Ding, G. Hong
Year: 2022
Journal: RSC Advances, 12 (35), 22581-22589
Citations: 3

Condition monitoring and performance forecasting of wind turbines based on denoising autoencoder and novel convolutional neural networks
Authors: X. Jia, Y. Han, Y. Li, Y. Sang, G. Zhang
Year: 2021
Journal: Energy Reports, 7, 6354-6365
Citations: 37

Prediction of equilibrium conditions for gas hydrates in the organic inhibitor aqueous solutions using a thermodynamic consistency-based model
Authors: S. Li, Y. Li, L. Yang, Y. Han, Z. Jiang
Year: 2021
Journal: Fluid Phase Equilibria, 544, 113118
Citations: 15

Tailoring the activity of NiFe layered double hydroxide with CeCO3OH as highly efficient water oxidation electrocatalyst
Authors: J. Ding, Y. Han, G. Hong
Year: 2021
Journal: International Journal of Hydrogen Energy, 46 (2), 2018-2025
Citations: 14