Mr. Frederic Dappozze | Analytical Chemistry | Best Researcher Award

Mr. Frederic Dappozze | Analytical Chemistry | Best Researcher Award

Ircelyon at Centre National de la Recherche Scientifique, France

Frédéric Dappozze, MSc (1997), is a seasoned CNRS engineer with a focused trajectory in analytical chemistry. His professional journey commenced at Danone’s Vitapole Research Center, followed by a pivotal role in the INRA-Versailles unit dedicated to xenobiotics and environmental studies. In 2005, he integrated into Dr. Chantal Guillard’s team within the “Laboratoire d’Application de la Chimie à l’Environnement,” which evolved into the “Institut de Recherches sur la Catalyse et l’Environnement de LYON” (IRCELYON) by 2007. Renowned for his expertise in advanced separation methods, particularly gas and liquid chromatography, he is also deeply involved in devising and optimizing experimental protocols for assessing photocatalytic activities. His multidisciplinary background bridges industrial application and academic precision, making him a cornerstone in environmentally oriented chemical research. Frédéric continues to contribute significantly to the intersection of analytical innovation and sustainable environmental science, positioning him as a valued contributor within France’s scientific community.

Professional Profile 

Education 

Frédéric Dappozze earned his Master of Science (MSc) degree in 1997, specializing in analytical chemistry, a field demanding precision, critical thinking, and technical mastery. His academic training laid a robust foundation in instrumental techniques, data interpretation, and the chemical behavior of environmental contaminants. This rigorous education fostered his proficiency in chromatographic analysis and sample preparation—skills that would later become central to his professional identity. His postgraduate work was notably research-intensive, emphasizing both theoretical comprehension and applied chemical methodology. The academic exposure to interdisciplinary studies, encompassing biochemistry, environmental science, and physical chemistry, further shaped his analytical orientation. His scientific rigor, instilled through structured coursework and hands-on laboratory modules, positioned him for seamless transition into high-level research environments. The degree not only marked a personal milestone but also served as a launching pad for a career dedicated to analytical precision and environmental responsibility in both corporate and national research frameworks.

Professional Experience 

Frédéric’s professional odyssey commenced at Danone Vitapole Research Center, where his role intersected food science and health-oriented chemistry. Here, he honed his aptitude in practical experimentation, contributing to the analytical evaluation of complex biological matrices. Subsequently, his tenure at INRA-Versailles in the “Xenobiotics and Environment” division deepened his insight into chemical residues, environmental pollutants, and bioaccumulation dynamics. In 2005, he joined Dr. Chantal Guillard’s esteemed group at the Laboratoire d’Application de la Chimie à l’Environnement. When the laboratory evolved into IRCELYON in 2007, Frédéric’s responsibilities expanded, incorporating methodological development, inter-laboratory coordination, and maintenance of high-precision instrumentation. His command of gas and liquid chromatography and custom-designed photocatalytic testing systems has made him an indispensable figure in environmental catalysis studies. Across every station of his career, his work ethic, technical versatility, and problem-solving mindset have enabled impactful scientific contributions and supported collaborative projects across academic and industrial landscapes.

Research Interest 

Frédéric Dappozze’s research interests lie at the confluence of analytical chemistry and environmental remediation. His focal expertise in separation science—particularly gas and liquid chromatography—enables the detection and quantification of pollutants, organic residues, and transformation products in complex matrices. He is equally committed to the experimental evaluation of photocatalytic activity, using tailored setups to monitor reaction kinetics and efficiency under controlled light exposure. His current endeavors within IRCELYON reflect an ambition to refine photocatalysts for atmospheric purification and wastewater treatment. By merging analytical rigor with environmental pragmatism, Frédéric aims to advance sustainable chemical processes and contribute to pollution mitigation strategies. He also explores the interface between surface chemistry and light-induced catalysis, seeking to elucidate mechanisms governing photocatalytic degradation pathways. This pursuit of interdisciplinary knowledge not only enhances environmental diagnostics but also informs the design of next-generation materials. His work underscores a commitment to actionable science addressing modern ecological challenges.

Award and Honor

While specific individual awards for Frédéric Dappozze are not publicly listed, his longstanding affiliation with CNRS and inclusion in high-impact research groups like IRCELYON speak volumes about his professional recognition. Being part of a nationally prestigious institute such as CNRS (Centre National de la Recherche Scientifique) signifies a career built on scientific merit, peer-reviewed contributions, and institutional trust. His role in shaping experimental methods for photocatalytic assessment and chromatography-based pollutant detection positions him as a specialist often called upon for collaborative efforts and technical mentorship. Contributions to national and European research initiatives, particularly those centered on environmental sustainability and catalysis, suggest consistent professional acknowledgment. His involvement in state-of-the-art projects and publications reflects the respect he commands within his field. These cumulative acknowledgments, though not always formalized as awards, represent enduring honors in the academic research ecosystem where impact and reliability are the true benchmarks of distinction.

Publications Top Notes 

  • Title: One-Step Synthesis of CuxOy/TiO₂ Photocatalysts by Laser Pyrolysis for Selective Ethylene Production from Propionic Acid Degradation
    Authors: Juliette Karpiel, Pierre Lonchambon, Frédéric Dappozze, Ileana Florea, Diana Dragoe, Chantal Guillard, Nathalie Herlin-Boime
    Year: 2023
    Citation: https://doi.org/10.3390/nano13050792
    Source: Nanomaterials (MDPI)

  • Title: First PEM Photoelectrolyser for the Simultaneous Selective Glycerol Valorization into Value-Added Chemicals and Hydrogen Generation
    Authors: Jie Yu, Jesús González-Cobos, Frédéric Dappozze, Nicolas Grimaldos-Osorio, Philippe Vernoux, Angel Caravaca, Chantal Guillard
    Year: 2023
    Citation: https://doi.org/10.1016/j.apcatb.2023.122465
    Source: Applied Catalysis B: Environmental (Elsevier)

  • Title: TiO₂ Catalyzed Dihydroxyacetone (DHA) Conversion in Water: Evidence That This Model Reaction Probes Basicity in Addition to Acidity
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.3390/molecules27238172
    Source: Molecules (MDPI)

  • Title: Correlation between Photocatalytic Properties of ZnO and Generation of Hydrogen Peroxide—Impact of Composite ZnO/TiO₂ Rutile and Anatase
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.3390/catal12111445
    Source: Catalysts (MDPI)

  • Title: Influence of the Micro-Nanostructuring of Titanium Dioxide Films on the Photocatalytic Degradation of Formic Acid under UV Illumination
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.3390/nano12061008
    Source: Nanomaterials (MDPI)

  • Title: Acetal Photocatalytic Formation from Ethanol in the Presence of TiO₂ Rutile and Anatase
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1007/s43630-022-00244-w
    Source: Photochemical and Photobiological Sciences (Springer)

  • Title: Corrigendum to “Influence of Graphene and Copper on the Photocatalytic Response of TiO₂ Nanotubes”
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1016/j.mssp.2022.106668
    Source: Materials Science in Semiconductor Processing (Elsevier)

  • Title: Coupling of Photocatalysis and Catalysis Using an Optical Fiber Textile for Room Temperature Depollution
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1016/j.chemosphere.2022.133940
    Source: Chemosphere (Elsevier)

  • Title: High Photocatalytic Activity of Aerogel Tetragonal and Monoclinic ZrO₂ Samples
    Authors: Frédéric Dappozze et al.
    Year: 2022
    Citation: https://doi.org/10.1016/j.jphotochem.2022.113970
    Source: Journal of Photochemistry and Photobiology A: Chemistry (Elsevier)

Conclusion 

Frédéric Dappozze epitomizes the modern analytical chemist—precise, adaptable, and deeply invested in environmental stewardship. His career trajectory from industrial laboratories to national research centers showcases a seamless blend of applied science and academic inquiry. As a CNRS engineer, he continues to champion method development in separation technologies and photocatalytic assessment, contributing critical insights to the environmental catalysis landscape. His technical acumen, collaborative mindset, and dedication to scientific precision have made him an invaluable resource within IRCELYON and beyond. Frédéric’s work does not exist in isolation but rather resonates across disciplines, influencing projects in atmospheric cleaning, water treatment, and green chemistry. Whether optimizing instrumentation or mentoring emerging researchers, he remains a driving force in advancing chemical solutions for sustainable futures. His enduring contributions highlight a career committed not just to knowledge acquisition, but to applying that knowledge for tangible ecological and societal benefit—an ethos at the heart of impactful scientific practice.

Pengxia Zhou | Physics | Best Researcher Award

Prof. Dr. Pengxia Zhou | Physics | Best Researcher Award

Associate professor at Nantong University, China

Zhou Pengxia (Zhou Pengxia) 🎓, born on October 24, 1977 🎂, is a dedicated physicist and educator at the School of Physical Science and Technology, Nantong University 🇨🇳. With over two decades of experience, she has contributed significantly to condensed matter physics and multiferroic materials research ⚛️. She earned her Ph.D. from Nanjing University and conducted postdoctoral research at leading institutions in Singapore 🌏. As the principal investigator of an NSFC-funded project, she explores octahedral rotations in perovskite superlattices 🧪. Her work bridges teaching and innovation, advancing the frontiers of physics through both academia and international collaboration 🌟.

Professional Profile:

Orcid

🔹 Education and Experience 

📘 Education:

  • 🎓 1997–2001: Bachelor’s Degree in Physics – Yanbei Normal College

  • 📚 2001–2004: Master’s Degree in Condensed Matter Physics – Yangzhou University

  • 🧠 2011–2015: Doctor’s Degree in Physics – Nanjing University

🧑‍🏫 Professional Experience:

  • 🏫 2004–Present: Lecturer – Nantong University

  • 🌏 2017.10–2018.02: Visiting Scholar – Singapore University of Technology and Design

  • 🌐 2018.09–2019.08: Research Fellow – National University of Singapore

🔹 Professional Development 

Dr. Zhou Pengxia’s professional journey reflects her passion for physics and global academic growth 🌍📈. She has participated in international collaborations in Singapore, enriching her research and teaching perspectives 🇸🇬🔬. At Nantong University, she not only teaches but also mentors students in advanced materials science 🎓🧪. Her participation in cutting-edge research on perovskite superlattices and multiferroicity has positioned her as a recognized contributor in her field ⚛️. Through continual learning, overseas exchanges, and scientific leadership, Dr. Zhou remains committed to academic excellence and innovation in physical science education and research 📘🌟.

🔹 Research Focus 

Dr. Zhou Pengxia’s research is centered around condensed matter physics with a specific emphasis on multiferroic materials and perovskite superlattices 🧲⚡. She investigates how octahedral rotation affects multiferroicity, exploring mechanisms to enhance functional properties of complex oxides 🧪🧬. Her work contributes to the understanding and engineering of materials that exhibit both ferroelectric and magnetic properties – critical for next-generation electronic devices 💻🔋. With a focus on crystal structures and symmetry interactions, her research bridges fundamental science and potential applications in sensors, memory devices, and spintronics 🌐🔧. Zhou’s interdisciplinary approach adds great value to material innovation 🔍🧠.

🔹 Awards and Honors 

🏆 Awards & Honors:

  • 🌟 Principal Investigator – National Natural Science Foundation of China (2017–2019) for research on perovskite superlattices

  • 🎓 Invited Research Fellow – National University of Singapore (2018–2019)

  • 🌍 International Collaboration Grant – Singapore University of Technology and Design (2017–2018)

Publication Top Notes

1. Employing interpretable multi-output machine learning to predict stable perovskites in photovoltaics

Journal: Materials Today Communications, 2025
DOI: 10.1016/j.mtcomm.2025.112552
Summary:
This study leverages interpretable multi-output machine learning models to predict thermodynamically stable perovskite materials for photovoltaic applications. The key innovation lies in the simultaneous prediction of multiple material properties (e.g., stability, band gap, defect tolerance) using models that offer transparency into decision-making (e.g., SHAP values, decision trees). This work contributes to faster and explainable discovery of efficient perovskites for solar cell design.

2. A first-principles study on the multiferroicity of semi-modified X₂M (X = C, Si; M = F, Cl) monolayers

Journal: Physical Chemistry Chemical Physics, 2023
DOI: 10.1039/D2CP04575C
Summary:
This DFT-based study explores multiferroic behavior in 2D monolayers composed of X₂M (X = C, Si; M = F, Cl), highlighting their coexisting ferroelectric and magnetic properties. The findings suggest semi-modified 2D materials could serve as candidates for spintronic and memory devices, due to their tunable multiferroic characteristics.

3. Theoretical investigation of the magnetic and optical properties in a transition metal-doped GaTeCl monolayer

Journal: Physical Chemistry Chemical Physics, 2023
DOI: 10.1039/D3CP02313C
Summary:
This study investigates how doping GaTeCl monolayers with transition metals (e.g., Mn, Fe, Co) affects their magnetic and optical behavior. Using DFT, the authors show enhanced magneto-optical properties, suggesting that doped GaTeCl systems are promising for optoelectronic and spintronic devices.

4. Magnetism and hybrid improper ferroelectricity in LaMO₃/YMO₃ superlattices

Journal: Phys. Chem. Chem. Phys., 2019
Author: Pengxia Zhou
Summary:
This work presents a theoretical analysis of LaMO₃/YMO₃ (M, Y = transition metals) superlattices, showing hybrid improper ferroelectricity arising from coupling between octahedral tilting and rotations, along with magnetic ordering. The results support the design of multifunctional oxide heterostructures combining electric and magnetic orderings.

5. The excitonic photoluminescence mechanism and lasing action in band-gap-tunable CdS₁−ₓSeₓ nanostructures

Journal: Nanoscale, 2016
Author: Pengxia Zhou
Summary:
This paper discusses CdS₁−ₓSeₓ nanostructures with tunable band gaps. The team demonstrates strong excitonic photoluminescence and low-threshold lasing, linking optical properties to composition and quantum confinement. It provides a foundational understanding for nanoscale optoelectronic and laser devices.

6. Ferroelectricity driven magnetism at domain walls in LaAlO₃/PbTiO₃ superlattices

Journal: Scientific Reports, 2015
Author: Pengxia Zhou
Summary:
This study reveals that in LaAlO₃/PbTiO₃ superlattices, ferroelectric domain walls can induce localized magnetic moments due to lattice distortions and charge redistributions. This domain-wall magnetism introduces the potential for non-volatile magnetic memory controlled by ferroelectric domains.

Conclusion:

Dr. Zhou Pengxia is a suitable candidate for a Best Researcher Award, particularly in the fields of condensed matter physics and material science. Her leadership in nationally funded research, international collaboration experience, and long-standing academic service reflect a researcher committed to scientific advancement and knowledge dissemination. While her publication record and citation metrics were not provided, her PI role on an NSFC project suggests peer recognition and scholarly maturity.

Shihao Zhang | Nanostructures | Best Researcher Award

Dr. Shihao Zhang | Nanostructures | Best Researcher Award

Specially Appointed Assistant Professor at Osaka University, Japan.

🎓 Dr. Shihao Zhang (born August 1993) is a Specially Appointed Assistant Professor at Osaka University, Japan, specializing in computational materials science. His research spans materials theory, mechanical properties, crystal defects, nanostructures, and machine learning applications. He earned his Ph.D. in Materials Science from Beihang University and has held prestigious research positions, including a JSPS Postdoctoral Fellowship. Dr. Zhang has contributed significantly to high-throughput materials simulations, publishing 34+ papers in leading journals like npj Computational Materials and Acta Materialia, accumulating 750+ citations (H-index: 13).

Professional Profile:

Scopus Profile

Suitability for Best Researcher Award – Dr. Shihao Zhang

Dr. Shihao Zhang stands out as a strong candidate for the Best Researcher Award due to his remarkable contributions to computational materials science. His expertise in materials theory, nanostructures, and machine learning-driven materials design has significantly advanced the field. His research has led to high-throughput materials simulations, fundamental discoveries in mechanical properties, and the development of innovative software tools.

Education & Experience

📚 Education:

  • 🎓 Ph.D. in Materials Science – Beihang University, 2021
  • 📊 B.S. in Materials Science & Engineering & Applied Mathematics – Dual degrees

🧑‍🏫 Experience:

  • 🔬 Specially Appointed Assistant Professor – Osaka University, Japan
  • 🏅 JSPS Postdoctoral Fellow – Osaka University
  • 💻 Researcher – IT4Innovations, Czech National Supercomputing Centre

Professional Development

🧪 Dr. Shihao Zhang has made significant contributions to computational materials science through advanced modeling, high-throughput simulations, and machine learning techniques. He has developed innovative software tools to enhance material design and prediction capabilities. 📈 His work bridges fundamental materials theory with practical applications, focusing on mechanical properties, plasticity, and nanostructures. 🔗 His research collaborations span multiple international institutions, fostering advancements in computational techniques and supercomputing applications. 🏆 With 34+ publications in prestigious journals and an H-index of 13, Dr. Zhang continues to drive impactful discoveries in materials science.

Research Focus

🛠️ Dr. Zhang’s research lies at the intersection of materials theory, mechanical properties, crystal defects, plasticity, nanostructures, and computational modeling. His expertise in machine learning-driven materials design enables the development of advanced materials with superior mechanical performance. 💡 His work utilizes high-throughput computational methods to predict material behavior at the atomic and nanoscale levels. 🔬 By integrating data-driven approaches with physics-based simulations, he enhances material discovery and optimization. 🌍 His research is essential for innovations in aerospace, electronics, and structural materials, pushing the boundaries of next-generation materials engineering.

Awards & Honors

🏅 JSPS Postdoctoral Fellowship – Japan Society for the Promotion of Science
📜 Multiple Research Grants – Supporting computational materials research
📖 34+ High-Impact Publicationsnpj Computational Materials, Acta Materialia, Physical Review B
📊 750+ Citations (H-index: 13) – Recognized research contributions
💡 Developed Software Tools – For high-throughput materials simulations
🌍 International Research Collaborations – Osaka University, IT4Innovations, and more

Publication Top Notes

  • Title: Temperature and loading-rate dependent critical stress intensity factor of dislocation nucleation from crack tip: Atomistic insights into cracking at slant twin boundaries in nano-twinned TiAl alloys

    • Authors: R. Fu, Rong; Z. Rui, Zhiyuan; J. Du, Junping; F. Meng, Fanshun; S. Ogata, Shigenobu
    • Year: 2025
  • Title: A dislocation perspective on heterointerfacial strengthening in nanostructured diamond and cubic boron nitride composites

    • Authors: H. Wei, Hanqing; H. Zhan, Haifei; D. Legut, Dominik; S. Zhang, Shihao
    • Year: 2025
  • Title: Dislocation plasticity in c-axis nanopillar compression of wurtzite ceramics: A study using neural network potentials

    • Authors: S. Zhang, Shihao; S. Ogata, Shigenobu
    • Year: 2025

Reza Kalami | Physics and Astronomy | Best Researcher Award

Dr. Reza Kalami | Physics and Astronomy | Best Researcher Award

Semnan University, Iran

Dr. Reza Kalami is a distinguished physicist specializing in condensed matter physics and nanotechnology, with a focus on the electronic, thermoelectric, and transport properties of advanced nanomaterials. Born on September 21, 1989, in Semnan, Iran, he earned his PhD in Condensed Matter Physics from Damghan University in 2023, where he conducted groundbreaking research on graphene, silicene, and germanene nanoribbons. His work explores the impact of defects, quantum antidots, and electromagnetic fields on nanostructures, contributing to advancements in energy efficiency and next-generation nanodevices. With a strong academic background that includes an M.Sc. in Nanoscience and Nanotechnology and a B.Sc. in Solid State Physics, Dr. Kalami has authored 10 influential publications in high-impact journals. His innovative contributions have positioned him as a promising researcher in the field, dedicated to pushing the boundaries of knowledge in material science and nanotechnology.

Professional Profile

Education

Dr. Reza Kalami’s academic journey demonstrates a deep commitment to physics, particularly in the areas of nanotechnology and condensed matter physics. He earned his PhD in Condensed Matter Physics from Damghan University in 2023, focusing on advanced research into the electronic, thermoelectric, and transport properties of nanomaterials such as graphene and silicene nanoribbons. His doctoral studies emphasized innovative methods to enhance energy efficiency and material performance in nanostructures. Before this, he completed his M.Sc. in Physics with a specialization in Nanoscience and Nanotechnology at Damghan University in 2018, where he gained expertise in nanoscale material properties and theoretical modeling. Dr. Kalami’s academic foundation was laid during his undergraduate studies at Semnan University, where he earned a B.Sc. in Solid State Physics in 2011, developing a robust understanding of material science and quantum mechanics. This strong educational background underpins his pioneering research in nanotechnology and material science.

Professional Experience

Dr. Reza Kalami’s professional experience is primarily centered around academic research in condensed matter physics and nanotechnology. Throughout his career, he has focused on exploring the electronic, thermoelectric, and transport properties of nanomaterials, including graphene, silicene, and germanene nanoribbons. His research often involves the manipulation of quantum properties and defect engineering to improve the performance of these materials for energy-efficient devices and advanced nanotechnologies. Dr. Kalami has collaborated extensively with other researchers, particularly with S.A. Ketabi, on several key publications in renowned journals, further establishing his expertise in the field. His work has contributed to advancing the understanding of how defects, magnetic fields, and quantum antidots affect the behavior of nanomaterials. Although he has primarily been involved in academic research, his contributions have positioned him as a significant figure in the nanoscience community, with ongoing projects aimed at solving critical challenges in material science and nanotechnology.

Research Interests

Dr. Reza Kalami’s research interests are centered around the exploration of nanomaterials and their unique quantum properties, with a particular focus on graphene, silicene, and germanene nanoribbons. His work investigates the effects of defects, quantum antidots, and electromagnetic fields on the electronic, thermoelectric, and transport properties of these materials. Dr. Kalami aims to optimize the performance of nanostructures for applications in energy-efficient devices, advanced electronics, and nanotechnology. His research also delves into the manipulation of material properties through defect engineering and the study of magnetic fields, providing valuable insights into how these factors influence the behavior of nanomaterials at the quantum level. His interdisciplinary approach combines theoretical modeling with practical applications, positioning his work at the forefront of nanoscience and condensed matter physics. Through his research, Dr. Kalami contributes significantly to advancing the understanding and development of next-generation nanodevices with enhanced functionality.

Awards and Honors

Dr. Reza Kalami has earned recognition for his impactful contributions to condensed matter physics and nanotechnology, although most of his accolades stem from his research achievements and publications. His work has been published in prestigious scientific journals such as the Journal of Electronic Materials and Physica E, solidifying his reputation within the scientific community. His research on the electronic and thermoelectric properties of nanomaterials, including graphene and silicene nanoribbons, has garnered significant attention, contributing to the advancement of energy-efficient technologies and nanodevices. Although he has not received specific awards listed in public databases, the quality and innovation of his publications, along with the acknowledgment of his research by peers and collaborators, reflect his standing in the field. Dr. Kalami’s ongoing contributions to the nanoscience community suggest that further recognition, both within academic and professional circles, is likely as his career progresses.

Conclusion

Dr. Reza Kalami demonstrates exceptional promise as a researcher in condensed matter physics and nanotechnology, with a strong foundation in theoretical and applied studies. His impressive publication record and innovative focus position him as a strong contender for the Best Researcher Award. However, further diversification in collaboration, demonstration of leadership in projects, and clear metrics of research impact would elevate his candidacy to an even higher level. Overall, he is a highly suitable candidate for this recognition.

Publications Top Noted

  • Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons
    • Authors: Ardyani, M., Ketabi, S.A., Kalami, R.
    • Journal: Journal of Computational Electronics
    • Year: 2024
    • Citations: 1 📘
  • Effect of electromagnetic radiation on the electronic and thermoelectric properties of armchair edge silicene nanoribbons
    • Authors: Ardyani, M., Ketabi, S.A., Kalami, R.
    • Journal: Solid State Communications
    • Year: 2024
    • Citations: 2 📚📘
  • Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Electronic Materials
    • Year: 2023
    • Citations: 4 📚📚📘📘
  • Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Electronic Materials
    • Year: 2023
    • Citations: 6 📚📚📚📘📘📘
  • Effect of Stone–Wales defect on the electronic and thermoelectric properties of armchair edge germanene nanoribbons
    • Authors: Kalami, R.
    • Journal: Physica E: Low-Dimensional Systems and Nanostructures
    • Year: 2025
    • Citations: 0 🔍
  • Exploring the electronic and thermoelectric properties of zigzag and armchair edge Irida-Graphene nanoribbons
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Computational Electronics
    • Year: 2025
    • Citations: 0 🔍