69 / 100

Dr. Masahiro Nishida | Impact Engineering | Best Researcher Award

Orcid Profile

Educational Details

B.E. in Mechanical Engineering (1991): Tokyo Institute of Technology.

M.E. in Mechanical Engineering (1993): Tokyo Institute of Technology.

Ph.D. in Mechanical Engineering (1996): Tokyo Institute of Technology, under the supervision of Professor H. Matsumoto. His thesis was titled “Evaluation Method of Mechanical Properties for Material by Phase-Sensitive Acoustic Microscope”.

 

Professional Experience

Prof. Nishida began his career as a Research Associate in the Department of Mechanical Science at Tokyo Institute of Technology from 1996 to 1997. He then joined Nagoya Institute of Technology as a Research Associate in 1997, working under Professor K. Tanaka. He progressed to Lecturer (2001-2004), Associate Professor (2004-2018), and has been a full Professor since 2018. In addition to his academic roles, he has served as the General Manager of the Quality Innovation Techno-Center at Nagoya Institute of Technology since 2022. He has also been a visiting researcher at Luleå University of Technology, Sweden, in 2009.

Research Interest

Prof. Masahiro Nishida’s research focuses on the dynamic behavior of materials under extreme conditions, with particular emphasis on hypervelocity impacts and advanced material properties. His work on hypervelocity impact explores the performance of materials like metals and plastics used in space debris bumpers, carbon fiber-reinforced plastics, and components produced through additive manufacturing. In the field of dynamic strength of advanced materials, he investigates the mechanical properties of recycled aluminum alloys, additive manufacturing materials, and biodegradable plastics using the split Hopkinson pressure bar (SHPB) technique, which allows for high-strain-rate testing. Additionally, his research into the dynamics of heterogeneous materials involves studying the behavior of aggregated soft particles and understanding how contact forces propagate within these assemblies. This combination of experimental and computational approaches provides valuable insights into the resilience and performance of materials in extreme environments.

Top Notable Publications

Effects of electron beam irradiation on hypervelocity impact behavior of carbon fiber reinforced plastic plates
Journal: Journal of Composite Materials
Published: December 2021
DOI: 10.1177/00219983211037049
Citations: Data not provided through Scopus.

Effects of the shapes and addition amounts of crosslinking reagents on the properties of poly‐3‐hydroxybutyrate/poly(caprolactone) blends
Journal: Journal of Applied Polymer Science
Published: June 2021
DOI: 10.1002/app.51210
Citations: Data not provided through Scopus.

Effect of chain extender on morphology and tensile properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blends
Journal: Materials Today Communications
Published: March 2021
DOI: 10.1016/j.mtcomm.2020.101852
Citations: Data not provided through Scopus.

Correlative analysis between morphology and mechanical properties of poly-3-hydroxybutyrate (PHB) blended with polycaprolactone (PCL) using solid-state NMR
Journal: Polymer Testing
Published: November 2020
DOI: 10.1016/j.polymertesting.2020.106780
Citations: Data not provided through Scopus.

Correlative analysis between solid-state NMR and morphology for blends of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate)
Journal: Polymer
Published: 2020
DOI: 10.1016/j.polymer.2020.122591
Citations: Data not provided through Scopus.

Effects of deformation rate on tensile properties of ramie fiber/PLA/PBAT composites
Conference: ECCM 2018 – 18th European Conference on Composite Materials
Published: 2020
EID: 2-s2.0-85084162322
Citations: Data not provided through Scopus.

Effects of gamma ray irradiation on penetration hole in and fragment size from carbon fiber reinforced composite plates in hypervelocity impacts
Journal: Composites Part B: Engineering
Published: July 2019
DOI: 10.1016/j.compositesb.2019.04.007
Citations: Data not provided through Scopus.

Influence of impact angle on size distribution of fragments in hypervelocity impacts
Journal: International Journal of Impact Engineering
Published: June 2019
DOI: 10.1016/j.ijimpeng.2019.02.006
Citations: Data not provided through Scopus.

Conclusion

Prof. Masahiro Nishida is a highly qualified candidate for the Best Researcher Award. His strong educational background, extensive research experience, leadership roles, and cutting-edge research in dynamic material properties and hypervelocity impact make him a prominent figure in mechanical engineering. His research aligns well with current industrial needs, particularly in aerospace, sustainability, and material innovation, further enhancing his candidacy for such an award.

 

Masahiro Nishida | Impact Engineering | Best Researcher Award

You May Also Like