Lijun Chen | Engineering | Best Researcher Award

Prof. Lijun Chen | Engineering | Best Researcher Award

Professor at Northeast Electric Power University, China

Professor Lijun Chen is a seasoned academic and applied researcher at Northeast Electric Power University, bringing over three decades of expertise in automation, thermophysical measurement, and power plant monitoring systems. 🚀 With early technical training at Fuji Electric (Japan) and a strong industrial foundation at Dalian Huaying High-Tech Co., he seamlessly bridges theory with real-world application. His scholarly portfolio boasts 50+ journal publications 📚 (with 20+ indexed by EI and others in SCI), and six national invention patents that reflect his innovation-driven mindset. ⚙️ He has led multiple national and provincial projects, combining academic research with industrial consulting to optimize thermal power systems. A Senior Member of the China Metrology Society, his dedication is evident through a career filled with impactful collaborations, cutting-edge research, and enduring contributions to the energy sector. 🔧 His work continues to empower sustainable and efficient energy technologies across China and beyond. 🌏

Professional Profile 

Scopus

🎓 Education

Professor Lijun Chen’s educational journey is deeply rooted in engineering excellence. 🌱 He enhanced his technical knowledge through automation testing training at Fuji Electric, Japan (1991–1992), where he gained exposure to international standards and modern industrial practices. This early international training laid the groundwork for a future in advanced automation and instrumentation. He continued sharpening his skills with hands-on industry experience before entering academia. 📐 His educational pursuits were not just theoretical but focused on practical solutions for real-world problems in power systems. His academic foundation, supplemented by immersive industrial exposure, uniquely positions him as a knowledge leader in thermophysical measurement and energy systems. 🔋 The fusion of global learning and domestic execution in his educational journey symbolizes his balanced and forward-thinking approach to engineering education and research. 📊

👨‍💼 Professional Experience

Professor Chen’s professional voyage is an exemplar of bridging industry with academia. 🏭 From 1995 to 1997, he worked at Dalian Huaying High-Tech Co., developing automation solutions for complex power systems. Following this, from 1997 to 2001, he continued innovating at the Institute of Electronic Engineering Technology, sharpening his expertise in electronic control. Since 2001, he has been a cornerstone of the School of Automation Engineering at Northeast Electric Power University. 🧑‍🏫 There, he has led or collaborated on numerous high-impact projects, integrating research with engineering applications. His leadership in thermal power plant control systems has shaped provincial-level R&D initiatives and academic–industry partnerships. 🧠 His work with national and horizontal industry projects exemplifies how academic insight can directly solve operational challenges in the energy sector. 🔌

🔬 Research Interest

Lijun Chen’s research is centered on cutting-edge thermal measurement and automation in power engineering. 🌡️ His core interests span thermophysical parameter estimation, combustion optimization, and defect detection in high-frequency electromagnetic equipment. 🔎 These focus areas have significant industrial value, particularly in enhancing the efficiency, safety, and reliability of thermal power plants. His work addresses critical challenges in energy management and environmental control, making his innovations especially relevant in the current era of carbon reduction and sustainable engineering. 🌍 Professor Chen’s ability to combine hardware innovation with control algorithms demonstrates his multi-disciplinary reach across automation, electronics, and thermodynamics. His projects often involve both modeling and experimental validation, ensuring practical applicability. 📊 His collaborations with institutes and enterprises are further proof of his commitment to solving industry-grade problems with scientifically sound solutions. ⚛️

🏅 Award and Honor

Throughout his illustrious career, Professor Chen has been recognized with multiple provincial science and technology awards, a testament to the real-world impact of his work. 🏆 His patents—six granted at the national level—underscore his creative contributions to the field of power system automation and thermal engineering. 📜 His consistent participation in government-funded and industry-sponsored projects not only highlights his technical capability but also his leadership in driving research innovation. He is a Senior Member of the China Metrology Society and plays a notable role in the Jilin Province Electrical Engineering Society, reflecting his influence in professional circles. 🤝 His efforts have significantly elevated the performance of thermal power systems, earning him peer recognition and respect. His honors are not just awards—they are reflections of decades of dedicated research, innovation, and service to the field. 🔧💡

📚 Publications Top Note 

1. Title: The Feasibility Study on Pulverized Coal Mass Concentration Measurement in Primary Air of Plant Using Fin Resonant Cavity Sensor
Authors: Hao Xu, Yiguang Yang, Lijun Chen, Hongbin Yu, Junwei Cao
Year: 2024
Type: Conference Paper
Source: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
Citations: 0 (as of the latest data)
Summary:
This study explores the application of a fin resonant cavity sensor to measure the mass concentration of pulverized coal in the primary air system of power plants. The authors designed and experimentally validated a resonant cavity-based sensor for real-time and high-flow environment monitoring. Results indicate the method’s strong potential for improving combustion efficiency and operational safety in thermal power systems.


2. Title: Research on Finite-Time Consensus of Multi-Agent Systems
Authors: Lijun Chen, Yu Zhang, Yuping Li, Linlin Xia
Year: 2019
Type: Journal Article
Source: Journal of Information Processing Systems (JIPS)
DOI: 10.3745/JIPS.01.0039
Citations: 1 (confirmed from source journal; citation count may vary on other platforms)
Summary:
This paper proposes a novel consensus protocol that enables finite-time convergence in second-order multi-agent systems. By incorporating the gradient of a global cost function into the standard consensus model, the authors enhance coordination speed and robustness among agents. Theoretical analysis using Lyapunov functions, homogeneity theory, and graph theory supports the method’s effectiveness. Simulations demonstrate superior performance in leader–follower scenarios.

Conclusion 

In conclusion, Professor Lijun Chen exemplifies the model of a research-driven innovator and dedicated academic. 📘 With a career spanning research, teaching, consultancy, and invention, he has contributed immensely to the advancement of thermal power automation and measurement systems. His ability to transform theoretical concepts into tangible industrial solutions highlights his value as both a scholar and engineer. 🔬 His multi-patented technologies and SCI-indexed publications reflect a commitment to quality, while his work with industry partners showcases practical relevance. With unwavering focus and passion for thermodynamics, automation, and sustainability, Professor Chen continues to shape the future of smart thermal energy systems in China and beyond. 🌱 His legacy is one of bridging knowledge with innovation, inspiring a new generation of researchers and engineers. 🌟

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Visiting faculty at Birla Institute of Technology and Science Pilai, India

Dr. K. Lakshmi Prasanna 🎓 is a passionate researcher and academician in the field of High Voltage Engineering, with a strong command over system modeling, fault diagnostics, and parameter estimation using MATLAB/Simulink 🛠️. She brings a unique blend of theoretical insight and hands-on expertise in simulation, optimization, control systems, and signal processing. Her innovative Ph.D. work at BITS Pilani, Hyderabad focused on transformer winding modeling and inter-turn fault diagnostics 🔍, proposing novel, non-intrusive algorithms with real-world applicability. With a foundation in Power Electronics and Electrical Engineering ⚡, she also has teaching experience at multiple esteemed engineering colleges, nurturing minds in core subjects. Driven by curiosity and adaptability, she actively embraces new software tools and collaborative environments 💡. Her professional trajectory reflects a consistent commitment to academic excellence, technical rigor, and transformative innovation in electrical engineering. 🚀

Professional Profile

Orcid

Scopus

Google Scholar

📚 Education

Dr. Lakshmi Prasanna’s educational journey 🌱 reflects a steady and impressive rise through the academic ranks of electrical engineering. Beginning with a remarkable 96.9% in her Higher Secondary 🏫, she pursued her B.Tech in EEE and M.Tech in Power Electronics from JNTUA, scoring 85.1% and 85%, respectively 🎯. Her academic excellence culminated in a Ph.D. in High Voltage Engineering at BITS Pilani, Hyderabad Campus, where she maintained an impressive 8.0 CGPA 📈. Her doctoral thesis delved into cutting-edge research on transformer fault diagnosis and system modeling, placing her at the forefront of innovation in condition monitoring and electrical diagnostics. Throughout her educational path, she has consistently demonstrated not just technical brilliance but also a hunger for knowledge and an ability to bridge theory and application seamlessly 📘⚙️.

👩‍🏫 Professional Experience 

With over a decade of dedicated service in academia and research, Dr. Lakshmi Prasanna has built a versatile and impactful professional portfolio 🧠. Beginning her journey as an Assistant Professor at Rami Reddy Subbarami Reddy Engineering College (2012–2017), she laid her pedagogical foundations teaching essential subjects like Electrical Machines, Circuits, and Power Electronics 🔌. Her journey continued at St. Martin’s Engineering College (2017–2019), where she continued imparting technical knowledge with enthusiasm and clarity. From 2018 to 2025, her role as a Research Assistant at BITS Hyderabad marked a turning point, as she immersed herself in advanced simulation and transformer fault diagnostics 🔬. Beyond teaching, her experience also includes proposal writing, technical documentation using LaTeX, and collaborative interdisciplinary projects, marking her as a well-rounded professional 🌐📝.

🔍 Research Interests 

Dr. Lakshmi Prasanna’s research is deeply rooted in the intelligent modeling of electrical systems, with a spotlight on transformer winding diagnostics, state-space modeling, and parameter estimation using non-intrusive techniques 🧩. Her innovative Ph.D. work proposed the integration of subspace identification and similarity transformations to estimate transformer parameters and detect inter-turn faults purely from terminal measurements ⚙️🔍. Her expertise in MATLAB M-script development, COMSOL Multiphysics simulations, and system optimization reflects a rare proficiency in both simulation and real-world application. Additionally, she is intrigued by control systems, fault-tolerant design, and signal processing, with a strong drive toward creating robust, adaptive models for condition monitoring 🧠📊. Her work directly contributes to the reliability and safety of electrical infrastructure, making her research highly relevant to modern power systems and smart grid innovation 🌐⚡.

🏅 Awards and Honors

Dr. Lakshmi Prasanna’s academic journey is marked by consistently high achievements and academic recognition 🏆. From securing a 96.9% in her HSC to maintaining top scores through her undergraduate and postgraduate studies, her excellence has been evident from the outset 🎓. While formal awards during her doctoral years may not be listed, her selection and continuation at BITS Pilani, one of India’s premier institutions, is a distinction in itself 🌟. Her progression into high-level research projects, including complex simulation and modeling of transformer systems, attests to her recognition within the academic and research community. Her teaching roles across reputed engineering colleges and involvement in technical proposal writing and collaborative research are testaments to her leadership and scholarly respect 🥇. She continues to be acknowledged for her dedication, depth of knowledge, and clarity in delivering technical content.

Publications Top Notes 

1. Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100982

  • Source: e-Prime – Advances in Electrical Engineering, Electronics and Energy

  • Summary: This study introduces a non-invasive method for identifying and assessing the severity of inter-turn faults in transformer windings using only external terminal measurements. The approach enhances fault detection accuracy without requiring internal access to the transformer.


2. Radial deformation detection and localization in transformer windings: A terminal measured impedance approach

  • Authors: Lakshmi Prasanna Konjeti, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100945

  • Source: e-Prime – Advances in Electrical Engineering, Electronics and Energy

  • Summary: The paper presents a novel, non-invasive method for diagnosing radial deformation faults in transformer windings by analyzing terminal impedance measurements, enabling effective detection and severity assessment based on capacitance changes.


3. A non-iterative analytical approach for estimating series-capacitance in transformer windings solely from terminal measured frequency response data

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.epsr.2024.111086

  • Source: Electric Power Systems Research

  • Summary: This research proposes a non-iterative analytical method to estimate the series capacitance of transformer windings using only terminal frequency response data, simplifying the estimation process and improving accuracy.


4. Accurate Estimation of Transformer Winding Capacitances and Voltage Distribution Factor Using Driving Point Impedance Measurements

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2024

  • DOI: 10.1109/ACCESS.2024.3460968

  • Source: IEEE Access

  • Summary: The study introduces an innovative methodology for precisely estimating winding capacitances and the voltage distribution factor using driving point impedance measurements, enhancing transformer modeling and analysis.


5. A Symbolic Expression for Computing the Driving Point Impedance and Pole-Zero-Gain of a Transformer from its Winding Parameters

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1109/INDICON59947.2023.10440729

  • Source: 2023 IEEE 20th India Council International Conference (INDICON)

  • Summary: This paper presents a symbolic expression for computing the driving point impedance and pole-zero-gain of a transformer based on its winding parameters, facilitating efficient analysis of transformer behavior.


6. Analytical computation of driving point impedance in mutually coupled inhomogeneous ladder networks

  • Authors: K. Lakshmi Prasanna, Mithun Mondal

  • Year: 2023

  • DOI: 10.1002/cta.3839

  • Source: International Journal of Circuit Theory and Applications

  • Summary: The research introduces a new approach for computing the driving point impedance of inhomogeneous ladder networks with mutual coupling, enhancing the accuracy of electrical network modeling.


7. Analytical formulas for calculating the electrical characteristics of multiparameter arbitrary configurational homogenous ladder networks

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1002/cta.3547

  • Source: International Journal of Circuit Theory and Applications

  • Summary: This paper presents generalized analytical formulas for computing the electrical properties of multiparameter arbitrary configuration homogeneous ladder networks, aiding in the design and analysis of complex electrical circuits.


8. Terminal Measurements-Based Series Capacitance Estimation of Power Transformer Windings Using Frequency-Domain Subspace Identification

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2023

  • DOI: 10.1109/TIM.2023.3311074

  • Source: IEEE Transactions on Instrumentation and Measurement

  • Summary: The study proposes a method for estimating the series capacitance of power transformer windings using frequency-domain subspace identification based on terminal measurements, improving the accuracy of transformer diagnostics.


9. Elimination of Mutual Inductances from the State-Space Model of a Transformer Winding’s Ladder Network Using Eigen Decomposition

  • Authors: K. Lakshmi Prasanna

  • Year: 2022

  • DOI: 10.1109/CATCON56237.2022.10077664

  • Source: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)

  • Summary: This paper presents a method to eliminate mutual inductances from the state-space model of a transformer winding’s ladder network using eigen decomposition, simplifying the analysis of transformer dynamics.

10. Internet Of Things (IOT) in Distribution grid using DSTATCOM

  • Authors: K. Lakshmi Prasanna

  • Year: 2019

  • DOI: 10.1109/RDCAPE47089.2019.8979044

  • Source: 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE)

  • Summary: The paper discusses the integration of Internet of Things (IoT) technology with DSTATCOM in distribution grids to improve power factor and enable real-time monitoring, enhancing the efficiency and reliability of power distribution systems.

Conclusion 

In conclusion, Dr. K. Lakshmi Prasanna stands as a beacon of innovation, diligence, and academic integrity in the realm of electrical engineering and high voltage research 🌟. Her journey from a stellar student to a dynamic researcher and dedicated educator is marked by technical excellence, innovative research, and a passion for teaching 🎯. With deep expertise in MATLAB/Simulink, transformer modeling, and non-intrusive diagnostics, she contributes meaningfully to the future of smart and resilient power systems ⚡💻. Her collaborative spirit, adaptability to emerging tools, and constant pursuit of knowledge ensure her continued relevance and impact in the scientific community 📚🚀. As she continues to explore new horizons in diagnostics and system modeling, her work promises to empower more efficient and intelligent energy systems of tomorrow 🔋🔬.

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen 🎓, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 🏛️, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community 📚. His scholarly portfolio includes 39 academic articles, 3 granted patents 🧠🔧, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications 🌐. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration 🌟.

Professional Profile 

ORCID Profile

🎓 Education

Dr. Jian Chen’s academic journey 🌱 began at Jilin University, where he pursued both his Bachelor’s (2001–2005) and Master’s (2005–2007) degrees in Communication Engineering 🛰️. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011–2014) ⚙️. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise 🧠. This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset 📘🔬.

🧑‍🔬 Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS 🏢. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics 💡. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents 🔍📑. Dr. Chen also stands out as a peer-review gatekeeper—serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI 🧾📖. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to China’s optics and precision mechanics research domain 🔧🌍.

🔬 Research Interest

Jian Chen’s research interests orbit around the convergence of optics, mechanical design, and electrical systems 🔭⚙️. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation 💡🔧. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms 📡🔍. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems 🚀. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure 📈.

🏆 Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field 🌟. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones 🏅📘, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise 🧠✒️. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance 🧬🕊️.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

🧾 Conclusion

Dr. Jian Chen’s career is a synthesis of academic strength, research innovation, and peer leadership 📚🌟. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology 🌐. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitioner—someone who not only explores ideas but also brings them to life 🔬💡. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe 🌏📈.

Elżbieta Jarzębowska | Engineering | Best Researcher Award

Prof. Elżbieta Jarzębowska | Engineering | Best Researcher Award

Prof. Elżbieta Jarzębowska at Warsaw University of Technology, Poland

Prof. Elżbieta M. Jarzębowska 🇵🇱 is a distinguished academic at the Warsaw University of Technology 🏫, serving in the Institute of Aeronautics and Applied Mechanics ✈️. With a strong foundation in mechanical engineering ⚙️, her research spans multibody systems dynamics, nonlinear and geometric control 🧠, and robotics 🤖, including UAVs and space systems 🚀. She has contributed to major international projects in the USA 🇺🇸 and UK 🇬🇧, working with Ford Motor Company 🚗 and Cranfield University 🎓. Author of 150+ papers 📚, she is also a dedicated editor 📝 and member of top engineering societies like ASME and IFToMM 🌍.

Professional Profile:

Orcid

scopus

Google Scholar

🔹 Education and Experience 

🎓 Education

  • 🧠 B.S., M.S., Ph.D., D.Sc. in Mechanical Engineering from Warsaw University of Technology

  • 📚 Specialization in control and mechanics of constrained systems

💼 Experience

  • 🏫 Professor at Warsaw University of Technology

  • 🚗 Researcher at Ford Motor Company Research Laboratories, Dearborn, MI, USA

  • 🔧 Collaborator with Engineering Research Centre for Reconfigurable Machining Systems, University of Michigan

  • 🎓 Visiting researcher at Cranfield University, UK

  • 🌍 Member of Polish Academy of Sciences Committee of Mechanics, ASME, and IFToMM

🔹 Professional Development 

Prof. Jarzębowska has demonstrated exceptional growth through global collaboration 🌍, engaging in cutting-edge research in the US and UK. Her work with Ford Motor Company 🚙 and the University of Michigan 🧪 enhanced her real-world application of dynamic modeling and control theories. As an academic, she consistently contributes to curriculum development 📖, authorship, and editorial roles for high-impact journals 📝. Her active involvement in ASME, IFToMM, and Polish scientific communities 💼 showcases her commitment to lifelong learning and interdisciplinary exchange 🔄. She mentors young researchers 🎓 and advances mechanical control theory with every step 🚀.

🔹 Research Focus 

Prof. Jarzębowska’s research focuses on the modeling, dynamics, and control of multibody systems ⚙️, particularly those with constraints such as nonholonomic and underactuated systems 🔁. Her expertise extends to nonlinear and optimal control methods 🧠 applied to advanced robotic 🤖, aerospace ✈️, space 🚀, and underwater systems 🌊. Her work also involves geometric control theory 📐 and its integration into real-world applications like UAVs 🛸 and intelligent machines. By bridging fundamental theory with practical implementation 🔧, she addresses challenges in dynamic optimization, system stability, and intelligent control architectures across complex mechanical platforms 🌐.

🔹 Awards and Honors 

🏅 Member, Committee of Mechanics, Polish Academy of Sciences
🎖️ Associate Editor, Journal of Theoretical and Applied Mechanics
🏅 Associate Editor, ASME Journal of Computational and Nonlinear Dynamics
🏅 Associate Editor, Journal of Nonlinear Complex and Data Science
📘 Author of a monograph and numerous educational resources in mechanics
📚 Published over 150 research papers in international journals

Publication Top Notes

1. Application of Electroless Deposition for Surface Modification of the Multiwall Carbon Nanotubes

  • Journal: Chemical Physics Letters

  • Year: 2018

  • DOI: 10.1016/j.cplett.2018.04.056

  • Focus: Surface modification using electroless techniques applied to multiwall carbon nanotubes.

2. Hydrogen Disproportionation Phase Diagram and Magnetic Properties for Nd₁₅Fe₇₉B₆ Alloy

  • Journal: Journal of Rare Earths

  • Year: 2016

  • DOI: 10.1016/S1002-0721(16)60104-7

  • Focus: Thermodynamic and magnetic properties of a rare earth alloy involving hydrogen interactions.

3. Influence of Stirring Conditions on Ni/Al₂O₃ Nanocomposite Coatings

4. TEM & AFM – Complementary Techniques for Structural Characterization of Nanobainitic Steel

  • Journal: Archives of Metallurgy and Materials

  • Year: 2015

  • DOI: 10.1515/amm-2015-0278

  • Focus: Use of microscopy techniques to analyze nanobainitic steels.

5. Characterization of Nanobainitic Structure in 100CrMnSi6-4 Steel After Industrial Heat Treatment

  • Journal: Archives of Metallurgy and Materials

  • Year: 2014

  • DOI: 10.2478/amm-2014-0278

  • Focus: Microstructural evolution in high-strength steels after specific thermal treatments.

6. Influence of Milling Media on Mechanically Exfoliated MoS₂

  • Journal: Nanomaterials and Nanotechnology

  • Year: 2014

  • DOI: 10.5772/59903

  • Focus: Impact of milling conditions on the exfoliation efficiency of molybdenum disulfide.

7. Measurements of Strain in AlGaN/GaN HEMT Structures Grown by Plasma-Assisted MBE

  • Journal: Journal of Crystal Growth

  • Year: 2014

  • DOI: 10.1016/j.jcrysgro.2014.01.061

  • Focus: Strain analysis in GaN-based high-electron-mobility transistors using molecular beam epitaxy.

8. Nanobainitic Structure Recognition and Characterization Using Transmission Electron Microscopy

  • Journal: Archives of Metallurgy and Materials

  • Year: 2014

  • DOI: 10.2478/amm-2014-0277

  • Focus: Characterization of nanostructured steels via TEM.

9. HRTEM and LACBED of Zigzag Boundaries in GaN Epilayers

10. Identification of Phases in Alloy Steels After Quenching and Isothermal Quenching

Conclusion:

Prof. Elżbieta M. Jarzębowska stands out as a globally recognized, multidisciplinary researcher whose academic rigor, innovative contributions, and international impact make her an excellent candidate for the Best Researcher Award. Her blend of theoretical advancement and engineering application supports the highest standards of research excellence.

Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Assoc. Prof. Dr. Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Dr. Darvish Falehi at Islamic Azad University, Iran

Ali Darvish Falehi is a distinguished academic and professional in the field of Electrical Power Engineering. With a Ph.D. and Post-Ph.D. from Shahid Beheshti University, he ranks among the world’s top 2% scientists as listed by Stanford University in 2020. He is currently an Assistant Professor at Iran Islamic Azad University, a technical expert at Iran North Drilling Company, and the Chairman of the R&D Board at HICOBI Company. He has delivered keynote speeches at several international conferences and holds numerous patents. His contributions extend to supervising over 50 theses and reviewing for prestigious journals. 🌟🔬📚

Professional Profile:

Google Scholar

Education and Experience:

  • Post-Ph.D. & Ph.D. in Electrical Power Engineering, Shahid Beheshti University (First Class Honors) 🎓

  • Ranked among the world’s top 2% scientists by Stanford University in 2020 🌍

  • Chairman of R&D Board at HICOBI Company 🏢

  • Assistant Professor at Iran Islamic Azad University 👨‍🏫

  • Technical Expert at Iran North Drilling Company ⚙️

  • Main Speaker at national and international conferences 🎤

  • Reviewer for prestigious journals (IEEE, Elsevier, Springer) 📖

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT score: 630 (Writing Score: 6) 🏆

  • Patents and medals at invention festivals in Iran, South Korea, and Romania 🏅

Professional Development: 

Ali Darvish Falehi has continuously developed his professional expertise by participating in global conferences and providing thought leadership as a main speaker and reviewer for high-impact journals such as IEEE and Elsevier. His dedication to research has led him to supervise over 50 graduate and doctoral theses, contributing to the academic growth of the next generation of engineers. He is also deeply involved in the industrial sector, where he serves as a technical expert for Iran North Drilling Company and leads the R&D board at HICOBI Company, driving innovation and technology forward. His work bridges academia and industry, enhancing both fields. 🔧🌐📊

Research Focus:

Ali Darvish Falehi’s research is centered around Electrical Power Engineering, with particular attention to energy systems, power distribution, and renewable energy solutions. His work aims to optimize power engineering technologies, focusing on improving energy efficiency and sustainability. He is known for his contributions to the development of advanced electrical systems and has been actively involved in creating patented innovations. His expertise in power engineering is complemented by his role as a technical expert, where he advises on industrial applications of electrical power systems. His research seeks to solve complex energy challenges, aligning with global sustainability goals. ⚡🌱🔋

Awards and Honors:

  • Ranked among the world’s top 2% scientists by Stanford University (2020) 🌍

  • Chairman of the R&D Board at HICOBI Company 🏢

  • Main Speaker at several international conferences 🎤

  • Reviewer for leading ISI journals like IEEE, Elsevier, Springer 📚

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT Score: 630 🏆

  • Patents and medals from invention festivals in Iran, South Korea, and Romania 🏅

Publication Top Notes

  1. “An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities” (2020)

    • Authors: A.D. Falehi

    • Journal: Chaos, Solitons & Fractals

    • Summary: This paper proposes an innovative control strategy using a multi-objective Grasshopper Optimization Algorithm (GOA) to enhance the MPPT and Fault Ride Through (FRT) capabilities of DFIG-based wind turbines. The use of Fractional-Order Sliding Mode Control (FOSMC) is central to this work.

  2. “Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbines” (2021)

    • Authors: A.D. Falehi, H. Torkaman

    • Journal: Journal of Energy Storage

    • Summary: This paper focuses on enhancing the FRT and Power Quality (PQ) capabilities of DFIG-based wind turbines. The authors propose a robust fractional-order control scheme for supercapacitors integrated with a Dynamic Voltage Restorer (DVR).

  3. “LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ-AMLI based DVR” (2018)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Sustainable Energy, Grids and Networks

    • Summary: This work aims to enhance the Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) capabilities of DFIG wind turbines by optimizing the design and control of a novel DVR based on a PIλDμ-AMLI (Proportional-Integral-Derivative) controller.

  4. “Enhancement of DFIG-wind turbine’s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter” (2017)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Engineering Science and Technology, an International Journal

    • Summary: This paper explores improving the LVRT capability of DFIG wind turbines by integrating a novel Dynamic Voltage Restorer (DVR) system with an odd-nary cascaded asymmetric multi-level inverter.

  5. “Neoteric HANFISC–SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems” (2016)

    • Authors: A.D. Falehi, A. Mosallanejad

    • Journal: IET Generation, Transmission & Distribution

    • Summary: This paper addresses the oscillation suppression in interconnected multi-source power systems using a Hybrid Active Networked Flexible Integrated Supply Chain (HANFISC)-Static Synchronous Series Compensator (SSSC) controlled by the Multi-Objective Particle Swarm Optimization (MOPSO) technique.

Conclusion:

Ali Darvish Falehi is undoubtedly a deserving candidate for the Excellence in Researcher Award. His combination of academic excellence, significant contributions to electrical power engineering, leadership in both academia and industry, and his global recognition positions him as a standout figure in his field. His ability to balance research with innovation, along with his dedication to mentoring future researchers, makes him an exemplary choice for this prestigious award.

Guanwei Jia | Engineering | Best Researcher Award

Dr. Guanwei Jia | Engineering | Best Researcher Award

Associate Professor at Henan University, China

Guanwei jia (born in 1982) is an associate professor at the School of Physics and Electronics, Henan University, China. He holds a BSc in Electronic Information Engineering (2006), an MSc in Mechanical Engineering (2012), and a Ph.D. in Mechanical Engineering from Beihang University (2018). His research focuses on hydrogen-blended natural gas pipeline transportation and energy storage. By Spring 2025, he has 38 publications indexed in Web of Science. His contributions aim to enhance energy efficiency and sustainable energy solutions, making him a key figure in the field of energy engineering. 🔬⚡

Professional Profile:

Orcid

Education & Experience 🎓📜

  • BSc in Electronic Information Engineering – 2006 🎓📡

  • MSc in Mechanical Engineering – 2012 🛠️📊

  • Ph.D. in Mechanical Engineering (Beihang University) – 2018 🎓⚙️

  • Associate Professor, Henan University – Present 🎓🏛️

Professional Development 🚀🔍

Guanwei jia has significantly contributed to energy research, particularly in hydrogen-blended natural gas pipeline transportation and energy storage. His work integrates advanced mechanical engineering techniques with sustainable energy solutions. With 38 Web of Science-indexed publications, his research provides insights into energy optimization and pipeline safety. He collaborates with industry and academia to advance clean energy technologies. As an associate professor, he mentors students and leads research projects, fostering innovation in energy sustainability. His efforts in alternative energy solutions contribute to global efforts for a cleaner and more efficient energy future. 🔬⚡🌍

Research Focus 🔬⚡

Guanwei jia specializes in hydrogen-blended natural gas transportation and energy storage, addressing key challenges in pipeline safety, efficiency, and sustainability. His research explores how hydrogen integration in natural gas pipelines enhances energy efficiency while reducing carbon emissions. By leveraging mechanical engineering principles, he aims to develop secure and cost-effective storage solutions. His studies help advance the transition toward renewable energy, making natural gas pipelines adaptable for future hydrogen-based energy systems. His findings are valuable for energy infrastructure development, ensuring a safer, cleaner, and more efficient energy network for the future. ⚙️🌍⚡

Awards & Honors 🏆🎖️

  • 38 Web of Science-indexed publications 📑🔍

  • Recognized for contributions to hydrogen-blended gas research ⚡🔬

  • Active mentor and researcher in energy storage solutions 🎓📚

  • Key collaborator in sustainable energy initiatives 🌍🔋

Publication Top Notes

  1. “Water Vapour Condensation Behaviour within Hydrogen-Blended Natural Gas in Laval Nozzles”

    • Authors: Not specified in the provided information.

    • Journal: Case Studies in Thermal Engineering

    • Publication Date: March 2025

    • DOI: 10.1016/j.csite.2025.106064

    • Summary: This study investigates how water vapor condenses in hydrogen-blended natural gas as it flows through Laval nozzles. Understanding this behavior is crucial for optimizing nozzle design and ensuring efficient operation in systems utilizing hydrogen-enriched natural gas.

  2. “Simulation Study on Hydrogen Concentration Distribution in Hydrogen Blended Natural Gas Transportation Pipeline”

    • Authors: Not specified in the provided information.

    • Journal: PLOS ONE

    • Publication Date: December 3, 2024

    • DOI: 10.1371/journal.pone.0314453

    • Summary: This research employs simulations to analyze how hydrogen distributes within natural gas pipelines when blended. The findings provide insights into maintaining consistent hydrogen concentrations, which is vital for pipeline safety and efficiency.

  3. “Numerical Simulation of the Transport and Thermodynamic Properties of Imported Natural Gas Injected with Hydrogen in the Manifold”

    • Authors: Not specified in the provided information.

    • Journal: International Journal of Hydrogen Energy

    • Publication Date: February 2024

    • DOI: 10.1016/j.ijhydene.2023.11.178

    • Summary: This paper presents numerical simulations examining how injecting hydrogen into imported natural gas affects its transport and thermodynamic properties within a manifold. The study aims to inform strategies for integrating hydrogen into existing natural gas infrastructures.

  4. “Performance Analysis of Multiple Structural Parameters of Injectors for Hydrogen-Mixed Natural Gas Using Orthogonal Experimental Methods”

    • Authors: Not specified in the provided information.

    • Journal: Physics of Fluids

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0175018

    • Summary: This study evaluates how various structural parameters of injectors influence the performance of hydrogen-mixed natural gas systems. Using orthogonal experimental methods, the research identifies optimal injector designs to enhance efficiency and reliability.

  5. “Ultrasonic Gas Flow Metering in Hydrogen-Mixed Natural Gas Using Lamb Waves”

    • Authors: Not specified in the provided information.

    • Journal: AIP Advances

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0172477

    • Summary: This paper explores the application of Lamb waves in ultrasonic gas flow metering for hydrogen-mixed natural gas. The research demonstrates the effectiveness of this non-contact method in accurately measuring gas flow, which is essential for monitoring and controlling gas distribution systems.

Conclusion

While Guanwei Jia has made valuable contributions to the field of hydrogen energy and pipeline transportation, his suitability for a Best Researcher Award would depend on additional factors such as citations, research impact, industry collaborations, patents, and leadership in major projects. If he has demonstrated exceptional influence beyond publications—such as shaping energy policies, leading significant projects, or achieving high citation impact—he would be a strong candidate for the award.

Shirko Faroughi | Engineering | Best Researcher Award

Prof. Shirko Faroughi | Engineering | Best Researcher Award

Academic at Urmia University of Technoloy, Iran

Dr. Shirko Faroughi, an esteemed Professor of Mechanical Engineering at Urmia University of Technology, Iran, specializes in Computational Mechanics, Isogeometric Analysis, and Finite Element Methods. With a Ph.D. from Iran University of Science and Technology, he has held research positions at KTH University (Sweden), Swansea University (UK), and Bauhaus University Weimar (Germany). His work spans fracture mechanics, machine learning, and 3D printing simulations. As a CICOPS Scholar at the University of Pavia, Italy, Dr. Faroughi actively collaborates on international research projects, contributing significantly to advanced numerical methods. 📚🌍

Professional Profile:

Scopus

Google Scholar

Education & Experience 🎓📜

  • Ph.D. in Mechanical Engineering (2010) – Iran University of Science and Technology 🏛️

  • M.S. in Mechanical Engineering (2005) – Iran University of Science and Technology 🏗️

  • B.S. in Mechanical Engineering (2003) – Tabriz University 🚗

🔹 Academic Roles

  • Professor (2020 – Present) – Urmia University of Technology 👨‍🏫

  • Associate Professor (2015 – 2020) – Urmia University of Technology 🔬

  • Assistant Professor (2011 – 2015) – Urmia University of Technology 📖

  • Visiting Researcher (2008 – 2009) – KTH University, Sweden 🇸🇪

🔹 Administrative & International Positions

  • Dean of Mechanical Engineering Department (2022 – Present) 🏢

  • CICOPS Scholar – University of Pavia, Italy (2022) 🇮🇹

  • Research Collaborator – Swansea University, UK (2015 – Present) 🇬🇧

  • Research Collaborator – New Mexico State University, USA (2016 – Present) 🇺🇸

  • Research Collaborator – Bauhaus University Weimar, Germany (2017 – Present) 🇩🇪

Professional Development 🌍📚

Dr. Shirko Faroughi has made remarkable contributions to mechanical engineering through computational mechanics, finite element analysis, and machine learning. His research advances superconvergent mass and stiffness matrices, isogeometric methods, phase-field methods, and energy harvesting. He also integrates AI-driven techniques to enhance engineering simulations. His collaborations span Europe and the U.S., working with top researchers on thin structures, 3D printing, and structural dynamics. As a department dean and international collaborator, he plays a pivotal role in engineering education and research innovations, fostering global academic partnerships. 🌎💡

Research Focus 🔍🧠

Dr. Faroughi’s research primarily revolves around Computational Mechanics and Advanced Numerical Methods, integrating Artificial Intelligence and Machine Learning for engineering applications. His work focuses on:

  • Superconvergent mass and stiffness matrices 📐🔬

  • Isogeometric and finite element methods 🏗️📊

  • Fracture mechanics and phase-field modeling 🏚️💥

  • Tensegrity structures and energy harvesting ⚡🔩

  • Machine learning and transfer learning in mechanical simulations 🤖📈

  • 3D printing simulations and advanced material modeling 🖨️🧩

His research bridges traditional mechanical engineering with AI and computational techniques, pushing engineering boundaries through innovative numerical simulations. 🚀🔢

Awards & Honors 🏆🎖️

  • CICOPS Scholarship – University of Pavia, Italy (2022) 🇮🇹

  • Visiting Researcher – KTH University, Sweden (2008-2009) 🇸🇪

  • Research Collaborator – Swansea University, UK (2015-Present) 🇬🇧

  • Research Collaborator – Bauhaus University Weimar, Germany (2017-Present) 🇩🇪

  • Research Collaborator – New Mexico State University, USA (2016-Present) 🇺🇸

  • Dean of Mechanical Engineering Department – Urmia University of Technology (2022-Present) 🏛️

  • Multiple Grants for Advanced Computational Mechanics Research 🎓🔍

Publication Top Notes

  1. Wave Propagation in 2D Functionally Graded Porous Rotating Nano-Beams

    • Authors: S. Faroughi, A. Rahmani, M.I. Friswell

    • Published in Applied Mathematical Modelling (2020)

    • Citations: 71

    • Focus: Investigates wave propagation in porous nano-beams using a general nonlocal higher-order beam theory, considering functionally graded materials and rotation effects.

  2. Vibration of 2D Imperfect Functionally Graded Porous Rotating Nanobeams

    • Authors: A. Rahmani, S. Faroughi, M.I. Friswell

    • Published in Mechanical Systems and Signal Processing (2020)

    • Citations: 54

    • Focus: Examines vibration behavior of imperfect functionally graded porous rotating nanobeams based on a generalized nonlocal theory.

  3. Non-linear Dynamic Analysis of Tensegrity Structures Using a Co-Rotational Method

    • Authors: S. Faroughi, H.H. Khodaparast, M.I. Friswell

    • Published in International Journal of Non-Linear Mechanics (2015)

    • Citations: 47

    • Focus: Develops a co-rotational method for analyzing nonlinear dynamics of tensegrity structures.

  4. Physics-Informed Neural Networks for Solute Transport in Heterogeneous Porous Media

    • Authors: S.A. Faroughi, R. Soltanmohammadi, P. Datta, S.K. Mahjour, S. Faroughi

    • Published in Mathematics (2023)

    • Citations: 40

    • Focus: Uses physics-informed neural networks (PINNs) with periodic activation functions to model solute transport in heterogeneous porous media.

  5. Nonlinear Transient Vibration of Viscoelastic Plates Using a NURBS-Based Isogeometric HSDT Approach

    • Authors: E. Shafei, S. Faroughi, T. Rabczuk

    • Published in Computers & Mathematics with Applications (2021)

    • Citations: 30

    • Focus: Investigates nonlinear transient vibrations of viscoelastic plates using an isogeometric high-order shear deformation theory (HSDT) approach.

Mahmood Shakiba | Engineering | Best Researcher Award

Assist. Prof. Dr. Mahmood Shakiba | Engineering | Best Researcher Award

Faculty member at Ferdowsi University of Mashhad, Iran

Dr. mahmood shakiba 🇮🇷 is an assistant professor at Ferdowsi University of Mashhad, specializing in petroleum engineering with expertise in hydrocarbon reservoirs and enhanced oil recovery (EOR) 🛢️. He earned his Ph.D. from Amirkabir University of Technology (2020) 🎓, focusing on nano-assisted smart water for sand production control. With extensive experience in CO₂ and H₂ underground storage projects, reservoir characterization, and formation damage remediation, he has held key academic and industrial roles. As a researcher and educator, he has contributed significantly to petroleum engineering, guiding students and leading innovative studies in reservoir engineering and geomechanics 🔬📚.

Professional Profile

Scopus

Google Scholar

Education & Experience

Education 🎓

Ph.D. in Petroleum Engineering (Hydrocarbon Reservoirs), Amirkabir University of Technology (2016-2020)

  • Thesis: Nano-assisted smart water for sand production in unconsolidated sandstone reservoirs.

M.Sc. in Petroleum Engineering (Hydrocarbon Reservoirs), Shiraz University (2012-2014)

  • Thesis: Enhanced oil recovery & CO₂ storage via carbonated water injection.

B.Sc. in Petroleum Engineering (Reservoir Engineering), Shiraz University (2008-2012)

  • Thesis: Simulation of solution gas drive in fractured reservoirs.

Work Experience 🛠️

🔹 Assistant Professor – Ferdowsi University of Mashhad (2023-Present)
🔹 Project Supervisor – Underground CO₂ Storage (2023-Present)
🔹 Researcher – Underground H₂ Storage, RIPI (2023-Present)
🔹 Technical Manager – Upstream Oil Research Center, Sharif University (2020-2022)
🔹 Technical Supervisor – MAPSA Co., Tehran (2019-2020)
🔹 Industrial Consultant – MAPSA Co., Tehran (2019-2020)
🔹 Senior Lab Equipment Designer – MAPSA Co., Tehran (2018-2019)
🔹 Researcher – Advanced EOR Research Center, Shiraz University (2011-2014)

Professional Development 🌟

Dr. mahmood shakiba has significantly contributed to petroleum engineering through teaching, research, and industrial consulting 📖🔬. His expertise spans reservoir engineering, well testing, and gas reservoirs 🚀. At Ferdowsi University, he educates students on reservoir management and maintenance, while leading projects on underground CO₂ and H₂ storage. His industry experience includes technical supervision, reservoir characterization, and EOR techniques 🏭. Dr. shakiba has also played a key role in laboratory equipment design and geomechanical feasibility studies. His dedication to advancing sustainable energy storage and petroleum recovery has established him as a leader in the field 🌍💡.

Research Focus 🔬

Dr. shakiba’s research primarily focuses on enhanced oil recovery (EOR), underground storage of CO₂ and H₂, and reservoir geomechanics 🏗️. His experimental and simulation studies have explored innovative methods for improving oil recovery and mitigating environmental impact 🌱. He has investigated nano-assisted smart water flooding, formation damage remediation, and CO₂ sequestration to optimize hydrocarbon reservoir performance. His geological and geomechanical feasibility studies have contributed to safe underground hydrogen storage ⚡. His work advances sustainable energy solutions while improving oil and gas recovery efficiency for the future 🌍🔋.

Awards & Honors 🏆

🏅 Technical Leadership Award – Upstream Oil Research Center, Sharif University
🏅 Outstanding Research Contribution – Research Institute of Petroleum Industry (RIPI)
🏅 Best Thesis Award – Amirkabir University of Technology (2020)
🏅 Top Researcher Recognition – Shiraz University EOR Research Center
🏅 Best Instructor Award – Ferdowsi University of Mashhad (2023)

Publication Top Notes

  1. Investigation of oil recovery and CO₂ storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    • Journal of Petroleum Science and Engineering (2016)
    • Citations: 79
    • Examines how carbonated water injection (CWI) enhances oil recovery and CO₂ storage efficiency in carbonate reservoirs under secondary and tertiary injection scenarios.
  2. A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs

    • Journal of Molecular Liquids (2020)
    • Citations: 35
    • Investigates how smart water, combined with nanoparticles, helps mitigate sand production in weakly consolidated sandstone reservoirs while improving oil recovery.
  3. The impact of connate water saturation and salinity on oil recovery and CO₂ storage capacity during carbonated water injection in carbonate rock

    • Chinese Journal of Chemical Engineering (2019)
    • Citations: 29
    • Analyzes how variations in connate water saturation and salinity influence oil displacement efficiency and CO₂ trapping during CWI in carbonate formations.
  4. Effects of type and distribution of clay minerals on the physico-chemical and geomechanical properties of engineered porous rocks

    • Scientific Reports (2023)
    • Citations: 21* (recently published)
    • Studies how different clay minerals affect the structural integrity and chemical behavior of engineered porous rocks, impacting reservoir performance.
  5. An experimental insight into the influence of sand grain size distribution on the petrophysical and geomechanical properties of artificially made sandstones

    • Journal of Petroleum Science and Engineering (2022)
    • Citations: 15
    • Explores the role of sand grain size variations in determining the permeability, porosity, and mechanical strength of artificial sandstone samples.

Zhou Zhiwu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhou Zhiwu | Engineering | Best Researcher Award

School of Civil and Environmental Engineering at Hunan University of Science and Engineering, China

Zhou zhiwu, a senior engineer and registered tester, is an associate professor and master’s supervisor at hunan university of science and engineering. he earned his ph.d. in transportation infrastructure and territory from the polytechnic university of valencia (🇪🇸) with top honors, including the UPV Outstanding Doctorate and the 2023 Spanish Outstanding Doctoral Award 🏆. with 15 years in national engineering projects, he has led major constructions, published 28 research papers 📄, and serves as a reviewer for 20 SCI journals. his expertise spans (ancient) bridge monitoring, high-speed railway track optimization, and sustainable structural design.

Professional Profile

Orcid

Scopus

Google Scholar

Education & Experience 🎓👷‍♂️

📚 Education:

  • 🎓 Bachelor’s in Architectural Engineering – Lanzhou Jiaotong University (2000-2004)
  • 🎓 Master’s in Transportation Engineering – Lanzhou Jiaotong University (2013-2016)
  • 🎓 Ph.D. in Transport Infrastructure & Territory – Polytechnic University of Valencia, Spain (2019-2023) 🏅

💼 Work Experience:

  • 🏗 Project Manager – China Railway 15th Bureau Group (2002-2017)
  • 🏢 Chief Engineer – Xinjiang Highway Science & Technology Research Institute (2017-2018)
  • 📖 Full-time Teacher & Leader – Chongqing Public Vocational Transport College (2018-2019)
  • 🔬 Doctor & Associate Researcher – Polytechnic University of Valencia, Spain (2019-2023)
  • 🎓 Associate Professor & Master Supervisor – Hunan University of Science and Engineering (2023-Present)

Professional Development 🚀🔬

Zhou zhiwu is a multidisciplinary researcher and engineer specializing in transportation infrastructure, structural health monitoring, and sustainable development. with over 15 years of experience in large-scale construction projects 🏗, he has contributed to high-speed railways 🚄, highways 🛣, and industrial buildings 🏢. he has led and participated in 11 international and national research projects, collaborated with top institutions, and published extensively in SCI-indexed journals 📚. in addition to research, he is a dedicated educator 📖 and serves as an editorial board member for the American Journal of Environmental Science and Engineering, actively reviewing 148+ research articles.

Research Focus 🔍🏗

Zhou zhiwu’s research lies in transportation engineering, structural monitoring, and sustainable infrastructure:

  • 🏛 (Ancient) Bridge & Building Health Monitoring – Studying structural integrity & durability
  • 🌱 Sustainable Infrastructure – Coupling optimization for large-scale structures
  • 🚄 High-Speed Railway Track Optimization – Preventing track diseases & enhancing efficiency
  • 🏗 Indeterminate Structural Design – Improving extra-large bridge sustainability
  • 🔬 Engineering Project Management – Enhancing efficiency in large-scale construction

his work integrates modern monitoring techniques 📡, advanced materials 🏗, and sustainable engineering 🌱 to enhance long-term infrastructure performance.

Awards & Honors 🏆🎖

  • 🏅 UPV Outstanding Doctorate Award – Polytechnic University of Valencia, Spain
  • 🏆 2023 Spanish Outstanding Doctoral Award – Top honor for doctoral research
  • 🏗 National Engineering Construction Quality Management Award (First Class)
  • 🏆 First-Class Science & Technology Award – China Railway Construction Corporation
  • 🏅 Provincial & Ministerial-Level Awards – Henan Province (Two awards)
  • 🏆 China Civil Engineering Society “National Second Prize”
  • 🎖 Reviewer for 20 SCI Journals – Reviewed 148+ articles

Publication Top Notes

  1. Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil

    • Journal of Building Engineering, 2025.
    • DOI: 10.1016/j.jobe.2024.111636
    • Citation (APA):
      Author(s). (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, XX, 111636.
  2. Three-dimensional finite element-coupled optimisation assessment of extra-large bridges

    • Structures, 2024.
    • DOI: 10.1016/j.istruc.2024.107743
    • Citation (APA):
      Author(s). (2024). Three-dimensional finite element-coupled optimisation assessment of extra-large bridges. Structures, XX, 107743.
  3. Research on coupling optimization of carbon emissions and carbon leakage in international construction projects

    • Scientific Reports, 2024.
    • DOI: 10.1038/s41598-024-59531-4
    • Citation (APA):
      Zhou, Z. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, XX, 59531. Building the future: Smart concrete as a key element in next-generation construction
    • Construction and Building Materials, 2024.
    • DOI: 10.1016/j.conbuildmat.2024.136364
    • Citation (APA):
      Zhou, Z. (2024). Building the future: Smart concrete as a key element in next-generation construction. Construction and Building Materials, XX, 136364.
  4. The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model

    • Sustainable Cities and Society, 2024.
    • DOI: 10.1016/j.scs.2024.105201
    • Citation (APA):
      Author(s). (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, XX, 105201.

Shakil Ahmed | Engineering | Best Researcher Award

Prof. Shakil Ahmed | Engineering | Best Researcher Award

Assistant Processor, Term at Iowa State University, United States

Shakil Ahmed is an Assistant Teaching Professor in Computer Engineering at Iowa State University (ISU), specializing in AI/ML, cybersecurity, IoT, cloud computing, and advanced networking. With a Ph.D. in Computer Engineering from ISU (2023) and over 2,000 citations across 35+ publications, he leads cutting-edge research on AI-driven solutions, digital twins, and quantum networks. As a principal investigator (PI), he mentors undergraduate, MS, and Ph.D. students while actively securing external grants. His expertise spans reinforcement learning, large language models, explainable AI, and meta-learning, contributing to pioneering advancements in next-gen networking and intelligent systems. 🚀🔍

Professional Profile

Education & Experience 📚👨‍🏫

  • Ph.D. in Computer Engineering – Iowa State University (2023) 🎓
  • M.S. in Electrical Engineering – Utah State University (2019) ⚡
  • B.S. in Electrical and Electronic Engineering – Khulna University of Engineering & Technology, Bangladesh (2014) 🏅
  • Assistant Teaching Professor – Iowa State University (2024–Present) 🎓
  • Researcher & PI – Leading projects on AI, 6G, cybersecurity, IoT, and digital twins 🔬
  • Advisor & Mentor – Supervising undergraduate, MS, and Ph.D. students in advanced networking and AI 🧑‍🎓

Professional Development 📈🧠

Shakil Ahmed actively contributes to AI-driven networking, secure systems, and IoT advancements. He plays a vital role in research funding, securing grants exceeding millions of dollars. As a guest editor at MDPI and reviewer for 150+ articles, he ensures high research standards. His teaching experience spans multiple STEM courses, where he integrates hands-on learning tools like Zybooks and Canvas. He has delivered invited talks on next-gen wireless technologies and collaborates with multidisciplinary teams to shape the future of AI, cloud computing, and quantum networking. His work has significantly impacted academia, research, and industry. 🚀🔬📡

Research Focus 🏆🔍

Shakil Ahmed’s research is at the intersection of AI, networking, and cybersecurity, with a focus on:

  • AI/ML & Deep Learning – Reinforcement Learning (RL), Large Language Models (LLM), Explainable AI (XAI) 🤖
  • Cybersecurity & Quantum Networking – Secure network protocols, quantum neural networks (QNN) 🔒
  • IoT & Cloud Computing – System design for connected environments, mobile edge computing ☁️
  • Digital Twin & 6G+ Networks – AI-driven tactile internet, smart infrastructure, and futuristic networking 🌍📡
    His work integrates cutting-edge AI techniques, optimization frameworks, and network simulations to solve real-world challenges.

Awards & Honors 🏅🎖️

  • Professional Development Fund – Iowa State University ($10,000) 💰
  • Presidential Fellowship – Utah State University ($90,000) 🏆
  • Best Paper Award – IEEE International Conference on Informatics, Electronics, and Vision (2016) 🥇
  • Graduate & Professional Student Senate Research Award – ISU ($700) 📜
  • ECpE Department Support Grant – ISU ($600) 🎓
  • Professional Advancement Grant (PAG) – ISU ($400) 🎖️
  • Military Communications Conference Student Travel Grants – 2021 & 2022 ($1,000) ✈️
  • Graduate & Professional Student Council Grant – ISU ($750) 🏅
  • ECE Department Support Grant – Utah State University ($1,000) 🏆

Publication Top Notes

  1. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions

    • Authors: Mostafa Zaman Chowdhury, Md. Shahjalal, Shakil Ahmed, Yeong Min Jang
    • Journal: IEEE Open Journal of the Communications Society
    • Year: 2020
    • Citation: Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957–975.
  2. Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Access
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks. IEEE Access, 8, 21215–21225.
  3. Energy-Efficient UAV Relaying Communications to Serve Ground Nodes

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Communications Letters
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 24(4), 849–852.
  4. Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT

    • Authors: Hao Sun, Qiang Wang, Shakil Ahmed, Rose Hu
    • Conference: IEEE Vehicular Technology Conference (VTC Spring)
    • Year: 2017
    • Citation: Sun, H., Wang, Q., Ahmed, S., & Hu, R. (2017). Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1–5).
  5. A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology

    • Authors: Shakil Ahmed, Md Rashid, Farzana Alam, B. Fakhruddin
    • Conference: 2019 29th International Telecommunication Networks and Applications Conference (ITNAC)
    • Year: 2019
    • Citation: Ahmed, S., Rashid, M., Alam, F., & Fakhruddin, B. (2019). A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 20–25).