Sergei Badulin | Physics | Best Paper Award

Dr. Sergei Badulin | Physics | Best Paper Award

Head of laboratory at P.P.Shirshov Institute of Oceanology, Russia

Sergei I. Badulin is a distinguished Russian physicist renowned for his deep contributions to nonlinear ocean wave dynamics. With an academic journey rooted in the elite Moscow Institute of Physics and Technology, he earned both his PhD and D.Sc. in physics and mathematics, focusing on wave transformations and ocean forecasting. He currently leads the Nonlinear Wave Processes Laboratory at the P.P. Shirshov Institute of Oceanology and holds senior positions at top Russian institutions including Skolkovo Institute of Science and Technology. His international impact is marked by multiple research visits to Japan and France. Badulinโ€™s research portfolio spans the theoretical and experimental study of oceanic gravity waves, wind-sea forecasting, and remote sensing of sea surfaces ๐ŸŒŠ๐Ÿ“ก. Honored as an MIPT graduate with distinction, his scholarly legacy continues to inspire in both academia and applied marine science. His profound scientific insights contribute significantly to ocean monitoring and global environmental understanding ๐ŸŒ๐Ÿง .

Professional Profileย 

Orcid

Scopus

Google Scholar

๐ŸŽ“ Education

Sergei Badulinโ€™s academic excellence was cultivated at the prestigious Moscow Institute of Physics and Technology (MIPT), where he graduated with honors in 1982, specializing in aero- and thermodynamics โœˆ๏ธ๐Ÿ”ฅ. He went on to earn a PhD in Physics and Mathematics in 1985, with a focus on the transformation of internal ocean waves in hydrological field inhomogeneities ๐ŸŒŠ๐Ÿ“˜. Demonstrating an enduring commitment to academic excellence, he further achieved a Doctor of Science (D.Sc.) degree in 2009, centered on wave dynamics for ocean forecasting and monitoring. He also pursued French language studies between 1983โ€“1985, reflecting his preparedness for international collaboration. His rigorous educational background has empowered him to bridge theoretical physics and marine science with precision and innovation ๐Ÿ“šโš›๏ธ. This strong foundation continues to underpin his impactful research across global oceanographic institutions.

๐Ÿ‘จโ€๐Ÿ”ฌ Professional Experience

Prof. Badulinโ€™s career trajectory reflects both academic leadership and international collaboration. Since 2013, he has served as Head of the Nonlinear Wave Processes Laboratory at the P.P. Shirshov Institute of Oceanology. Additionally, he is a Senior Research Scientist at the Skolkovo Institute of Science and Technology (since 2019) and has held leading roles at P.N. Lebedev Physical Institute, Novosibirsk State University, and Russian State Hydrometeorological University ๐Ÿ›๏ธ๐Ÿ’ผ. Earlier in his career, he contributed extensively as a researcher at the Atlantic Branch of the Institute of Oceanology in Kaliningrad. His international engagements include visiting scientist positions in Japan (1998) and France (1993โ€“1996), enriching his global research impact ๐ŸŒ๐Ÿ”ฌ. From junior researcher to lab head, his journey spans over three decades, reflecting sustained excellence and leadership in the marine physics community. His professional record is a benchmark in ocean wave modeling and environmental forecasting ๐Ÿ“ˆ๐ŸŒŠ.

๐Ÿ”ฌ Research Interests

Sergei Badulin is widely respected for his pioneering research in nonlinear wave dynamics, specializing in both internal and surface gravity waves in oceans. His work integrates theoretical modeling, experimental observation, and remote sensing technologies to enhance understanding of wave transformation, energy propagation, and sea state forecasting ๐ŸŒŠ๐Ÿ“ก. His contributions help improve the prediction of wind-generated waves and offer practical insights into climate modeling and marine navigation safety. Furthermore, Badulinโ€™s findings support advancements in satellite remote sensing and monitoring systems for oceanic conditions, crucial for both scientific inquiry and global environmental policy. His deep involvement in collaborative projects with institutions in France and Japan has broadened the scope and precision of his marine studies ๐Ÿ“˜๐ŸŒ. Overall, his research continues to push the boundaries of fluid dynamics and earth system sciences, addressing both theoretical challenges and real-world marine applications with clarity and depth ๐ŸŒ๐Ÿ”ญ.

๐Ÿ… Awards and Honors

Sergei I. Badulin was honored as a top graduate of MIPT in 1982, a significant early recognition that foreshadowed a highly productive academic life ๐ŸŽ“โœจ. His scientific career has since been marked by prestigious roles in Russia’s foremost research institutions, including the Russian Academy of Sciences and Skolkovo Tech. Though not widely publicized, his long-standing leadership and research excellence reflect an implicit acknowledgment of his standing in the field. His international fellowships and visiting scientist appointments in Japan and France underscore his recognition on the global stage ๐ŸŒ๐Ÿงช. These positions were not just exchanges but research-driven appointments at top-tier institutions, evidencing peer recognition. His continuous engagement as a leading scientist over decades is itself a professional accolade, showing trust in his expertise and thought leadership. Badulinโ€™s reputation is further enhanced by the success and longevity of the laboratory he directs, setting standards in nonlinear ocean wave research ๐Ÿง ๐Ÿ”ฌ.

๐Ÿ“š Publications Top Noteย 

1. Altimetry for the future: Building on 25 years of progress

  • Authors: S. Abdalla, A.A. Kolahchi, M. Ablain, S. Adusumilli, S.A. Bhowmick, et al.

  • Year: 2021

  • Citations: 227

  • Source: Advances in Space Research, Vol. 68(2), pp. 319โ€“363

  • Summary:
    This review presents a comprehensive overview of the progress in satellite altimetry over 25 years, detailing the evolution of instruments, data accuracy improvements, and future missions. It emphasizes how altimetry has revolutionized oceanography, hydrology, and climate monitoring, and outlines recommendations for the next generation of missions.


2. Weakly turbulent laws of wind-wave growth

  • Authors: S.I. Badulin, A.V. Babanin, V.E. Zakharov, D. Resio

  • Year: 2007

  • Citations: 167

  • Source: Journal of Fluid Mechanics, Vol. 591, pp. 339โ€“378

  • Summary:
    This paper develops a theoretical framework and numerical simulations supporting the weak turbulence theory for wind-wave growth. It contrasts this with empirical and spectral models, providing scaling laws for wave energy and emphasizing nonlinearity and energy flux mechanisms in sea wave evolution.


3. Self-similarity of wind-driven seas

  • Authors: S.I. Badulin, A.N. Pushkarev, D. Resio, V.E. Zakharov

  • Year: 2005

  • Citations: 146

  • Source: Nonlinear Processes in Geophysics, Vol. 12(6), pp. 891โ€“945

  • Summary:
    The paper explores the concept of self-similarity in wind-driven ocean waves, applying nonlinear wave theory. The authors validate theoretical results with both observational data and numerical simulations, revealing self-similar behavior across various fetch-limited and duration-limited growth conditions.


4. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth

  • Authors: E. Gagnaire-Renou, M. Benoit, S.I. Badulin

  • Year: 2011

  • Citations: 70

  • Source: Journal of Fluid Mechanics, Vol. 669, pp. 178โ€“213

  • Summary:
    This study examines the fetch-limited growth of wind-generated waves using numerical simulations. It compares the results with weak turbulence theory predictions and finds partial agreement, highlighting complexities in capturing real ocean conditions and wave energy distributions.


5. A model of water wave โ€˜horse-shoeโ€™ patterns

  • Authors: V.I. Shrira, S.I. Badulin, C. Kharif

  • Year: 1996

  • Citations: 69

  • Source: Journal of Fluid Mechanics, Vol. 318, pp. 375โ€“405

  • Summary:
    This theoretical study explains the formation of distinctive โ€œhorse-shoeโ€ patterns observed in surface water waves. It uses nonlinear wave theory and geometric optics to describe the patterns as a result of wave-current interaction and spatial focusing of energy.


6. On two approaches to the problem of instability of short-crested water waves

  • Authors: S.I. Badulin, V.I. Shrira, C. Kharif, M. Ioualalen

  • Year: 1995

  • Citations: 63

  • Source: Journal of Fluid Mechanics, Vol. 303, pp. 297โ€“326

  • Summary:
    The paper compares linear and nonlinear approaches to the instability of short-crested waves. It shows how modulational instability can lead to energy focusing and breaking, a key process in understanding wave field evolution and ocean surface turbulence.


7. A physical model of sea wave period from altimeter data

  • Author: S.I. Badulin

  • Year: 2014

  • Citations: 61

  • Source: Journal of Geophysical Research: Oceans, Vol. 119(2), pp. 856โ€“869

  • Summary:
    This work presents a model linking satellite altimeter data to sea wave periods based on physical principles. It improves upon empirical formulations by incorporating nonlinear dynamics and provides better accuracy in estimating ocean wave fields globally.


8. Universality of sea wave growth and its physical roots

  • Authors: V.E. Zakharov, S.I. Badulin, P.A. Hwang

  • Year: 2015

  • Citations: 60

  • Source: Journal of Fluid Mechanics, Vol. 780, pp. 503โ€“535

  • Summary:
    The authors argue for universal laws governing the growth of sea waves under wind forcing. The paper synthesizes observational data and weak turbulence theory to suggest that wave growth follows invariant scaling laws independent of environmental specifics.


9. On the irreversibility of internal-wave dynamics due to wave trapping by mean flow inhomogeneities. Part 1. Local analysis

  • Authors: S.I. Badulin, V.I. Shrira

  • Year: 1993

  • Citations: 53

  • Source: Journal of Fluid Mechanics, Vol. 251, pp. 21โ€“53

  • Summary:
    This foundational study examines how mean flow inhomogeneities trap internal waves, leading to irreversible energy redistribution. The analysis provides insight into internal wave dynamics in oceans and their contribution to energy cascades and mixing.


10. A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows

  • Authors: S.I. Badulin, K.V. Pokazayev, A.D. Rozenberg

  • Year: 1983

  • Citations: 44

  • Source: Izvestiya Atmospheric and Oceanic Physics, Vol. 19(10), pp. 782โ€“787

  • Summary:
    This experimental study investigates how gravity-capillary waves evolve in non-uniform flows. It reveals transformation effects such as amplitude modulation and wave steepening, contributing to the understanding of wave behavior in natural fluid systems.

โœ… Conclusion

Dr. Sergei I. Badulin exemplifies scientific excellence in the field of ocean physics, blending rich academic training with decades of research leadership ๐ŸŒŠ๐Ÿ“˜. His interdisciplinary work links theoretical physics with real-world applications like marine forecasting, climate observation, and remote sensing, making his contributions both academically valuable and societally relevant ๐ŸŒโš™๏ธ. His international presence and collaborative projects reflect an openness to scientific exchange and a commitment to advancing global knowledge. As the head of a leading research laboratory and senior figure at Skolkovo Tech, Badulin continues to influence new generations of researchers and drive marine science innovation ๐Ÿš€๐Ÿ”ฌ. While his awards may be understated publicly, his career achievements, scholarly depth, and ongoing research activities make him an exceptional candidate for recognition such as the Best Researcher Award. His legacy is one of rigorous inquiry, impactful research, and visionary scientific leadership ๐ŸŒŸ๐Ÿ….

Pengxia Zhou | Physics | Best Researcher Award

Prof. Dr. Pengxia Zhou | Physics | Best Researcher Award

Associate professor at Nantong University, China

Zhou Pengxia (Zhou Pengxia) ๐ŸŽ“, born on October 24, 1977 ๐ŸŽ‚, is a dedicated physicist and educator at the School of Physical Science and Technology, Nantong University ๐Ÿ‡จ๐Ÿ‡ณ. With over two decades of experience, she has contributed significantly to condensed matter physics and multiferroic materials research โš›๏ธ. She earned her Ph.D. from Nanjing University and conducted postdoctoral research at leading institutions in Singapore ๐ŸŒ. As the principal investigator of an NSFC-funded project, she explores octahedral rotations in perovskite superlattices ๐Ÿงช. Her work bridges teaching and innovation, advancing the frontiers of physics through both academia and international collaboration ๐ŸŒŸ.

Professional Profile:

Orcid

๐Ÿ”น Education and Experienceย 

๐Ÿ“˜ Education:

  • ๐ŸŽ“ 1997โ€“2001: Bachelor’s Degree in Physics โ€“ Yanbei Normal College

  • ๐Ÿ“š 2001โ€“2004: Masterโ€™s Degree in Condensed Matter Physics โ€“ Yangzhou University

  • ๐Ÿง  2011โ€“2015: Doctorโ€™s Degree in Physics โ€“ Nanjing University

๐Ÿง‘โ€๐Ÿซ Professional Experience:

  • ๐Ÿซ 2004โ€“Present: Lecturer โ€“ Nantong University

  • ๐ŸŒ 2017.10โ€“2018.02: Visiting Scholar โ€“ Singapore University of Technology and Design

  • ๐ŸŒ 2018.09โ€“2019.08: Research Fellow โ€“ National University of Singapore

๐Ÿ”น Professional Developmentย 

Dr. Zhou Pengxiaโ€™s professional journey reflects her passion for physics and global academic growth ๐ŸŒ๐Ÿ“ˆ. She has participated in international collaborations in Singapore, enriching her research and teaching perspectives ๐Ÿ‡ธ๐Ÿ‡ฌ๐Ÿ”ฌ. At Nantong University, she not only teaches but also mentors students in advanced materials science ๐ŸŽ“๐Ÿงช. Her participation in cutting-edge research on perovskite superlattices and multiferroicity has positioned her as a recognized contributor in her field โš›๏ธ. Through continual learning, overseas exchanges, and scientific leadership, Dr. Zhou remains committed to academic excellence and innovation in physical science education and research ๐Ÿ“˜๐ŸŒŸ.

๐Ÿ”น Research Focusย 

Dr. Zhou Pengxia’s research is centered around condensed matter physics with a specific emphasis on multiferroic materials and perovskite superlattices ๐Ÿงฒโšก. She investigates how octahedral rotation affects multiferroicity, exploring mechanisms to enhance functional properties of complex oxides ๐Ÿงช๐Ÿงฌ. Her work contributes to the understanding and engineering of materials that exhibit both ferroelectric and magnetic properties โ€“ critical for next-generation electronic devices ๐Ÿ’ป๐Ÿ”‹. With a focus on crystal structures and symmetry interactions, her research bridges fundamental science and potential applications in sensors, memory devices, and spintronics ๐ŸŒ๐Ÿ”ง. Zhou’s interdisciplinary approach adds great value to material innovation ๐Ÿ”๐Ÿง .

๐Ÿ”น Awards and Honorsย 

๐Ÿ† Awards & Honors:

  • ๐ŸŒŸ Principal Investigator โ€“ National Natural Science Foundation of China (2017โ€“2019) for research on perovskite superlattices

  • ๐ŸŽ“ Invited Research Fellow โ€“ National University of Singapore (2018โ€“2019)

  • ๐ŸŒ International Collaboration Grant โ€“ Singapore University of Technology and Design (2017โ€“2018)

Publication Top Notes

1. Employing interpretable multi-output machine learning to predict stable perovskites in photovoltaics

Journal: Materials Today Communications, 2025
DOI: 10.1016/j.mtcomm.2025.112552
Summary:
This study leverages interpretable multi-output machine learning models to predict thermodynamically stable perovskite materials for photovoltaic applications. The key innovation lies in the simultaneous prediction of multiple material properties (e.g., stability, band gap, defect tolerance) using models that offer transparency into decision-making (e.g., SHAP values, decision trees). This work contributes to faster and explainable discovery of efficient perovskites for solar cell design.

2. A first-principles study on the multiferroicity of semi-modified Xโ‚‚M (X = C, Si; M = F, Cl) monolayers

Journal: Physical Chemistry Chemical Physics, 2023
DOI: 10.1039/D2CP04575C
Summary:
This DFT-based study explores multiferroic behavior in 2D monolayers composed of Xโ‚‚M (X = C, Si; M = F, Cl), highlighting their coexisting ferroelectric and magnetic properties. The findings suggest semi-modified 2D materials could serve as candidates for spintronic and memory devices, due to their tunable multiferroic characteristics.

3. Theoretical investigation of the magnetic and optical properties in a transition metal-doped GaTeCl monolayer

Journal: Physical Chemistry Chemical Physics, 2023
DOI: 10.1039/D3CP02313C
Summary:
This study investigates how doping GaTeCl monolayers with transition metals (e.g., Mn, Fe, Co) affects their magnetic and optical behavior. Using DFT, the authors show enhanced magneto-optical properties, suggesting that doped GaTeCl systems are promising for optoelectronic and spintronic devices.

4. Magnetism and hybrid improper ferroelectricity in LaMOโ‚ƒ/YMOโ‚ƒ superlattices

Journal: Phys. Chem. Chem. Phys., 2019
Author: Pengxia Zhou
Summary:
This work presents a theoretical analysis of LaMOโ‚ƒ/YMOโ‚ƒ (M, Y = transition metals) superlattices, showing hybrid improper ferroelectricity arising from coupling between octahedral tilting and rotations, along with magnetic ordering. The results support the design of multifunctional oxide heterostructures combining electric and magnetic orderings.

5. The excitonic photoluminescence mechanism and lasing action in band-gap-tunable CdSโ‚โˆ’โ‚“Seโ‚“ nanostructures

Journal: Nanoscale, 2016
Author: Pengxia Zhou
Summary:
This paper discusses CdSโ‚โˆ’โ‚“Seโ‚“ nanostructures with tunable band gaps. The team demonstrates strong excitonic photoluminescence and low-threshold lasing, linking optical properties to composition and quantum confinement. It provides a foundational understanding for nanoscale optoelectronic and laser devices.

6. Ferroelectricity driven magnetism at domain walls in LaAlOโ‚ƒ/PbTiOโ‚ƒ superlattices

Journal: Scientific Reports, 2015
Author: Pengxia Zhou
Summary:
This study reveals that in LaAlOโ‚ƒ/PbTiOโ‚ƒ superlattices, ferroelectric domain walls can induce localized magnetic moments due to lattice distortions and charge redistributions. This domain-wall magnetism introduces the potential for non-volatile magnetic memory controlled by ferroelectric domains.

Conclusion:

Dr. Zhou Pengxia is a suitable candidate for a Best Researcher Award, particularly in the fields of condensed matter physics and material science. Her leadership in nationally funded research, international collaboration experience, and long-standing academic service reflect a researcher committed to scientific advancement and knowledge dissemination. While her publication record and citation metrics were not provided, her PI role on an NSFC project suggests peer recognition and scholarly maturity.

Reza Kalami | Physics and Astronomy | Best Researcher Award

Dr. Reza Kalami | Physics and Astronomy | Best Researcher Award

Semnan University, Iran

Dr. Reza Kalami is a distinguished physicist specializing in condensed matter physics and nanotechnology, with a focus on the electronic, thermoelectric, and transport properties of advanced nanomaterials. Born on September 21, 1989, in Semnan, Iran, he earned his PhD in Condensed Matter Physics from Damghan University in 2023, where he conducted groundbreaking research on graphene, silicene, and germanene nanoribbons. His work explores the impact of defects, quantum antidots, and electromagnetic fields on nanostructures, contributing to advancements in energy efficiency and next-generation nanodevices. With a strong academic background that includes an M.Sc. in Nanoscience and Nanotechnology and a B.Sc. in Solid State Physics, Dr. Kalami has authored 10 influential publications in high-impact journals. His innovative contributions have positioned him as a promising researcher in the field, dedicated to pushing the boundaries of knowledge in material science and nanotechnology.

Professional Profile

Education

Dr. Reza Kalamiโ€™s academic journey demonstrates a deep commitment to physics, particularly in the areas of nanotechnology and condensed matter physics. He earned his PhD in Condensed Matter Physics from Damghan University in 2023, focusing on advanced research into the electronic, thermoelectric, and transport properties of nanomaterials such as graphene and silicene nanoribbons. His doctoral studies emphasized innovative methods to enhance energy efficiency and material performance in nanostructures. Before this, he completed his M.Sc. in Physics with a specialization in Nanoscience and Nanotechnology at Damghan University in 2018, where he gained expertise in nanoscale material properties and theoretical modeling. Dr. Kalamiโ€™s academic foundation was laid during his undergraduate studies at Semnan University, where he earned a B.Sc. in Solid State Physics in 2011, developing a robust understanding of material science and quantum mechanics. This strong educational background underpins his pioneering research in nanotechnology and material science.

Professional Experience

Dr. Reza Kalamiโ€™s professional experience is primarily centered around academic research in condensed matter physics and nanotechnology. Throughout his career, he has focused on exploring the electronic, thermoelectric, and transport properties of nanomaterials, including graphene, silicene, and germanene nanoribbons. His research often involves the manipulation of quantum properties and defect engineering to improve the performance of these materials for energy-efficient devices and advanced nanotechnologies. Dr. Kalami has collaborated extensively with other researchers, particularly with S.A. Ketabi, on several key publications in renowned journals, further establishing his expertise in the field. His work has contributed to advancing the understanding of how defects, magnetic fields, and quantum antidots affect the behavior of nanomaterials. Although he has primarily been involved in academic research, his contributions have positioned him as a significant figure in the nanoscience community, with ongoing projects aimed at solving critical challenges in material science and nanotechnology.

Research Interests

Dr. Reza Kalamiโ€™s research interests are centered around the exploration of nanomaterials and their unique quantum properties, with a particular focus on graphene, silicene, and germanene nanoribbons. His work investigates the effects of defects, quantum antidots, and electromagnetic fields on the electronic, thermoelectric, and transport properties of these materials. Dr. Kalami aims to optimize the performance of nanostructures for applications in energy-efficient devices, advanced electronics, and nanotechnology. His research also delves into the manipulation of material properties through defect engineering and the study of magnetic fields, providing valuable insights into how these factors influence the behavior of nanomaterials at the quantum level. His interdisciplinary approach combines theoretical modeling with practical applications, positioning his work at the forefront of nanoscience and condensed matter physics. Through his research, Dr. Kalami contributes significantly to advancing the understanding and development of next-generation nanodevices with enhanced functionality.

Awards and Honors

Dr. Reza Kalami has earned recognition for his impactful contributions to condensed matter physics and nanotechnology, although most of his accolades stem from his research achievements and publications. His work has been published in prestigious scientific journals such as the Journal of Electronic Materials and Physica E, solidifying his reputation within the scientific community. His research on the electronic and thermoelectric properties of nanomaterials, including graphene and silicene nanoribbons, has garnered significant attention, contributing to the advancement of energy-efficient technologies and nanodevices. Although he has not received specific awards listed in public databases, the quality and innovation of his publications, along with the acknowledgment of his research by peers and collaborators, reflect his standing in the field. Dr. Kalamiโ€™s ongoing contributions to the nanoscience community suggest that further recognition, both within academic and professional circles, is likely as his career progresses.

Conclusion

Dr. Reza Kalami demonstrates exceptional promise as a researcher in condensed matter physics and nanotechnology, with a strong foundation in theoretical and applied studies. His impressive publication record and innovative focus position him as a strong contender for the Best Researcher Award. However, further diversification in collaboration, demonstration of leadership in projects, and clear metrics of research impact would elevate his candidacy to an even higher level. Overall, he is a highly suitable candidate for this recognition.

Publications Top Noted

  • Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons
    • Authors: Ardyani, M., Ketabi, S.A., Kalami, R.
    • Journal: Journal of Computational Electronics
    • Year: 2024
    • Citations: 1 ๐Ÿ“˜
  • Effect of electromagnetic radiation on the electronic and thermoelectric properties of armchair edge silicene nanoribbons
    • Authors: Ardyani, M., Ketabi, S.A., Kalami, R.
    • Journal: Solid State Communications
    • Year: 2024
    • Citations: 2 ๐Ÿ“š๐Ÿ“˜
  • Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Electronic Materials
    • Year: 2023
    • Citations: 4 ๐Ÿ“š๐Ÿ“š๐Ÿ“˜๐Ÿ“˜
  • Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Electronic Materials
    • Year: 2023
    • Citations: 6 ๐Ÿ“š๐Ÿ“š๐Ÿ“š๐Ÿ“˜๐Ÿ“˜๐Ÿ“˜
  • Effect of Stoneโ€“Wales defect on the electronic and thermoelectric properties of armchair edge germanene nanoribbons
    • Authors: Kalami, R.
    • Journal: Physica E: Low-Dimensional Systems and Nanostructures
    • Year: 2025
    • Citations: 0 ๐Ÿ”
  • Exploring the electronic and thermoelectric properties of zigzag and armchair edge Irida-Graphene nanoribbons
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Computational Electronics
    • Year: 2025
    • Citations: 0 ๐Ÿ”

Waheeba Al-Amrani | Particle Experiments | Women Researcher Award

Prof. Waheeba Al-Amrani | Particle Experiments | Women Researcher Awardย 

Prof. Waheeba Al-Amrani, Ibb University, Yemen

Prof. Waheeba Al-Amrani is a distinguished scholar and academic at Ibb University, Yemen. She holds a Ph.D. in Environmental Chemistry from Universiti Sains Malaysia, where her groundbreaking work focused on bioregeneration of modified adsorbents for wastewater treatment. With a Masterโ€™s degree in Physical Chemistry from Menoufia University and a Bachelorโ€™s degree in General Chemistry from Ibb University, she has consistently demonstrated academic excellence.

Her research interests lie in developing innovative, low-cost solutions for pollutant removal, including advanced adsorption and bioremediation techniques. An accomplished educator and mentor, she has published 26 research papers and actively contributes to the academic and research communities through seminars, conferences, and teaching.

PROFILE

Scopus Profile

Educational Detail

Ph.D. in Environmental Chemistry: Universiti Sains Malaysia (USM), Pulau Penang, Malaysia, 2014
Dissertation: โ€œBioregeneration of mono amine modified silica and granular activated carbon loaded with mono-azo dyes in batch system.โ€

M.Sc. in Physical Chemistry: Menoufia University, Sheibin Alkoum, Menoufia, Egypt, 2009
Graduated with Excellence and Honors.
Thesis: โ€œRemoval of azo dyes using modified silica.โ€

B.Sc. in General Chemistry: Ibb University, Yemen, 2001
Graduated First Class with Honors.

Professional Experience

Prof. Waheeba Al-Amrani has extensive experience as a researcher and academic, contributing significantly to the fields of environmental and physical chemistry. She has been actively teaching both practical and theoretical chemistry courses at the undergraduate level at Ibb University, Yemen. Additionally, she supervises final-year research projects, mentoring students in innovative approaches to wastewater treatment and pollutant removal.

As a researcher, Prof. Al-Amrani has gained expertise in adsorption processes, employing various materials such as activated carbon and silica gel. Her work involves cultivating usable biomass, studying bioregeneration of loaded adsorbents, and applying these methodologies in advanced wastewater treatment technologies. She is proficient in using analytical techniques, including XRD, SEM, BET, EDX, HPLC, FTIR, and spectrophotometric analysis.

Prof. Al-Amrani has presented her research findings at numerous national and international conferences and seminars and has authored 26 publications in peer-reviewed journals.

Research Interests

Development of low-cost adsorbents for the removal of organic and inorganic pollutants, including mercury and anionic azo dyes, from aqueous solutions.

Bioregeneration of adsorbents, particularly granular activated carbon and modified silica, loaded with phenolic and azo dye pollutants.

Bacteria acclimation for bioremediation of wastewater, with a focus on phenolic and azo dye pollutants.

Employing advanced analytical techniques and quantum chemistry to evaluate adsorption and bioregeneration processes.

Top Notable Publications

Alkoshab, M.Q., Al-Amrani, W.A., Drmosh, Q.A., Onaizi, S.A. (2024). Zeolitic imidazolate framework-8/layered triple hydroxide composite for boosting the adsorptive removal of acid red 1 dye from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 699, 134637.

Iddrisu, M., Al-Amrani, W.A., Merghani, A.A., Drmosh, Q.A., Onaizi, S.A. (2024). Effects of detergent on enzyme adsorption onto solid surfaces. Emergent Materials, 7(5), 2079โ€“2086.

Al-Amrani, W.A., Onaizi, S.A. (2024). Adsorptive removal of heavy metals from wastewater using emerging nanostructured materials: A state-of-the-art review. Separation and Purification Technology, 343, 127018.

Bahadi, S.A., Iddrisu, M., Al-Sakkaf, M.K., Zahid, U., Onaizi, S.A. (2024). Optimization of methyl orange adsorption on MgFeAl-LTH through the manipulation of solution chemistry and synthesis conditions. Emergent Materials, 7(3), 959โ€“971.

Bahadi, S.A., Iddrisu, M., Al-Sakkaf, M.K., Drmosh, Q.A., Onaizi, S.A. (2024). Chemically versus thermally reduced graphene oxide: Effects of reduction methods and reducing agents on the adsorption of phenolic compounds from wastewater. Emergent Materials, 7(2), 533โ€“545.

Aziz, N.A.A., Hir, Z.A.M., Khalir, W.K.A.W.M., Al-Amrani, W.A., Hanafiah, M.A.K.M. (2024). Simultaneous adsorption of rare earth metal ions on chitosan-coated fumed silica โ€“ Characterization, kinetics, and isotherm studies. Ecological Engineering and Environmental Technology, 25(6), 172โ€“187.

Hussin, S.M., Al-Amrani, W.A., Suah, F.B.M., Harimu, L., Hanafiah, M.A.K.M. (2024). Hydrogen peroxide treated desiccated coconut waste as a biosorbent in malachite green removal from aqueous solutions. Journal of Ecological Engineering, 25(3), 323โ€“333.

Ganiyu, S.A., Suleiman, M.A., Al-Amrani, W.A., Usman, A.K., Onaizi, S.A. (2023). Adsorptive removal of organic pollutants from contaminated waters using zeolitic imidazolate framework composites: A comprehensive and up-to-date review. Separation and Purification Technology, 318, 123765.