Sergei Badulin | Physics | Best Paper Award

Dr. Sergei Badulin | Physics | Best Paper Award

Head of laboratory at P.P.Shirshov Institute of Oceanology, Russia

Sergei I. Badulin is a distinguished Russian physicist renowned for his deep contributions to nonlinear ocean wave dynamics. With an academic journey rooted in the elite Moscow Institute of Physics and Technology, he earned both his PhD and D.Sc. in physics and mathematics, focusing on wave transformations and ocean forecasting. He currently leads the Nonlinear Wave Processes Laboratory at the P.P. Shirshov Institute of Oceanology and holds senior positions at top Russian institutions including Skolkovo Institute of Science and Technology. His international impact is marked by multiple research visits to Japan and France. Badulin’s research portfolio spans the theoretical and experimental study of oceanic gravity waves, wind-sea forecasting, and remote sensing of sea surfaces 🌊📡. Honored as an MIPT graduate with distinction, his scholarly legacy continues to inspire in both academia and applied marine science. His profound scientific insights contribute significantly to ocean monitoring and global environmental understanding 🌍🧠.

Professional Profile 

Orcid

Scopus

Google Scholar

🎓 Education

Sergei Badulin’s academic excellence was cultivated at the prestigious Moscow Institute of Physics and Technology (MIPT), where he graduated with honors in 1982, specializing in aero- and thermodynamics ✈️🔥. He went on to earn a PhD in Physics and Mathematics in 1985, with a focus on the transformation of internal ocean waves in hydrological field inhomogeneities 🌊📘. Demonstrating an enduring commitment to academic excellence, he further achieved a Doctor of Science (D.Sc.) degree in 2009, centered on wave dynamics for ocean forecasting and monitoring. He also pursued French language studies between 1983–1985, reflecting his preparedness for international collaboration. His rigorous educational background has empowered him to bridge theoretical physics and marine science with precision and innovation 📚⚛️. This strong foundation continues to underpin his impactful research across global oceanographic institutions.

👨‍🔬 Professional Experience

Prof. Badulin’s career trajectory reflects both academic leadership and international collaboration. Since 2013, he has served as Head of the Nonlinear Wave Processes Laboratory at the P.P. Shirshov Institute of Oceanology. Additionally, he is a Senior Research Scientist at the Skolkovo Institute of Science and Technology (since 2019) and has held leading roles at P.N. Lebedev Physical Institute, Novosibirsk State University, and Russian State Hydrometeorological University 🏛️💼. Earlier in his career, he contributed extensively as a researcher at the Atlantic Branch of the Institute of Oceanology in Kaliningrad. His international engagements include visiting scientist positions in Japan (1998) and France (1993–1996), enriching his global research impact 🌐🔬. From junior researcher to lab head, his journey spans over three decades, reflecting sustained excellence and leadership in the marine physics community. His professional record is a benchmark in ocean wave modeling and environmental forecasting 📈🌊.

🔬 Research Interests

Sergei Badulin is widely respected for his pioneering research in nonlinear wave dynamics, specializing in both internal and surface gravity waves in oceans. His work integrates theoretical modeling, experimental observation, and remote sensing technologies to enhance understanding of wave transformation, energy propagation, and sea state forecasting 🌊📡. His contributions help improve the prediction of wind-generated waves and offer practical insights into climate modeling and marine navigation safety. Furthermore, Badulin’s findings support advancements in satellite remote sensing and monitoring systems for oceanic conditions, crucial for both scientific inquiry and global environmental policy. His deep involvement in collaborative projects with institutions in France and Japan has broadened the scope and precision of his marine studies 📘🌐. Overall, his research continues to push the boundaries of fluid dynamics and earth system sciences, addressing both theoretical challenges and real-world marine applications with clarity and depth 🌍🔭.

🏅 Awards and Honors

Sergei I. Badulin was honored as a top graduate of MIPT in 1982, a significant early recognition that foreshadowed a highly productive academic life 🎓✨. His scientific career has since been marked by prestigious roles in Russia’s foremost research institutions, including the Russian Academy of Sciences and Skolkovo Tech. Though not widely publicized, his long-standing leadership and research excellence reflect an implicit acknowledgment of his standing in the field. His international fellowships and visiting scientist appointments in Japan and France underscore his recognition on the global stage 🌍🧪. These positions were not just exchanges but research-driven appointments at top-tier institutions, evidencing peer recognition. His continuous engagement as a leading scientist over decades is itself a professional accolade, showing trust in his expertise and thought leadership. Badulin’s reputation is further enhanced by the success and longevity of the laboratory he directs, setting standards in nonlinear ocean wave research 🧠🔬.

📚 Publications Top Note 

1. Altimetry for the future: Building on 25 years of progress

  • Authors: S. Abdalla, A.A. Kolahchi, M. Ablain, S. Adusumilli, S.A. Bhowmick, et al.

  • Year: 2021

  • Citations: 227

  • Source: Advances in Space Research, Vol. 68(2), pp. 319–363

  • Summary:
    This review presents a comprehensive overview of the progress in satellite altimetry over 25 years, detailing the evolution of instruments, data accuracy improvements, and future missions. It emphasizes how altimetry has revolutionized oceanography, hydrology, and climate monitoring, and outlines recommendations for the next generation of missions.


2. Weakly turbulent laws of wind-wave growth

  • Authors: S.I. Badulin, A.V. Babanin, V.E. Zakharov, D. Resio

  • Year: 2007

  • Citations: 167

  • Source: Journal of Fluid Mechanics, Vol. 591, pp. 339–378

  • Summary:
    This paper develops a theoretical framework and numerical simulations supporting the weak turbulence theory for wind-wave growth. It contrasts this with empirical and spectral models, providing scaling laws for wave energy and emphasizing nonlinearity and energy flux mechanisms in sea wave evolution.


3. Self-similarity of wind-driven seas

  • Authors: S.I. Badulin, A.N. Pushkarev, D. Resio, V.E. Zakharov

  • Year: 2005

  • Citations: 146

  • Source: Nonlinear Processes in Geophysics, Vol. 12(6), pp. 891–945

  • Summary:
    The paper explores the concept of self-similarity in wind-driven ocean waves, applying nonlinear wave theory. The authors validate theoretical results with both observational data and numerical simulations, revealing self-similar behavior across various fetch-limited and duration-limited growth conditions.


4. On weakly turbulent scaling of wind sea in simulations of fetch-limited growth

  • Authors: E. Gagnaire-Renou, M. Benoit, S.I. Badulin

  • Year: 2011

  • Citations: 70

  • Source: Journal of Fluid Mechanics, Vol. 669, pp. 178–213

  • Summary:
    This study examines the fetch-limited growth of wind-generated waves using numerical simulations. It compares the results with weak turbulence theory predictions and finds partial agreement, highlighting complexities in capturing real ocean conditions and wave energy distributions.


5. A model of water wave ‘horse-shoe’ patterns

  • Authors: V.I. Shrira, S.I. Badulin, C. Kharif

  • Year: 1996

  • Citations: 69

  • Source: Journal of Fluid Mechanics, Vol. 318, pp. 375–405

  • Summary:
    This theoretical study explains the formation of distinctive “horse-shoe” patterns observed in surface water waves. It uses nonlinear wave theory and geometric optics to describe the patterns as a result of wave-current interaction and spatial focusing of energy.


6. On two approaches to the problem of instability of short-crested water waves

  • Authors: S.I. Badulin, V.I. Shrira, C. Kharif, M. Ioualalen

  • Year: 1995

  • Citations: 63

  • Source: Journal of Fluid Mechanics, Vol. 303, pp. 297–326

  • Summary:
    The paper compares linear and nonlinear approaches to the instability of short-crested waves. It shows how modulational instability can lead to energy focusing and breaking, a key process in understanding wave field evolution and ocean surface turbulence.


7. A physical model of sea wave period from altimeter data

  • Author: S.I. Badulin

  • Year: 2014

  • Citations: 61

  • Source: Journal of Geophysical Research: Oceans, Vol. 119(2), pp. 856–869

  • Summary:
    This work presents a model linking satellite altimeter data to sea wave periods based on physical principles. It improves upon empirical formulations by incorporating nonlinear dynamics and provides better accuracy in estimating ocean wave fields globally.


8. Universality of sea wave growth and its physical roots

  • Authors: V.E. Zakharov, S.I. Badulin, P.A. Hwang

  • Year: 2015

  • Citations: 60

  • Source: Journal of Fluid Mechanics, Vol. 780, pp. 503–535

  • Summary:
    The authors argue for universal laws governing the growth of sea waves under wind forcing. The paper synthesizes observational data and weak turbulence theory to suggest that wave growth follows invariant scaling laws independent of environmental specifics.


9. On the irreversibility of internal-wave dynamics due to wave trapping by mean flow inhomogeneities. Part 1. Local analysis

  • Authors: S.I. Badulin, V.I. Shrira

  • Year: 1993

  • Citations: 53

  • Source: Journal of Fluid Mechanics, Vol. 251, pp. 21–53

  • Summary:
    This foundational study examines how mean flow inhomogeneities trap internal waves, leading to irreversible energy redistribution. The analysis provides insight into internal wave dynamics in oceans and their contribution to energy cascades and mixing.


10. A laboratory study of the transformation of regular gravity-capillary waves in inhomogeneous flows

  • Authors: S.I. Badulin, K.V. Pokazayev, A.D. Rozenberg

  • Year: 1983

  • Citations: 44

  • Source: Izvestiya Atmospheric and Oceanic Physics, Vol. 19(10), pp. 782–787

  • Summary:
    This experimental study investigates how gravity-capillary waves evolve in non-uniform flows. It reveals transformation effects such as amplitude modulation and wave steepening, contributing to the understanding of wave behavior in natural fluid systems.

Conclusion

Dr. Sergei I. Badulin exemplifies scientific excellence in the field of ocean physics, blending rich academic training with decades of research leadership 🌊📘. His interdisciplinary work links theoretical physics with real-world applications like marine forecasting, climate observation, and remote sensing, making his contributions both academically valuable and societally relevant 🌐⚙️. His international presence and collaborative projects reflect an openness to scientific exchange and a commitment to advancing global knowledge. As the head of a leading research laboratory and senior figure at Skolkovo Tech, Badulin continues to influence new generations of researchers and drive marine science innovation 🚀🔬. While his awards may be understated publicly, his career achievements, scholarly depth, and ongoing research activities make him an exceptional candidate for recognition such as the Best Researcher Award. His legacy is one of rigorous inquiry, impactful research, and visionary scientific leadership 🌟🏅.

Dhanpat Sharma | Nuclear Physics | Best Researcher Award

Dr. Dhanpat Sharma | Nuclear Physics| Best Researcher Award

Reserch Scholar at Central University of Haryana, India

Dhanpat Sharma 🎓, a passionate physicist from Haryana, India 🇮🇳, recently submitted his Ph.D. thesis in Physics at the Central University of Haryana 📚. His research focuses on the simulation of magnetic field generation during heavy ion collisions 💥, and the impact of low-intensity magnetic fields on environmental systems 🌱. Skilled in nanoparticle synthesis 🧪 and material integration 🔬, he bridges theoretical and experimental physics with ease. With academic roots from Delhi University 🏛️ and MDU Rohtak, Dhanpat is on a journey to contribute significantly to nuclear and environmental physics 🌍.

Professional Profile:

Orcid

Scopus

🔹 Education & Experience 

  • 🎓 Ph.D. (Physics) – Central University of Haryana (2019–2025)
    🧠 Thesis: Nuclear Flow, Nuclear Stopping, Magnetic Field & their Correlations

  • 📘 M.Sc. (Physics) – Maharishi Dayanand University, Rohtak (2016–2018)

  • 📗 B.Sc. (PCM) – Kirori Mal College, University of Delhi (2012–2016)

  • 🔬 Research Experience – Theoretical modeling & experimental work in magnetism, heavy ion collisions, and nanomaterials.

🔹 Professional Development 

Throughout his academic journey 📘, Dhanpat Sharma has developed a robust skill set in both theoretical physics 🧠 and experimental techniques 🔬. His Ph.D. work equipped him with simulation tools to explore nuclear matter behavior during heavy ion collisions 💥. On the experimental side, he explored the applications of low-intensity magnetic fields 🌌 in environmental setups 🌱. He has synthesized various nanoparticles 🧪 and studied their multifunctional integration with other materials. His interdisciplinary outlook, from nuclear physics to nanoscience, reflects his commitment to scientific growth 🚀 and collaborative innovation 🤝.

🔹 Research Focus Area 

Dhanpat Sharma’s research focus lies at the intersection of nuclear physics ⚛️ and magneto-environmental applications 🌍. He investigates the generation and role of magnetic fields in heavy ion collisions 💥 using theoretical simulation frameworks. Additionally, he has a hands-on background in applying low-intensity magnetic fields in experimental setups related to environmental science 🌿. His material science expertise includes synthesizing nanoparticles 🧪 and integrating them into multi-material systems 🔗. This dual approach, bridging fundamental particle interactions and real-world environmental impacts, defines his unique research identity 🔬.

🔹 Awards and Honors 

  • 🏅 Ph.D. Research Fellowship – Central University of Haryana

  • 🎖️ Merit-based Selection – M.Sc. Physics at MDU, Rohtak

  • 🏆 Consistent Academic Performer – B.Sc. at Kirori Mal College, Delhi University

Publication Top Notes

1. Magnetic field and dissolved oxygen assisted ultra-high photocatalytic activity of α-γ-Fe₂O₃ heterophase wrapped with rGO sheets for the removal of rifampicin

Journal: Applied Materials Today
Publication Date: June 2025
DOI: 10.1016/j.apmt.2025.102706
Highlights:

  • Focus on environmental remediation.

  • Enhanced photocatalysis using α-γ-Fe₂O₃/rGO.

  • Magnetic field and dissolved O₂ boost efficiency for antibiotic degradation.

2. Waste toner derived Fe₃O₄ nanoparticles embedment into PANI matrix as an advanced electrode for supercapacitor

Journal: Physica Scripta
Publication Date: April 2, 2025
DOI: 10.1088/1402-4896/adc844
Author: Dhanpat Sharma
Highlights:

  • Recycling waste toner to synthesize Fe₃O₄ NPs.

  • Polyaniline (PANI) matrix improves electrochemical performance.

  • Potential application in high-performance supercapacitors.

3. Probing the contribution of various mass fragments in the production of magnetic field during heavy ion collisions

Journal: Nuclear Physics A
Publication Date: March 2025
DOI: 10.1016/j.nuclphysa.2024.123005
Author: Dhanpat Sharma
Highlights:

  • Theoretical investigation of magnetic field generation in heavy-ion collisions.

  • Role of mass fragments in field strength and dynamics.

4. Influence of symmetry energy on electromagnetic field during heavy-ion collisions

Journal: Pramana – Journal of Physics
Publication Date: December 13, 2024
DOI: 10.1007/s12043-024-02860-w
Author: Dhanpat Sharma
Highlights:

  • Analysis of the symmetry energy term in nuclear matter.

  • Effects on electromagnetic field during nuclear collisions.

5. Correlation between magnetic field and nuclear stopping in different rapidity segments during heavy ion collisions

Journal: Journal of Physics G: Nuclear and Particle Physics
Publication Date: May 1, 2024
DOI: 10.1088/1361-6471/ad2e33
Author: Dhanpat Sharma
Highlights:

  • Study of nuclear stopping and magnetic field correlation.

  • Insights into rapidity-dependent nuclear dynamics.

Conclusion

Dhanpat Sharma’s interdisciplinary research combining nuclear physics, simulation techniques, magnetic field studies, and nanotechnology positions him as an emerging and promising researcher. His dual focus on fundamental physics and real-world applications is highly commendable.

 

Reza Kalami | Physics and Astronomy | Best Researcher Award

Dr. Reza Kalami | Physics and Astronomy | Best Researcher Award

Semnan University, Iran

Dr. Reza Kalami is a distinguished physicist specializing in condensed matter physics and nanotechnology, with a focus on the electronic, thermoelectric, and transport properties of advanced nanomaterials. Born on September 21, 1989, in Semnan, Iran, he earned his PhD in Condensed Matter Physics from Damghan University in 2023, where he conducted groundbreaking research on graphene, silicene, and germanene nanoribbons. His work explores the impact of defects, quantum antidots, and electromagnetic fields on nanostructures, contributing to advancements in energy efficiency and next-generation nanodevices. With a strong academic background that includes an M.Sc. in Nanoscience and Nanotechnology and a B.Sc. in Solid State Physics, Dr. Kalami has authored 10 influential publications in high-impact journals. His innovative contributions have positioned him as a promising researcher in the field, dedicated to pushing the boundaries of knowledge in material science and nanotechnology.

Professional Profile

Education

Dr. Reza Kalami’s academic journey demonstrates a deep commitment to physics, particularly in the areas of nanotechnology and condensed matter physics. He earned his PhD in Condensed Matter Physics from Damghan University in 2023, focusing on advanced research into the electronic, thermoelectric, and transport properties of nanomaterials such as graphene and silicene nanoribbons. His doctoral studies emphasized innovative methods to enhance energy efficiency and material performance in nanostructures. Before this, he completed his M.Sc. in Physics with a specialization in Nanoscience and Nanotechnology at Damghan University in 2018, where he gained expertise in nanoscale material properties and theoretical modeling. Dr. Kalami’s academic foundation was laid during his undergraduate studies at Semnan University, where he earned a B.Sc. in Solid State Physics in 2011, developing a robust understanding of material science and quantum mechanics. This strong educational background underpins his pioneering research in nanotechnology and material science.

Professional Experience

Dr. Reza Kalami’s professional experience is primarily centered around academic research in condensed matter physics and nanotechnology. Throughout his career, he has focused on exploring the electronic, thermoelectric, and transport properties of nanomaterials, including graphene, silicene, and germanene nanoribbons. His research often involves the manipulation of quantum properties and defect engineering to improve the performance of these materials for energy-efficient devices and advanced nanotechnologies. Dr. Kalami has collaborated extensively with other researchers, particularly with S.A. Ketabi, on several key publications in renowned journals, further establishing his expertise in the field. His work has contributed to advancing the understanding of how defects, magnetic fields, and quantum antidots affect the behavior of nanomaterials. Although he has primarily been involved in academic research, his contributions have positioned him as a significant figure in the nanoscience community, with ongoing projects aimed at solving critical challenges in material science and nanotechnology.

Research Interests

Dr. Reza Kalami’s research interests are centered around the exploration of nanomaterials and their unique quantum properties, with a particular focus on graphene, silicene, and germanene nanoribbons. His work investigates the effects of defects, quantum antidots, and electromagnetic fields on the electronic, thermoelectric, and transport properties of these materials. Dr. Kalami aims to optimize the performance of nanostructures for applications in energy-efficient devices, advanced electronics, and nanotechnology. His research also delves into the manipulation of material properties through defect engineering and the study of magnetic fields, providing valuable insights into how these factors influence the behavior of nanomaterials at the quantum level. His interdisciplinary approach combines theoretical modeling with practical applications, positioning his work at the forefront of nanoscience and condensed matter physics. Through his research, Dr. Kalami contributes significantly to advancing the understanding and development of next-generation nanodevices with enhanced functionality.

Awards and Honors

Dr. Reza Kalami has earned recognition for his impactful contributions to condensed matter physics and nanotechnology, although most of his accolades stem from his research achievements and publications. His work has been published in prestigious scientific journals such as the Journal of Electronic Materials and Physica E, solidifying his reputation within the scientific community. His research on the electronic and thermoelectric properties of nanomaterials, including graphene and silicene nanoribbons, has garnered significant attention, contributing to the advancement of energy-efficient technologies and nanodevices. Although he has not received specific awards listed in public databases, the quality and innovation of his publications, along with the acknowledgment of his research by peers and collaborators, reflect his standing in the field. Dr. Kalami’s ongoing contributions to the nanoscience community suggest that further recognition, both within academic and professional circles, is likely as his career progresses.

Conclusion

Dr. Reza Kalami demonstrates exceptional promise as a researcher in condensed matter physics and nanotechnology, with a strong foundation in theoretical and applied studies. His impressive publication record and innovative focus position him as a strong contender for the Best Researcher Award. However, further diversification in collaboration, demonstration of leadership in projects, and clear metrics of research impact would elevate his candidacy to an even higher level. Overall, he is a highly suitable candidate for this recognition.

Publications Top Noted

  • Effect of incident angle of electromagnetic radiation on the electronic and thermoelectric properties of POPGraphene nanoribbons
    • Authors: Ardyani, M., Ketabi, S.A., Kalami, R.
    • Journal: Journal of Computational Electronics
    • Year: 2024
    • Citations: 1 📘
  • Effect of electromagnetic radiation on the electronic and thermoelectric properties of armchair edge silicene nanoribbons
    • Authors: Ardyani, M., Ketabi, S.A., Kalami, R.
    • Journal: Solid State Communications
    • Year: 2024
    • Citations: 2 📚📘
  • Electronic and Thermoelectric Properties of Armchair-Edge Silicene Nanoribbons: Role of Quantum Antidot Arrays
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Electronic Materials
    • Year: 2023
    • Citations: 4 📚📚📘📘
  • Role of Linear Defects on the Electronic, Transport, and Thermoelectric Properties of Armchair Edge Silicene Nanoribbons
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Electronic Materials
    • Year: 2023
    • Citations: 6 📚📚📚📘📘📘
  • Effect of Stone–Wales defect on the electronic and thermoelectric properties of armchair edge germanene nanoribbons
    • Authors: Kalami, R.
    • Journal: Physica E: Low-Dimensional Systems and Nanostructures
    • Year: 2025
    • Citations: 0 🔍
  • Exploring the electronic and thermoelectric properties of zigzag and armchair edge Irida-Graphene nanoribbons
    • Authors: Kalami, R., Ketabi, S.A.
    • Journal: Journal of Computational Electronics
    • Year: 2025
    • Citations: 0 🔍

Yang Han | Condensed Matter Physics | Best Researcher Award

Prof Dr.Yang Han | Condensed Matter Physics | Best Researcher Award

Google Scholar Profile

Orcid Profile

Educational Details:

Yang Han completed her Ph.D. in 2014 from Nanjing University, China. Following her doctorate, she pursued postdoctoral research at RWTH Aachen University, Germany, from 2014 to 2016, where she focused on [research focus, e.g., materials science, mechanical properties, etc.]. She then continued her postdoctoral work at the University of Lorraine, France, from 2016 to 2018, concentrating on [research focus, e.g., thermoelectric properties, molecular dynamics simulations, etc.]. With a strong background in first-principles calculations and numerical simulations, she now serves as a professor and Ph.D. supervisor at Harbin Engineering University.

Research and Innovations:

Yang Han has made significant contributions to the fields of material science and computational modeling, particularly through her innovative research using numerical simulations to understand the mechanical, thermal transport, electronic, magnetic, and thermoelectric properties of advanced materials. Her groundbreaking work has centered on the following key research innovations:

  1. Topological Defects and Heterojunctions in 3D Graphene Structures: Through the support of the National Natural Science Foundation of China (Project No. 12104111), Yang’s research has provided vital insights into the stability and physical properties of three-dimensional graphene structures. By exploring the influence of topological defects and heterojunctions, her research has enhanced the understanding of how these factors contribute to material performance, with potential applications in advanced electronics and nanotechnology.
  2. Natural Gas Hydrate Self-Protection Mechanisms: Under the Basic Research Funds for Central Universities, Yang’s research on natural gas hydrates has delved into the microscopic mechanisms that enable these structures to self-protect, which has crucial implications for energy storage and environmental sustainability. Her molecular dynamics simulations have uncovered novel pathways for optimizing the extraction and stability of natural gas hydrates.
  3. Combustible Ice Formation Mechanism: Another major contribution is her simulation study on the formation mechanism and physical properties of combustible ice. This research, funded by Central Universities’ Free Exploration Support Program, sheds light on the potential of combustible ice as a future energy source by providing a detailed understanding of its formation at the molecular level.
  4. Thermal Conductivity in Carbon Honeycomb Structures: At RWTH Aachen University, Yang’s work using high-performance computing resources has advanced the understanding of how tensile strain impacts the thermal conductivity of carbon-based materials. This research has potential implications for the development of advanced materials with tailored thermal properties for use in electronics and energy systems.
  5. Ab initio Calculations for Predicting Thermal Materials: Yang’s predictive models using ab initio calculations to discover new thermal materials have been pivotal in the design and application of next-generation materials with enhanced heat conduction properties. This project at RWTH Aachen University led to the development of methods that could revolutionize industries ranging from electronics to aerospace by providing better materials for thermal management.

These research innovations demonstrate Yang HAN’s pioneering contributions to material science, leveraging cutting-edge computational techniques to solve complex problems with wide-ranging impacts across multiple scientific and industrial domains.

Research Interest: 

Yang Han research focuses on utilizing numerical simulations to investigate the formation mechanisms and physical properties of natural gas hydrates. Her work delves into understanding how these hydrates form and stabilize at the molecular level, which has significant implications for energy storage and environmental applications. By employing molecular dynamics simulations, she provides crucial insights into the self-preservation behaviors of natural gas hydrates, aiding in their practical extraction and use as alternative energy sources.

Additionally, Yang has made substantial contributions to the study of the mechanical, thermal, electronic, magnetic, and thermoelectric properties of materials. Using a combination of first-principles calculations, molecular dynamics simulations, and analytical models, her research investigates how various materials behave under different physical conditions. This includes exploring their conductivity, structural stability, and magnetic properties, which are essential for designing advanced materials for electronics, thermoelectric devices, and other high-performance applications. Her multi-disciplinary approach is instrumental in advancing the field of material science, offering potential innovations across a wide range of industries.

Contributions: 

Yang Han is a seasoned researcher with over 10 years of experience in the field of numerical simulations, specializing in the mechanical, thermal transport, electronic, magnetic, and thermoelectric properties of materials. Her work primarily involves first-principles calculations and molecular dynamics simulations, which allow her to explore and predict the behavior of materials under various conditions. Her research also extends to water clathrate structures, such as methane hydrate, which have significant implications for energy storage and environmental conservation.

Yang’s academic contributions include 29 SCI-indexed papers, with two of her publications being specially highlighted by the editorial office of Nanotechnology and one chosen as a SCIlight by the Journal of Applied Physics. These recognitions underscore the impact and innovation of her work in material science, particularly in advancing the understanding of material properties for real-world applications in energy and technology.

Top Notable Publications

Rapid growth of CO2 hydrate as a promising way to mitigate the greenhouse effect
Authors: S. Jia, L. Yang, Y. Han, T. Zhang, X. Zhang, P. Gong, S. Du, Y. Chen, J. Ding
Year: 2024
Journal: Materials Today Physics, Article No. 101548
Citations: Not yet available (2024 publication)

Buckling Hydrogenated Biphenylene Network with Tremendous Stretch Extent and Anomalous Thermal Transport Properties
Authors: X. Zhang, M. Poulos, K. Termentzidis, Y. Han, D. Zhao, T. Zhang, X. Liu, S. Jia
Year: 2024
Journal: The Journal of Physical Chemistry C, 128 (13), 5632-5643
Citations: Not yet available (2024 publication)

Ferroelectricity of ice nanotube forests grown in three-dimensional graphene: the electric field effect
Authors: T. Zhang, Y. Han, C. Luo, X. Liu, X. Zhang, Y. Song, Y. T. Chen, S. Du
Year: 2024
Journal: Nanoscale, 16 (3), 1188-1196
Citations: 2

DFT characterization of a new possible two-dimensional BN allotrope with a biphenylene network structure
Authors: Y. Han, T. Hu, X. Liu, S. Jia, H. Liu, J. Hu, G. Zhang, L. Yang, G. Hong, Y. T. Chen
Year: 2023
Journal: Physical Chemistry Chemical Physics, 25 (16), 11613-11619
Citations: 5

Modulating thermal transport in a porous carbon honeycomb using cutting and deformation techniques
Authors: Y. Han, C. Zhao, H. Bai, Y. Li, J. Yang, Y. T. Chen, G. Hong, D. Lacroix, M. Isaiev
Year: 2022
Journal: Physical Chemistry Chemical Physics, 24 (5), 3207-3215
Citations: 1

Stretched three-dimensional white graphene with a tremendous lattice thermal conductivity increase rate
Authors: Y. Han, Y. Liang, X. Liu, S. Jia, C. Zhao, L. Yang, J. Ding, G. Hong
Year: 2022
Journal: RSC Advances, 12 (35), 22581-22589
Citations: 3

Condition monitoring and performance forecasting of wind turbines based on denoising autoencoder and novel convolutional neural networks
Authors: X. Jia, Y. Han, Y. Li, Y. Sang, G. Zhang
Year: 2021
Journal: Energy Reports, 7, 6354-6365
Citations: 37

Prediction of equilibrium conditions for gas hydrates in the organic inhibitor aqueous solutions using a thermodynamic consistency-based model
Authors: S. Li, Y. Li, L. Yang, Y. Han, Z. Jiang
Year: 2021
Journal: Fluid Phase Equilibria, 544, 113118
Citations: 15

Tailoring the activity of NiFe layered double hydroxide with CeCO3OH as highly efficient water oxidation electrocatalyst
Authors: J. Ding, Y. Han, G. Hong
Year: 2021
Journal: International Journal of Hydrogen Energy, 46 (2), 2018-2025
Citations: 14

Srinivasa Rao Konda | Optics Physics | Best Researcher Award

Dr. Srinivasa Rao Konda | Optics Physics | Best Researcher Award

Dr. Srinivasa Rao Konda, GPL Photonics Laboratory Changchun Institute of Optics Fine Mechanics and Physics, China

Dr. Srinivasa Rao Konda is a materials scientist specializing in optics and physics. He is currently affiliated with the GPL Photonics Laboratory at the Changchun Institute of Optics, Fine Mechanics and Physics in China. Dr. Konda’s research focuses on the development of advanced materials for photonics applications, with a particular emphasis on optical materials and devices. He has contributed significantly to the field through his work in material science, optics, and photonics technologies.

PROFILE

Scopus Profile

Orcid Profile

Google Scholar Profile

Educational Details

Dr. Srinivasa Rao Konda has a diverse academic background in physics and computational techniques. He completed his Ph.D. in Physics from the University of Hyderabad, India, from August 2010 to July 2016. Prior to this, he earned a Master of Technology (M.Tech) in Computational Techniques from the same university between August 2008 and June 2010, achieving a CGPA of 8.04/10. He also holds a Master of Science (M.Sc) in Computational Physics from Osmania University, India, completed from June 2006 to May 2008 with a score of 68.4%. Dr. Konda began his academic journey with a Bachelor of Science (B.Sc) in Mathematics, Physics, and Chemistry (M.P.C) from Kakatiya University, India, in June 2003, graduating in April 2006 with 90.3%. He completed his Intermediate education in M.P.C from the Board of Intermediate Education, Andhra Pradesh, India, in May 2003, securing 86.7%, and his SSC from the Board of Secondary Education, AP, in April 2001 with 89.3%.

Teaching Experience

Dr. Srinivasa Rao Konda has extensive teaching experience in a variety of physics-related subjects. His expertise includes Classical Mechanics, Quantum Mechanics, and Heat and Thermodynamics, where he teaches fundamental concepts essential to understanding the physical world. He also covers specialized topics such as Optics, Nonlinear Optics, Lasers, and Nanophotonics, reflecting his strong background in photonics and material science. Dr. Konda has taught Physics of Atoms and Molecules, providing students with insights into the microscopic world, as well as Computational Methods in Physics and Mathematical Methods in Physics, equipping them with the tools to solve complex physical problems. Additionally, he is proficient in MATLAB, Numerical Methods, and Computational Physics, which form a key part of his computational physics instruction, emphasizing the application of numerical techniques in solving physical equations.

Research  Interest

Dr. Srinivasa Rao Konda’s research is focused on Nonlinear Optics and Photonics, with a strong emphasis on material synthesis, light-matter interaction, and advanced optical applications. His work involves the synthesis and production of nanoparticles and thin films through methods such as laser ablation in liquids, chemical processes, pulsed laser deposition, and spin coating. He specializes in the optical and structural characterization of materials, using advanced techniques like UV-Visible spectroscopy, EDS, XPS, photoluminescence, time-resolved photoluminescence, XRD, HRTEM, FTIR, and Raman measurements. In the realm of nonlinear optics, Dr. Konda investigates third-order nonlinear optical (NLO) properties and carrier dynamics using Z-scan and time-resolved pump-probe methods, while exploring the generation of terahertz (THz) radiation through optical rectification in NLO crystals, 2D materials, and air plasma filamentation.

Dr. Konda’s work also delves into the applications of terahertz radiation, particularly through terahertz time-domain spectroscopy (THz-TDs) and time-resolved THz spectroscopy to examine quantum materials. Additionally, he is involved in the development of extreme ultraviolet (EUV) light sources and attosecond pulses, generated via higher-order harmonics using laser-induced plasmas from quantum materials. His expertise in light-matter interaction includes the fabrication of micro/nanostructures for optical and photonics applications, the creation of superhydrophobic and hydrophilic surfaces for anticorrosion uses, and the study of pulsed laser-material interaction. This includes laser plasma, nanoparticle deposition, surface morphology, and laser direct writing techniques. Furthermore, Dr. Konda investigates ultra-fast laser-matter interactions, such as femtosecond filamentation in air, and its role in generating terahertz radiation, along with plasma imaging in both air and vacuum conditions.

Top Notable Publications

Outstanding nonlinear optical properties of all-inorganic perovskite CsPbX3 (X=Cl, Br, I) precursor solutions and polycrystalline films

Authors: Fu, Y., Konda, S.R., Ganeev, R.A., Yu, W., Li, W.

Journal: iScience, 2023, 26(12), 108514

Citations: 0

Enhanced Higher Harmonic Generation in Modified MAPbBr3-xClx Single Crystal by Additive Engineering

Authors: Khanam, S.J., Konda, S.R., Ketavath, R., Li, W., Murali, B.

Journal: Journal of Physical Chemistry Letters, 2023, 14(41), pp. 9222–9229

Citations: 0

Aromatic Additives Boost the Terahertz Properties of Mixed Halide Perovskite Single Crystals

Authors: Khanam, S.J., Konda, S.R., Li, W., Murali, B.

Journal: Journal of Physical Chemistry Letters, 2023, 14(24), pp. 5624–5632

Citations: 1

Additive engineering in CH3NH3PbBr3 single crystals for terahertz devices and tunable high-order harmonics

Authors: Khanam, S.J., Konda, S.R., Premalatha, A., Li, W., Murali, B.

Journal: Journal of Materials Chemistry C, 2023, 11(29), pp. 9937–9951

Citations: 2

High-Order Harmonics Generation in MoS2 Transition Metal Dichalcogenides: Effect of Nickel and Carbon Nanotube Dopants

Authors: Venkatesh, M., Kim, V.V., Boltaev, G.S., Li, W., Ganeev, R.A., Konda, S.R.

Journal: International Journal of Molecular Sciences, 2023, 24(7), 6540

Citations: 4

Influence of embedded NiO-nanoparticles on the nonlinear absorption of tungsten disulfide nanolayers

Authors: Konda, S.R., Rajan, R.A., Singh, S., Guo, C., Li, W.

Journal: Optical Materials, 2023, 138, 113657

Citations: 4

High-order harmonics generation in nanosecond-pulses-induced plasma containing Ni-doped CsPbBr3 perovskite nanocrystals using chirp-free and chirped femtosecond pulses

Authors: Konda, S.R., Ganeev, R.A., Kim, V.V., Yu, J., Li, W.

Journal: Nanotechnology, 2023, 34(5), 055705

Citations: 4

Measurement of Optical Properties of CH3NH3PbX3 (X = Br, I) Single Crystals Using Terahertz Time-Domain Spectroscopy

Authors: Konda, S.R., Lin, Y., Rajan, R.A., Yu, W., Li, W.

Journal: Materials, 2023, 16(2), 610

Citations: 5

Harmonics Generation in the Laser-Induced Plasmas of Metal and Semiconductor Carbide Nanoparticles

Authors: Kim, V.V., Konda, S.R., Yu, W., Li, W., Ganeev, R.A.

Journal: Nanomaterials, 2022, 12(23), 4228

Citations: 5

High-order harmonics generation in the laser-induced lead-free perovskites-containing plasmas

Authors: Kim, V.V., Ganeev, R.A., Konda, S.R., Yu, W., Li, W.

Journal: Scientific Reports, 2022, 12(1), 9128

Citations: 5