Farshad Nobakhtkolour | Engineering | Best Researcher Award

Mr. Farshad Nobakhtkolour | Engineering | Best Researcher Award

Researcher at K.N.Toosi University of Technology, Iran

Farshad Nobakht-Kolur 🎓 is a passionate civil engineer specializing in marine structures and offshore renewable energy 🌊⚡. He earned his M.Sc. in Coasts, Ports, and Marine Structures from K. N. Toosi University of Technology and his B.Sc. in Civil Engineering from Shahrood University 🏫. Farshad’s research focuses on floating structures, marine hydrodynamics, and aquaculture engineering 🚢🌱. He has published multiple journal papers and served as a peer reviewer 📚🖋️. A top-ranked student throughout his academic journey 🏆, he continues to contribute actively to the marine engineering community through research, reviews, and professional memberships 🤝.

Professional Profile:

Orcid

Scopus

🔵 Education and Experience 

  • 🎓 M.Sc. in Coasts, Ports, and Marine Structures – K. N. Toosi University of Technology (2016-2019)

  • 🎓 B.Sc. in Civil Engineering – Shahrood University of Technology (2009-2013)

  • 🏫 Diploma in Mathematics and Physics – Bagher-al-Olum High School (2005-2009)

  • 👨‍🏫 Teaching Assistant – Shahrood University of Technology (Statics & Steel Structures Courses)

  • 🧪 Researcher – Published papers in top marine and fluid mechanics journals

  • 📑 Conference Presenter – Marine Industries Conference and academic workshops

🔵 Professional Development 

Farshad Nobakht-Kolur has actively contributed to professional growth through memberships and peer reviewing 🛠️📖. He is a member of the Iranian Coastal and Marine Structural Engineering Association (ICOMSEA) 🌐, and The American Society for Nondestructive Testing (ASNT) 🧪🔍. Farshad has reviewed articles for prestigious journals like Ocean Engineering and Journal of Modern Green Energy ✍️📘. His commitment to continuous learning and sharing knowledge is evident through his workshop presentations, paper publications, and involvement with academic and industrial bodies 🌟. Farshad’s work bridges the gap between theoretical research and real-world marine engineering solutions 🌊🔗.

🔵 Research Focus Category 

Farshad Nobakht-Kolur’s research focus lies in marine and offshore engineering 🌊🔧. His primary interests include floating wind turbines, floating solar islands, offshore renewable energy structures, and aquaculture engineering 🌱⚡. He specializes in fluid-structure interaction, experimental modeling, and numerical simulation 🧪💻. Farshad’s work emphasizes sustainable marine structures like floating seaweed farms and hybrid platforms that support renewable energy production and food security 🌿🔋. Through advanced physical modeling and hydrodynamic analysis, he contributes innovative solutions to the growing demands of the offshore and marine industry 🚢🌍.

🔵 Awards and Honors 

  • 🥇 First rank – Best Graduate M.Sc. Students in Marine Engineering, Iranian Marine Industries Organization, 2022

  • 🥈 Second rank – Top MSc Students in Marine Structure Engineering, 2019

  • 🧠 Top 1% – MSc Entrance Exam of Universities, 2016

  • 🎓 Top 10% – B.Sc. Students in Civil Engineering, 2013

  • 🧠 Top 1% – University Entrance Exam, 2009

  • 🎖️ Top 10 – High School Graduates, 2009

Publication Top Notes

  1. Effects of soft marine fouling on wave-induced forces in floating aquaculture cages: Physical model testing under regular waves

    • Journal: Ocean Engineering

    • Date: October 2021

    • DOI: 10.1016/j.oceaneng.2021.109759

    • Focus: How soft biofouling (like algae and soft marine growth) changes the forces exerted on aquaculture cages when regular waves hit them, using physical model tests.

  2. Hydrodynamic forces in marine-fouled floating aquaculture cages: Physical modelling under irregular waves

    • Journal: Journal of Fluids and Structures

    • Date: August 2021

    • DOI: 10.1016/j.jfluidstructs.2021.103331

    • Focus: Similar to above but testing under irregular waves (more realistic sea conditions), focusing on how fouling affects hydrodynamic forces.

  3. Wave attenuation/build-up around and inside marine fouled floating aquaculture cages under regular wave regimes

    • Journal: Journal of Ocean Engineering and Marine Energy

    • Date: February 24, 2021

    • DOI: 10.1007/s40722-021-00186-y

    • Focus: Investigating wave energy behavior—whether it’s dampened (attenuated) or amplified (build-up)—around/inside fouled cages during regular waves.

  4. Experimental Modelling of Biofouling Effects on the Regular and Irregular Waves Load in Aquaculture Cages

    • Institution: K. N. Toosi University of Technology

    • Type: Dissertation/Thesis

    • Year: 2019

    • DOI: 10.13140/RG.2.2.28208.48644

    • Focus: The early foundational work by Farshad Nobakht-Kolur, focusing on both regular and irregular waves and their loading effects on biofouled cages, likely forming the base for the later journal papers.

Conclusion

Farshad Nobakht-Kolur demonstrates all the qualities of a promising and impactful researcher: scientific excellence, originality, practical application of research, international publication record, and community engagement.
In my opinion, he is a highly suitable and strong candidate for the Best Researcher Award — particularly within the fields of marine structures, offshore engineering, and renewable energy systems.

Shengnan Zhang | Engineering | Best Researcher Award

Dr. Shengnan Zhang | Engineering | Best Researcher Award

None  at School of Mechatronic Engineering and Automation, Shanghai University

Short Bio

  • shengnan zhang is a Ph.D. researcher at Shanghai University specializing in electromagnetic flowmeters, signal processing, and mathematical modeling for industrial processes. With experience in engineering and automation, she integrates theoretical and applied research to enhance industrial measurement accuracy and efficiency.

Professional Profile

Educational Background

  • shengnan zhang is currently pursuing a Ph.D. in the School of Mechatronic Engineering and Automation at Shanghai University (2021–2024). She earned her master’s degree in Control Science and Engineering (Automation) from Inner Mongolia University of Science and Technology in 2020.

Professional Experience

  • shengnan zhang has gained diverse experience in both industry and academia. She worked as a junior engineer in the Mechanical and Electrical Department at State Grid Xinyuan Chifeng Company, Inner Mongolia (2020–2021). She later transitioned into roles as a Hardware R&D Engineer at JiDan Biotechnology Co., Ltd. and a High School Mathematics Teacher at Nanjing Yunjushi Education Co., Ltd. in 2021.

Research Interests

    • Her research focuses on electromagnetic flowmeters, signal processing, and mathematical modeling of complex industrial processes. She is particularly interested in developing advanced computational techniques for industrial automation and measurement systems.

Author Metrics

  • Currently, shengnan zhang is actively engaged in research and has contributed to scholarly publications in her field. Her work includes studies on signal processing applications in industrial automation and measurement technologies.

Publication Top Noted

  • Study on the Match-Filtering Ability of the Electromagnetic Flowmeter Signals Based on the Generalized Dual-Frequency Walsh Transform
    Flow Measurement and Instrumentation, March 2025
    DOI: 10.1016/j.flowmeasinst.2024.102767
  • Generalized Walsh Transform Sequency-Domain-Based Match Filtering for Electromagnetic Flowmeter Signal Measurement
    IEEE Sensors Journal, April 2024
    DOI: 10.1109/JSEN.2024.3366238
  • A Sequency Match Filtering Algorithm Based on the Generalized Walsh Transform for Processing Rectangular Wave Signals
    Review of Scientific Instruments, February 2024
    DOI: 10.1063/5.0175079
  • Study on Match Filtering Based on Sequency Spectrum Characteristics of the Walsh Transform for Electromagnetic Flowmeter Signal Measurement
    Measurement, February 2024
    DOI: 10.1016/j.measurement.2023.114021

Conclusion

  • Dr. shengnan zhang is a highly qualified researcher with notable contributions to signal processing and industrial measurement systems. Her innovative approaches using Generalized Walsh Transform have the potential to improve electromagnetic flowmeter accuracy significantly. With further collaboration, higher citation impact, and real-world application of her research, she would be an excellent candidate for the Best Researcher Award.

Zhan-Long Wang | Engineering | Best Scholar Award

Dr. Zhan-Long Wang | Engineering | Best Scholar Award

Dr. Zhan-Long Wang, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China

Dr. Zhan-Long Wang is an Assistant Professor at the Shenzhen Institutes of Advanced Technology, CAS, with expertise in solid mechanics, micro-structured surfaces, and material science. His research addresses complex challenges in fluid dynamics, biosensor development, and AI-assisted material discovery. Recognized as a Shenzhen Pengcheng Distinguished Scholar, Dr. Wang holds numerous patents and leads groundbreaking projects in micro-droplet technology and condensation inhibition.

PROFILE

Orcid Profile

Scopus Profile

Educational Details

Dr. Zhan-Long Wang obtained his Bachelor’s degree in Civil Engineering from Jiangnan University in 2014, where he was mentored by Prof. Yuanzhi Bi. He then pursued an M.Sc. and Ph.D. in Solid Mechanics at the Institute of Mechanics, Chinese Academy of Sciences, under the guidance of Prof. Ya-Pu Zhao, completing his doctoral studies in 2021.

Professional Experience

Dr. Wang’s career includes a Postdoctoral Fellowship at the Shenzhen Institutes of Advanced Technology, CAS (2021-2023), where he later became an Assistant Professor in 2023. His academic journey reflects a strong commitment to advancing materials science, nanotechnology, and bioengineering through both research and innovation.

Research Interests

Dr. Wang specializes in fluid mechanics, micro/nano-structured materials, and the dynamic interfacial behaviors of droplets. His current research includes developing high-throughput micro-droplet array systems, enhancing biosensor technology, promoting and suppressing condensation in materials, and leveraging AI in material discovery.

Patents

Dr. Wang is an inventor on several patents that cover advanced material technologies, including innovations in fluid collection systems, microfluidic chips, and high-throughput synthesis methods for magnetic micro/nanomaterials. His patents contribute to applications in fields ranging from biomedical devices to environmental engineering.

Research Projects

Dr. Wang has led numerous significant projects as a Principal Investigator. His recent projects include an NSFC Young Scientist Fund project on droplet self-rotation, a Postdoctoral Fund project exploring bioactive solution wetting dynamics, and a Shenzhen Research Grant for developing transparent polymer films to inhibit condensation. His ongoing work at the Shenzhen Institutes of Advanced Technology under the Excellent Youth Fund focuses on large-scale micro-droplet array formation.

Top Notable Publications

Hu, J., & Wang, Z.-L. (2024). The effect of hygroscopic liquids on the spatial controlling of condensation on low-temperature surfaces. Surfaces and Interfaces, 55, 105430.

Citations: 0

Hu, J., Zhao, H., Xu, Z., Hong, H., & Wang, Z.-L. (2024). The effect of substrate temperature on the dry zone generated by the vapor sink effect. Physics of Fluids, 36(6), 067106.

Citations: 1

Lin, K., & Wang, Z. (2023). Multiscale mechanics and molecular dynamics simulations of the durability of fiber-reinforced polymer composites. Communications Materials, 4(1), 66.

Citations: 18

Xu, Y., Zhang, D., Wu, Q., Xu, Z., & Wu, T. (2023). Facet-dependent electrochemical behavior of Au-Pd Core@Shell nanorods for enhanced hydrogen peroxide sensing. ACS Applied Nano Materials, 6(20), 18739–18747.

Citations: 3

Wang, Z.-L., & Lin, K. (2023). The multi-lobed rotation of droplets induced by interfacial reactions. Physics of Fluids, 35(2), 021705.

Citations: 1

Wang, Z., Wang, X., Miao, Q., Gao, F., & Zhao, Y.-P. (2021). Spontaneous motion and rotation of acid droplets on the surface of a liquid metal. Langmuir, 37(14), 4370–4379.

Citations: 8

Wang, Z., Wang, X., Miao, Q., & Zhao, Y.-P. (2021). Realization of self-rotating droplets based on liquid metal. Advanced Materials Interfaces, 8(3), 2001756.

Citations: 6

Conclusion

Dr. Zhan-Long Wang’s strong academic record, pioneering research, impressive patents, and multiple awards position him as an exemplary candidate for the Research for Best Scholar Award. His innovative contributions to engineering and science demonstrate his commitment to advancing technology and society, making him highly suitable for this distinguished recognition.

 

 

 

 

 

 

 

Bernardine Chidozie | Engineering | Best Researcher Award

Mrs. Bernardine Chidozie | Engineering | Best Researcher Award

Mrs, Bernardine Chidozie, University of Aveiro, Portugal

Mrs. Bernardine Chidozie is a dedicated researcher and PhD student fellow at the University of Aveiro, Portugal, focusing on digital transformation, simulation modeling, and supply chain optimization, especially in the context of Industry 4.0 and 5.0. Her research employs simulation-based methods and digital tools to improve decision-making and operational performance in complex systems, such as healthcare and sustainable supply chains.

 

PROFILE

Orcid profile

Educational Details

With an academic foundation in engineering, Mrs. Chidozie has contributed significantly to projects like the “Sustainable Supply Chain Management Model for Residual Agroforestry Biomass,” utilizing a web platform to support her research, which began in 2022. Her publications explore the impact of digitalization on supply chains, including the optimization of biomass supply chains for sustainability. She has authored books like Simulation-Based Approaches to Enhance Operational Decision Support in Healthcare 5.0 and published articles in notable journals, such as Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix.

Professional Experience

Professionally, Mrs. Chidozie has been involved in various research and consultancy projects, including industry-relevant studies that analyze the role of simulation and digital transformation in optimizing supply chains. She is an active member of the Council for the Regulation of Engineering in Nigeria (COREN) and collaborates on initiatives that bridge research and real-world applications. Her primary goal is to create innovative, technology-driven strategies to enhance sustainability, efficiency, and resilience in industrial and healthcare sectors.

Research Interests

Digital transformation, simulation modeling, supply chain optimization, Industry 4.0 and 5.0 applications, sustainable biomass supply chains, healthcare systems improvement, and decision-support systems.

Top Notable Publications

Chidozie, B.C. (2024). Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach. Sustainability, Published: 2024-11-07, DOI: 10.3390/su16229709, Source: Crossref.

Chidozie, B.C. (2024). Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix: A Methodical Approach. Logistics, Published: 2024-10-18, DOI: 10.3390/logistics8040107, Source: Crossref.

Chidozie, B.C. (2024). The Importance of Digital Transformation (5.0) in Supply Chain Optimization: An Empirical Study. Production Engineering Archives, Published: 2024-03-01, DOI: 10.30657/pea.2024.30.12, Source: Crossref.

Chidozie, B.C. (2024). Analytical and Simulation Models as Decision Support Tools for Supply Chain Optimization – An Empirical Study. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54671-6_15, ISBN: 9783031546709, Source: Crossref.

Chidozie, B.C. (2024). Impacts of Simulation and Digital Tools on Supply Chain in Industry 4.0. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54664-8_43, ISBN: 9783031546648, Source: Crossref.

Chidozie, B.C. (2024). Simulation-Based Approaches to Enhance Operational Decision-Support in Healthcare 5.0: A Systematic Literature Review. (book chapter), DOI: 10.1007/978-3-031-38165-2_78, Source: Crossref.

 Conclusion

Mrs. Bernardine Chidozie’s research achievements, particularly her focus on digital transformation and sustainable supply chains, make her a suitable candidate for the Best Researcher Award. Her work is relevant and impactful, addressing key challenges in Industry 4.0 and Healthcare 5.0. Her publications, ongoing projects, and industry involvement illustrate her dedication to advancing sustainability and efficiency across industries, marking her as a distinguished researcher in her field.

 

 

 

 

 

Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin, Gyeongsang National University, South Korea

Dongmin Shin, Ph.D., is an Assistant Professor of Smart Energy and Mechanical Engineering at Gyeongsang National University, South Korea. His expertise encompasses mechanical system reliability and energy solutions, backed by extensive experience in research and academia at institutions like KIMM and KAIST.

PROFILE

Orcid profile

Educational Details

Dr. Shin holds a Ph.D. in Mechanical Engineering from the Korea Advanced Institute of Science and Technology (KAIST), completed in August 2019, where he also earned his M.S. in Ocean System Engineering in February 2015. His foundational studies began at Hanyang University, where he received a B.S. in Mechanical Engineering in 2013, with a break for military service from 2008 to 2010.

Professional Experience

Dr. Shin joined Gyeongsang National University as an Assistant Professor in September 2022. Prior to this, he was a Post-doctoral Researcher at the Korea Institute of Machinery & Materials (KIMM), focusing on reliability assessment in mechanical systems. His academic journey includes roles at KAIST, where he served as a Research Assistant Professor at the Institute for Security Convergence Research, and at Kunsan National University as a Research Professor within the Shipbuilding & Ocean Equipment Industry Empowerment Center. Additionally, he has experience as a Teaching and Research Management Assistant at KAIST, supporting courses in Fluid Mechanics, Numerical Analysis, and mechanical practice, and assisting with 2-D and 3-D wave tank research.

Research Interests

Dr. Shin’s research interests lie in mechanical system reliability, smart energy systems, ocean engineering, and fluid mechanics, with applications in mechanical system safety and energy efficiency.

Top Notable Publications

“Design Analysis Using Evaluation of Surf-Riding and Broaching by the IMO Second Generation Intact Stability Criteria for a Small Fishing Boat”

Authors: Not provided

Year: 2024

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse12112066

“Numerical Study on Compact Design in Marine Urea-SCR Systems for Small Ship Applications”

Authors: Not provided

Year: 2023

Journal: Energies

DOI: 10.3390/en17010187

“Numerical analysis of thermal and hydrodynamic characteristics in aquaculture tanks with different tank structures”

Authors: Not provided

Year: 2023

Journal: Ocean Engineering

DOI: 10.1016/j.oceaneng.2023.115880

“Evaluation of Parametric Roll Mode Applying the IMO Second Generation Intact Stability Criteria for 13K Chemical Tanker”

Authors: Not provided

Year: 2023

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse11071462

“Wave-induced vibration of a fully submerged horizontal cylinder close to a free surface: a theory and experiment”

Authors: Not provided

Year: 2022

Journal: Ships and Offshore Structures

DOI: 10.1080/17445302.2021.1950344

“Assessment of Excessive Acceleration of the IMO Second Generation Intact Stability Criteria for the Tanker”

Authors: Not provided

Year: 2022

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse10020229

Conclusion

Assist. Prof. Dr. Dongmin Shin’s strong educational background, extensive professional experience, innovative research contributions, commitment to teaching and mentoring, and effective research management make him a highly suitable candidate for the Best Researcher Award. His achievements across academia, applied research, and project management reflect the qualities recognized by this award, underscoring his potential to continue contributing meaningfully to engineering and research fields.