Sławomir Michalak | Engineering | Industry Impact Award

Assist. Prof. Dr. Sławomir Michalak | Engineering | Industry Impact Award

Avionics Division Manager at Air Force Institute of Technology, Poland

Prof. Sławomir Michalak, Ph.D., D.Sc. Eng. ✈️, is a distinguished aviation expert whose work bridges academia, defense, and engineering innovation. With decades of experience in avionics systems, aircraft diagnostics, and battlefield electronic warfare systems 🛠️📡, he has led the Avionics Department at the Air Force Institute of Technology since 2001. His pioneering efforts span system integration, reliability assessment, and phonoscopic analysis, influencing modern aviation practices. Michalak is a prolific contributor 📚 with numerous publications and nine recognized implementations. As a mentor and reviewer, he has significantly shaped doctoral and post-doctoral research. He has also educated future aviation professionals 👨‍🏫 at institutions like the Warsaw University of Technology and the SIMP NOT Technical School. Actively involved in national defense research and scientific committees, his legacy resonates across Polish military aviation and beyond 🌍. His commitment to innovation and education makes him a keystone figure in aviation sciences and applied technologies.

Professional Profile 

Orcid

Scopus

🎓 Education 

Dr. Sławomir Michalak’s academic journey 🚀 is deeply rooted in technical aviation sciences, marked by a robust specialization in avionics and aircraft navigation systems. He earned his doctorate in engineering and later achieved the prestigious Doctor of Science (D.Sc.) degree in technical sciences in 2016 🎓, with a concentration on machine construction and operational disciplines. His educational trajectory demonstrates a relentless pursuit of advanced knowledge in complex aircraft systems, enhancing Poland’s aerospace education infrastructure. Moreover, his authorial role in crafting and teaching curricula—especially the subject “Aviation Equipment” approved by Warsaw’s Education Board—reflects a deep commitment to pedagogy. His teaching efforts spanned nearly three decades and included lectures at Warsaw University of Technology’s Faculty of Transport, focusing on Air Navigation 🧭. His foundation in education has not only equipped him with specialized skills but has also enabled him to disseminate that knowledge to future leaders of aviation systems engineering.

💼 Professional Experience 

With an illustrious career spanning over three decades, Prof. Michalak has held pivotal roles that define Poland’s aviation research and development landscape ✈️. Since 2001, he has been the head of the Avionics Department at the Air Force Institute of Technology, where he currently serves as a professor 👨‍🔬. His career is marked by excellence in integrating avionics systems, reliability diagnostics, and designing solutions for modern combat operations, including electronic countermeasures 🛡️. He has played a key advisory role in national aviation safety as a long-standing member of the Aircraft Accident Investigation Board, later incorporated into the State Aviation Accident Investigation Board 🕵️. He also lends expertise to the Polish Academy of Sciences’ Transport Committee. Parallelly, he has served as a reviewer and board member for multiple doctoral/post-doctoral theses, as well as contributing to national defense and R&D projects funded by premier agencies like the National Center for Research and Development 💡.

🔬 Research Interests 

Prof. Michalak’s research interests are deeply embedded in the critical functionalities of advanced aircraft systems, with a core emphasis on avionics integration and optimization 🚁. His scholarly pursuits center on diagnostics, system reliability, and onboard information processing, including phonoscopic and parametric analysis of flight data recorders 📈🔊. He investigates navigation system integrity, real-time data interpretation, and complex multi-sensor integration essential for military reconnaissance and electronic warfare systems. His innovations directly impact aircraft survivability and mission effectiveness in modern combat environments ⚙️. His work also extends to analyzing flight incident data, enhancing aviation safety and post-mission assessments. Furthermore, his involvement in the Electromobility and Autonomous Transport Section reveals his forward-looking vision in adapting aviation technologies to land-based and autonomous platforms 🚗📡. Through interdisciplinary collaborations and defense-funded projects, his research acts as a crucial bridge between theoretical foundations and operational implementation across aviation and defense sectors.

🏅 Awards and Honors 

Though specific award titles are not explicitly listed, Prof. Michalak’s array of achievements reflects a highly decorated academic and technical career 🏆. His recognition stems from the practical impact of nine notable implementation projects that brought real-world improvements in avionics system performance and safety ✨. His invitations to serve on scientific committees, review doctoral works, and lecture at renowned institutions showcase the esteem he holds in academic and defense circles. His prolonged contribution to the Aircraft Accident Investigation Board—spanning eras of structural reorganization—further demonstrates his trusted leadership in critical national aviation oversight roles ✈️. Being part of elite organizations like the Transport Committee of the Polish Academy of Sciences and guiding R&D projects funded by the Ministry of Defense affirms his reputation as a thought leader 🧠. These honors, both formal and implied, are a testament to his sustained excellence and unwavering dedication to enhancing Poland’s aerospace defense and academic frontiers.

📚 Publications Top Note 

1. Power Quality in the Context of Aircraft Operational Safety
Authors: Tomasz Tokarski, Sławomir Michalak, Barbara Kaczmarek, Mariusz Zieja, Tomasz Polus
Year: 2025 (Published April 10)
Journal: Energies
DOI: 10.3390/en18081945
Source: Crossref / MDPI
Summary:
This article investigates how power quality, particularly from Ground Power Units (GPUs), affects aircraft operational safety. It focuses on GPUs used by the Polish Armed Forces and highlights how aging equipment (some over 40 years old) leads to degraded performance in transient conditions, contributing to aircraft unserviceability. The paper proposes diagnostic methodologies in line with Polish military standards and emphasizes the need for modern monitoring systems to ensure power reliability.


2. Selected Problems of Determining Pilot Survival Time in Cold Water after the Aircraft Crash
Authors: Przemysław Stężalski, Sławomir Michalak, Jerzy Borowski
Year: 2025 (Published January 17)
Journal: The Polish Journal of Aviation Medicine, Bioengineering and Psychology
DOI: 10.13174/pjambp.17.12.2024.04
Source: Crossref
Summary:
This research introduces a computational model to estimate pilot survival times in cold water following an aircraft crash. Using a thermodynamic body simulation with nonlinear heat transfer equations, the model accounts for factors such as temperature, body mass, clothing, and body position. The output helps in estimating hypothermia onset and unconsciousness time, aiding in rescue and survival strategy development.


3. The Effect of the Operation Time of the Aircraft Power System on Power Quality in Transient States
Authors: Not explicitly listed (likely includes Tomasz Tokarski and/or Sławomir Michalak)
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4462
Source: Crossref
Summary:
The paper examines how long-term use and aging of aircraft power systems impact power quality, especially during transient events such as engine starts or system switches. It shows that older systems cause higher voltage deviations and fluctuations, compromising avionics performance and reliability. The findings support the importance of upgrading aging infrastructure to maintain operational integrity.


4. The Overview of Ecologic Military and Civilian Power Systems
Authors: Not specified
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4461
Source: Crossref
Summary:
This review paper presents current trends in environmentally friendly power systems used in both civilian and military aviation. It discusses energy-efficient GPU technologies, emission reduction strategies, and renewable energy integration, underlining how ecological considerations are increasingly shaping power system design without sacrificing reliability and performance.


5. The Polish Helmet Mounted Display Systems for Military Helicopters
Author: Sławomir Michalak
Year: 2016 (June)
Conference: 2016 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2016.7573240
Source: Crossref
Summary:
The paper discusses development, features, and performance evaluation of Polish helmet-mounted display systems for military helicopter pilots. It includes metrological approaches for assessing system reliability and precision in dynamic environments.


6. Metrology Tools of Computer Communication Control on Board Military Aircraft
Author: Sławomir Michalak
Year: 2015
Journal: Przeglad Elektrotechniczny
DOI: 10.15199/48.2015.08.13
Source: Scopus / Crossref
Summary:
This article covers the development of metrology tools designed to monitor and control server communications onboard military helicopters. The study emphasizes reliability and diagnostic accuracy in harsh operational environments.


7. AFIT’s Laboratory Test Equipment to Optimise the Integrated Avionics Systems for Polish Military Aircrafts
Author: Sławomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865904
Source: Crossref
Summary:
The study describes laboratory instrumentation developed by AFIT to test and optimize avionics systems in Polish military aircraft. It focuses on system integration, fault simulation, and metrological evaluation.


8. AFIT’s Laboratory Test Equipment to Optimise the Integrated Communication Systems for Polish Military Helicopters
Author: Sławomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865949
Source: Crossref
Summary:
This paper presents laboratory tools developed for assessing and refining communication systems in military helicopters. The research highlights signal integrity testing and communication protocol validation in simulated airborne conditions.


9. Computer Aided Diagnosis of Technical Condition of the SWLP-1 Helmet Mounted Flight Parameters Display System
Author: Sławomir Michalak
Year: 2014
Journal: Journal of KONBiN
DOI: 10.2478/jok-2014-0025
Source: Crossref
Summary:
The paper introduces a computer-based diagnostic system for evaluating the SWLP-1 helmet display used in flight operations. It supports preventive maintenance through automated fault detection and performance assessment.


10. Nahełmowy System Celowniczy NSC-1 Orion dla Polskich Śmigłowców Wojskowych
Author: Sławomir Michalak
Year: 2013
Journal: Scientific Letters of Rzeszow University of Technology – Mechanics
DOI: 10.7862/rm.2013.30
Source: Crossref
Summary:
This Polish-language article covers the NSC-1 Orion helmet-mounted sighting system, developed for Polish military helicopters. It details its targeting features, integration with aircraft systems, and effectiveness in operational scenarios.

🔚 Conclusion 

Prof. Sławomir Michalak stands out as a trailblazer in aviation science, with his influence permeating research, defense, and education 🌐. His technical command in avionics, experience in accident investigation, and commitment to academic excellence place him among Poland’s most respected aerospace experts 🚀. From developing navigation systems to interpreting flight data and advising national safety boards, his work has safeguarded lives and advanced technologies alike. His three-decade-long dedication to instructing young minds and contributing to global conferences reflects his dual passion for knowledge dissemination and innovation 💬📘. As a visionary integrating evolving avionics with real-time diagnostics and battlefield adaptability, he exemplifies the ideal intersection of theory and application 🛫. With continued contributions to autonomous systems and electromobility, Michalak remains not only a legacy figure in aerospace engineering but also a forward-thinker shaping its future. His professional journey is a compelling blueprint for excellence, innovation, and impactful service 💡🎖️.

Lei Liu | Engineering | Best Researcher Award

Prof. Lei Liu | Engineering | Best Researcher Award

Professor at Zhejiang University, China

Prof. Liu Lei is a Young Profenications, information theory, and signal processing. Liu received his Ph.D. in Communication and Information Systems from Xidian University and enriched his academic foundation as a visiting scholar at NTU Singapore. His postdoctoral and research appointments span SUTD, CityU Hong Kong, and JAIST Japan. Honored under ZJU’s Hundred Talents Program, he actively leads in editorial and conference roles. With a track record of cutting-edge research, Prof. Liu has authored 39+ high-impact journal articles and continues to influence future innovations in modern channel coding and massive MIMO. 🧠📡

Professional Profile 

🎓 Education

Prof. Liu Lei began his academic journey in 2011 at Xidian University, earning his Ph.D. in Communication and Information System in March 2017. During his doctoral studies, he broadened his expertise with a prestigious exchange opportunity at Nanyang Technological University (NTU), Singapore (2014–2016), where he engaged with globally renowned researchers in the field of Electrical and Electronic Engineering. This international exposure shaped his foundational understanding of statistical signal processing and message-passing algorithms. His academic pursuits combined rigorous theoretical knowledge with practical algorithmic development, laying the groundwork for his future innovations in wireless communication systems and information theory. 📘🌍🎓

💼Experience 

Prof. Liu Lei has cultivated a rich academic career across leading global institutions. He began as a Postdoctoral Research Fellow at SUTD, Singapore (2016–2017), followed by a Research Fellow role at City University of Hong Kong (2017–2019). He then served as Assistant Professor at JAIST, Japan (2019–2023), achieving top research rankings among faculty. Since 2023, he has been a Tenure-Track Young Professor and Doctoral Supervisor at Zhejiang University. His expertise spans message passing, compressed sensing, and channel coding. Prof. Liu has been active in IEEE conferences, serving in key editorial and chairing roles, and is a notable reviewer for top-tier journals. 🌏📚🏫

🏆 Awards & Honors

Prof. Liu Lei has received several prestigious accolades for his research excellence. In 2023, he was honored with the Young Star Award and the Best Poster Award at the 30th Chinese Institute of Electronics Conference on Information Theory (CIEIT), recognizing his impactful contributions to information theory. His dedication to academic rigor earned him the Exemplary Reviewer Award from IEEE Transactions on Communications in 2020, an honor bestowed on less than 2% of reviewers. These distinctions underscore his leadership in developing cutting-edge algorithms and his commitment to advancing wireless communication systems. 🥇🎖️🏅

🔬 Research Focus 

Prof. Liu’s research focuses on the development of high-performance algorithms and theoretical frameworks in wireless communications. His interests include Message Passing Theory, Statistical Signal Processing, Compressed Sensing, Modern Channel Coding, and Information Theory. He is especially noted for innovations in Approximate Message Passing (AMP) and Orthogonal AMP (OAMP) algorithms. His work aims to optimize capacity and performance in massive MIMO, NOMA, and RIS-aided systems. Prof. Liu’s vision integrates theoretical depth with engineering applications, contributing to next-generation communication systems with greater efficiency, robustness, and scalability. 📡📊🔍

🛠️ Skills 

Prof. Liu Lei has extensive expertise in 📶 wireless communication, particularly in emerging technologies such as massive MIMO, NOMA, mmWave, and Integrated Sensing and Communication (ISAC) systems. His work contributes to optimizing spectral efficiency and network reliability in next-generation wireless networks.

In the field of 📐 signal processing, he is highly skilled in compressed sensing and advanced channel estimation techniques, which enhance data recovery and transmission accuracy in complex environments.

His foundation in 📊 information theory is robust, focusing on coding theory, achievable rates, and capacity optimization, all critical to efficient communication system design.

Prof. Liu is also a specialist in 🧮 message passing algorithms, including AMP, OAMP, GAMP, and GVAMP, which he applies to both theoretical models and practical systems.

He leverages 🔗 machine learning tools such as neural networks and variational inference to improve signal decoding.

In addition, he is experienced in 📚 academic publishing and 🧑‍🏫 teaching, mentoring students in both foundational and advanced courses.

📚 Publications Top Note 

  1. Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

    • 🧑‍🤝‍🧑 Authors: C. Huang, L. Liu, C. Yuen, S. Sun

    • 📰 Journal: IEEE Transactions on Signal Processing

    • 🔢 Citations: 161

    • 📅 Year: 2018

  2. Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    • 🧑‍🤝‍🧑 Authors: L. Liu, Y. Chi, C. Yuen, Y.L. Guan, Y. Li

    • 📰 Journal: IEEE Transactions on Signal Processing

    • 🔢 Citations: 151

    • 📅 Year: 2019

  3. User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled IoT

    • 🧑‍🤝‍🧑 Authors: Z. Zhang, Y. Li, C. Huang, Q. Guo, L. Liu, C. Yuen, Y.L. Guan

    • 📰 Journal: IEEE Internet of Things Journal

    • 🔢 Citations: 149

    • 📅 Year: 2020

  4. Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    • 🧑‍🤝‍🧑 Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, C. Huang

    • 📰 Journal: IEEE Transactions on Wireless Communications

    • 🔢 Citations: 140

    • 📅 Year: 2019

  5. Convergence Analysis and Assurance for Gaussian Message Passing in Massive MU-MIMO Systems

    • 🧑‍🤝‍🧑 Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, Y. Su

    • 📰 Journal: IEEE Transactions on Wireless Communications

    • 🔢 Citations: 108

    • 📅 Year: 2016

  6. Practical MIMO-NOMA: Low Complexity and Capacity-Approaching Solution

    • 🧑‍🤝‍🧑 Authors: Y. Chi, L. Liu, G. Song, C. Yuen, Y.L. Guan, Y. Li

    • 📰 Journal: IEEE Transactions on Wireless Communications

    • 🔢 Citations: 84

    • 📅 Year: 2018

  7. Memory AMP

    • 🧑‍🤝‍🧑 Authors: L. Liu, S. Huang, B.M. Kurkoski

    • 📰 Journal: IEEE Transactions on Information Theory

    • 🔢 Citations: 83

    • 📅 Year: 2022

  8. Orthogonal AMP for Massive Access in Channels with Spatial and Temporal Correlations

    • 🧑‍🤝‍🧑 Authors: Y. Cheng, L. Liu, L. Ping

    • 📰 Journal: IEEE Journal on Selected Areas in Communications

    • 🔢 Citations: 68

    • 📅 Year: 2021

  9. Capacity Optimality of AMP in Coded Systems

    • 🧑‍🤝‍🧑 Authors: L. Liu, C. Liang, J. Ma, L. Ping

    • 📰 Journal: IEEE Transactions on Information Theory

    • 🔢 Citations: 53

    • 📅 Year: 2021

  10. On Orthogonal AMP in Coded Linear Vector Systems

    • 🧑‍🤝‍🧑 Authors: J. Ma, L. Liu, X. Yuan, L. Ping

    • 📰 Journal: IEEE Transactions on Wireless Communications

    • 🔢 Citations: 39

    • 📅 Year: 2019

  11. A New Insight into GAMP and AMP

    • 🧑‍🤝‍🧑 Authors: L. Liu, Y. Li, C. Huang, C. Yuen, Y.L. Guan

    • 📰 Journal: IEEE Transactions on Vehicular Technology

    • 🔢 Citations: 31

    • 📅 Year: 2019

  12. Over-the-Air Implementation of Uplink NOMA

    • 🧑‍🤝‍🧑 Authors: S. Abeywickrama, L. Liu, Y.C. Yuhao, Chi

    • 📰 Conference: IEEE Globecom

    • 🔢 Citations: 31

    • 📅 Year: 2018

  13. Asymptotically Optimal Estimation for Sparse Signal with Arbitrary Distributions

    • 🧑‍🤝‍🧑 Authors: C. Huang, L. Liu, C. Yuen

    • 📰 Journal: IEEE Transactions on Vehicular Technology

    • 🔢 Citations: 28

    • 📅 Year: 2018

🏁 Conclusion

Dr. Lei Liu exemplifies the qualities of a Best Researcher Award recipient: depth in theoretical research, breadth in global experience, and excellence in teaching and mentorship. His leadership roles, prolific output, and rising trajectory within academic and engineering communities make him a model scholar in the communications field. While areas like applied innovation and interdisciplinary expansion offer room for growth, his current achievements already place him at the forefront of his domain.

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen 🎓, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 🏛️, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community 📚. His scholarly portfolio includes 39 academic articles, 3 granted patents 🧠🔧, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications 🌐. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration 🌟.

Professional Profile 

ORCID Profile

🎓 Education

Dr. Jian Chen’s academic journey 🌱 began at Jilin University, where he pursued both his Bachelor’s (2001–2005) and Master’s (2005–2007) degrees in Communication Engineering 🛰️. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011–2014) ⚙️. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise 🧠. This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset 📘🔬.

🧑‍🔬 Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS 🏢. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics 💡. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents 🔍📑. Dr. Chen also stands out as a peer-review gatekeeper—serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI 🧾📖. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to China’s optics and precision mechanics research domain 🔧🌍.

🔬 Research Interest

Jian Chen’s research interests orbit around the convergence of optics, mechanical design, and electrical systems 🔭⚙️. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation 💡🔧. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms 📡🔍. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems 🚀. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure 📈.

🏆 Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field 🌟. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones 🏅📘, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise 🧠✒️. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance 🧬🕊️.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

🧾 Conclusion

Dr. Jian Chen’s career is a synthesis of academic strength, research innovation, and peer leadership 📚🌟. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology 🌐. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitioner—someone who not only explores ideas but also brings them to life 🔬💡. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe 🌏📈.

Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Assoc. Prof. Dr. Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Dr. Darvish Falehi at Islamic Azad University, Iran

Ali Darvish Falehi is a distinguished academic and professional in the field of Electrical Power Engineering. With a Ph.D. and Post-Ph.D. from Shahid Beheshti University, he ranks among the world’s top 2% scientists as listed by Stanford University in 2020. He is currently an Assistant Professor at Iran Islamic Azad University, a technical expert at Iran North Drilling Company, and the Chairman of the R&D Board at HICOBI Company. He has delivered keynote speeches at several international conferences and holds numerous patents. His contributions extend to supervising over 50 theses and reviewing for prestigious journals. 🌟🔬📚

Professional Profile:

Google Scholar

Education and Experience:

  • Post-Ph.D. & Ph.D. in Electrical Power Engineering, Shahid Beheshti University (First Class Honors) 🎓

  • Ranked among the world’s top 2% scientists by Stanford University in 2020 🌍

  • Chairman of R&D Board at HICOBI Company 🏢

  • Assistant Professor at Iran Islamic Azad University 👨‍🏫

  • Technical Expert at Iran North Drilling Company ⚙️

  • Main Speaker at national and international conferences 🎤

  • Reviewer for prestigious journals (IEEE, Elsevier, Springer) 📖

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT score: 630 (Writing Score: 6) 🏆

  • Patents and medals at invention festivals in Iran, South Korea, and Romania 🏅

Professional Development: 

Ali Darvish Falehi has continuously developed his professional expertise by participating in global conferences and providing thought leadership as a main speaker and reviewer for high-impact journals such as IEEE and Elsevier. His dedication to research has led him to supervise over 50 graduate and doctoral theses, contributing to the academic growth of the next generation of engineers. He is also deeply involved in the industrial sector, where he serves as a technical expert for Iran North Drilling Company and leads the R&D board at HICOBI Company, driving innovation and technology forward. His work bridges academia and industry, enhancing both fields. 🔧🌐📊

Research Focus:

Ali Darvish Falehi’s research is centered around Electrical Power Engineering, with particular attention to energy systems, power distribution, and renewable energy solutions. His work aims to optimize power engineering technologies, focusing on improving energy efficiency and sustainability. He is known for his contributions to the development of advanced electrical systems and has been actively involved in creating patented innovations. His expertise in power engineering is complemented by his role as a technical expert, where he advises on industrial applications of electrical power systems. His research seeks to solve complex energy challenges, aligning with global sustainability goals. ⚡🌱🔋

Awards and Honors:

  • Ranked among the world’s top 2% scientists by Stanford University (2020) 🌍

  • Chairman of the R&D Board at HICOBI Company 🏢

  • Main Speaker at several international conferences 🎤

  • Reviewer for leading ISI journals like IEEE, Elsevier, Springer 📚

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT Score: 630 🏆

  • Patents and medals from invention festivals in Iran, South Korea, and Romania 🏅

Publication Top Notes

  1. “An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities” (2020)

    • Authors: A.D. Falehi

    • Journal: Chaos, Solitons & Fractals

    • Summary: This paper proposes an innovative control strategy using a multi-objective Grasshopper Optimization Algorithm (GOA) to enhance the MPPT and Fault Ride Through (FRT) capabilities of DFIG-based wind turbines. The use of Fractional-Order Sliding Mode Control (FOSMC) is central to this work.

  2. “Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbines” (2021)

    • Authors: A.D. Falehi, H. Torkaman

    • Journal: Journal of Energy Storage

    • Summary: This paper focuses on enhancing the FRT and Power Quality (PQ) capabilities of DFIG-based wind turbines. The authors propose a robust fractional-order control scheme for supercapacitors integrated with a Dynamic Voltage Restorer (DVR).

  3. “LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ-AMLI based DVR” (2018)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Sustainable Energy, Grids and Networks

    • Summary: This work aims to enhance the Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) capabilities of DFIG wind turbines by optimizing the design and control of a novel DVR based on a PIλDμ-AMLI (Proportional-Integral-Derivative) controller.

  4. “Enhancement of DFIG-wind turbine’s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter” (2017)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Engineering Science and Technology, an International Journal

    • Summary: This paper explores improving the LVRT capability of DFIG wind turbines by integrating a novel Dynamic Voltage Restorer (DVR) system with an odd-nary cascaded asymmetric multi-level inverter.

  5. “Neoteric HANFISC–SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems” (2016)

    • Authors: A.D. Falehi, A. Mosallanejad

    • Journal: IET Generation, Transmission & Distribution

    • Summary: This paper addresses the oscillation suppression in interconnected multi-source power systems using a Hybrid Active Networked Flexible Integrated Supply Chain (HANFISC)-Static Synchronous Series Compensator (SSSC) controlled by the Multi-Objective Particle Swarm Optimization (MOPSO) technique.

Conclusion:

Ali Darvish Falehi is undoubtedly a deserving candidate for the Excellence in Researcher Award. His combination of academic excellence, significant contributions to electrical power engineering, leadership in both academia and industry, and his global recognition positions him as a standout figure in his field. His ability to balance research with innovation, along with his dedication to mentoring future researchers, makes him an exemplary choice for this prestigious award.

Mahmood Shakiba | Engineering | Best Researcher Award

Assist. Prof. Dr. Mahmood Shakiba | Engineering | Best Researcher Award

Faculty member at Ferdowsi University of Mashhad, Iran

Dr. mahmood shakiba 🇮🇷 is an assistant professor at Ferdowsi University of Mashhad, specializing in petroleum engineering with expertise in hydrocarbon reservoirs and enhanced oil recovery (EOR) 🛢️. He earned his Ph.D. from Amirkabir University of Technology (2020) 🎓, focusing on nano-assisted smart water for sand production control. With extensive experience in CO₂ and H₂ underground storage projects, reservoir characterization, and formation damage remediation, he has held key academic and industrial roles. As a researcher and educator, he has contributed significantly to petroleum engineering, guiding students and leading innovative studies in reservoir engineering and geomechanics 🔬📚.

Professional Profile

Scopus

Google Scholar

Education & Experience

Education 🎓

Ph.D. in Petroleum Engineering (Hydrocarbon Reservoirs), Amirkabir University of Technology (2016-2020)

  • Thesis: Nano-assisted smart water for sand production in unconsolidated sandstone reservoirs.

M.Sc. in Petroleum Engineering (Hydrocarbon Reservoirs), Shiraz University (2012-2014)

  • Thesis: Enhanced oil recovery & CO₂ storage via carbonated water injection.

B.Sc. in Petroleum Engineering (Reservoir Engineering), Shiraz University (2008-2012)

  • Thesis: Simulation of solution gas drive in fractured reservoirs.

Work Experience 🛠️

🔹 Assistant Professor – Ferdowsi University of Mashhad (2023-Present)
🔹 Project Supervisor – Underground CO₂ Storage (2023-Present)
🔹 Researcher – Underground H₂ Storage, RIPI (2023-Present)
🔹 Technical Manager – Upstream Oil Research Center, Sharif University (2020-2022)
🔹 Technical Supervisor – MAPSA Co., Tehran (2019-2020)
🔹 Industrial Consultant – MAPSA Co., Tehran (2019-2020)
🔹 Senior Lab Equipment Designer – MAPSA Co., Tehran (2018-2019)
🔹 Researcher – Advanced EOR Research Center, Shiraz University (2011-2014)

Professional Development 🌟

Dr. mahmood shakiba has significantly contributed to petroleum engineering through teaching, research, and industrial consulting 📖🔬. His expertise spans reservoir engineering, well testing, and gas reservoirs 🚀. At Ferdowsi University, he educates students on reservoir management and maintenance, while leading projects on underground CO₂ and H₂ storage. His industry experience includes technical supervision, reservoir characterization, and EOR techniques 🏭. Dr. shakiba has also played a key role in laboratory equipment design and geomechanical feasibility studies. His dedication to advancing sustainable energy storage and petroleum recovery has established him as a leader in the field 🌍💡.

Research Focus 🔬

Dr. shakiba’s research primarily focuses on enhanced oil recovery (EOR), underground storage of CO₂ and H₂, and reservoir geomechanics 🏗️. His experimental and simulation studies have explored innovative methods for improving oil recovery and mitigating environmental impact 🌱. He has investigated nano-assisted smart water flooding, formation damage remediation, and CO₂ sequestration to optimize hydrocarbon reservoir performance. His geological and geomechanical feasibility studies have contributed to safe underground hydrogen storage ⚡. His work advances sustainable energy solutions while improving oil and gas recovery efficiency for the future 🌍🔋.

Awards & Honors 🏆

🏅 Technical Leadership Award – Upstream Oil Research Center, Sharif University
🏅 Outstanding Research Contribution – Research Institute of Petroleum Industry (RIPI)
🏅 Best Thesis Award – Amirkabir University of Technology (2020)
🏅 Top Researcher Recognition – Shiraz University EOR Research Center
🏅 Best Instructor Award – Ferdowsi University of Mashhad (2023)

Publication Top Notes

  1. Investigation of oil recovery and CO₂ storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    • Journal of Petroleum Science and Engineering (2016)
    • Citations: 79
    • Examines how carbonated water injection (CWI) enhances oil recovery and CO₂ storage efficiency in carbonate reservoirs under secondary and tertiary injection scenarios.
  2. A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs

    • Journal of Molecular Liquids (2020)
    • Citations: 35
    • Investigates how smart water, combined with nanoparticles, helps mitigate sand production in weakly consolidated sandstone reservoirs while improving oil recovery.
  3. The impact of connate water saturation and salinity on oil recovery and CO₂ storage capacity during carbonated water injection in carbonate rock

    • Chinese Journal of Chemical Engineering (2019)
    • Citations: 29
    • Analyzes how variations in connate water saturation and salinity influence oil displacement efficiency and CO₂ trapping during CWI in carbonate formations.
  4. Effects of type and distribution of clay minerals on the physico-chemical and geomechanical properties of engineered porous rocks

    • Scientific Reports (2023)
    • Citations: 21* (recently published)
    • Studies how different clay minerals affect the structural integrity and chemical behavior of engineered porous rocks, impacting reservoir performance.
  5. An experimental insight into the influence of sand grain size distribution on the petrophysical and geomechanical properties of artificially made sandstones

    • Journal of Petroleum Science and Engineering (2022)
    • Citations: 15
    • Explores the role of sand grain size variations in determining the permeability, porosity, and mechanical strength of artificial sandstone samples.

Zhou Zhiwu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhou Zhiwu | Engineering | Best Researcher Award

School of Civil and Environmental Engineering at Hunan University of Science and Engineering, China

Zhou zhiwu, a senior engineer and registered tester, is an associate professor and master’s supervisor at hunan university of science and engineering. he earned his ph.d. in transportation infrastructure and territory from the polytechnic university of valencia (🇪🇸) with top honors, including the UPV Outstanding Doctorate and the 2023 Spanish Outstanding Doctoral Award 🏆. with 15 years in national engineering projects, he has led major constructions, published 28 research papers 📄, and serves as a reviewer for 20 SCI journals. his expertise spans (ancient) bridge monitoring, high-speed railway track optimization, and sustainable structural design.

Professional Profile

Orcid

Scopus

Google Scholar

Education & Experience 🎓👷‍♂️

📚 Education:

  • 🎓 Bachelor’s in Architectural Engineering – Lanzhou Jiaotong University (2000-2004)
  • 🎓 Master’s in Transportation Engineering – Lanzhou Jiaotong University (2013-2016)
  • 🎓 Ph.D. in Transport Infrastructure & Territory – Polytechnic University of Valencia, Spain (2019-2023) 🏅

💼 Work Experience:

  • 🏗 Project Manager – China Railway 15th Bureau Group (2002-2017)
  • 🏢 Chief Engineer – Xinjiang Highway Science & Technology Research Institute (2017-2018)
  • 📖 Full-time Teacher & Leader – Chongqing Public Vocational Transport College (2018-2019)
  • 🔬 Doctor & Associate Researcher – Polytechnic University of Valencia, Spain (2019-2023)
  • 🎓 Associate Professor & Master Supervisor – Hunan University of Science and Engineering (2023-Present)

Professional Development 🚀🔬

Zhou zhiwu is a multidisciplinary researcher and engineer specializing in transportation infrastructure, structural health monitoring, and sustainable development. with over 15 years of experience in large-scale construction projects 🏗, he has contributed to high-speed railways 🚄, highways 🛣, and industrial buildings 🏢. he has led and participated in 11 international and national research projects, collaborated with top institutions, and published extensively in SCI-indexed journals 📚. in addition to research, he is a dedicated educator 📖 and serves as an editorial board member for the American Journal of Environmental Science and Engineering, actively reviewing 148+ research articles.

Research Focus 🔍🏗

Zhou zhiwu’s research lies in transportation engineering, structural monitoring, and sustainable infrastructure:

  • 🏛 (Ancient) Bridge & Building Health Monitoring – Studying structural integrity & durability
  • 🌱 Sustainable Infrastructure – Coupling optimization for large-scale structures
  • 🚄 High-Speed Railway Track Optimization – Preventing track diseases & enhancing efficiency
  • 🏗 Indeterminate Structural Design – Improving extra-large bridge sustainability
  • 🔬 Engineering Project Management – Enhancing efficiency in large-scale construction

his work integrates modern monitoring techniques 📡, advanced materials 🏗, and sustainable engineering 🌱 to enhance long-term infrastructure performance.

Awards & Honors 🏆🎖

  • 🏅 UPV Outstanding Doctorate Award – Polytechnic University of Valencia, Spain
  • 🏆 2023 Spanish Outstanding Doctoral Award – Top honor for doctoral research
  • 🏗 National Engineering Construction Quality Management Award (First Class)
  • 🏆 First-Class Science & Technology Award – China Railway Construction Corporation
  • 🏅 Provincial & Ministerial-Level Awards – Henan Province (Two awards)
  • 🏆 China Civil Engineering Society “National Second Prize”
  • 🎖 Reviewer for 20 SCI Journals – Reviewed 148+ articles

Publication Top Notes

  1. Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil

    • Journal of Building Engineering, 2025.
    • DOI: 10.1016/j.jobe.2024.111636
    • Citation (APA):
      Author(s). (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, XX, 111636.
  2. Three-dimensional finite element-coupled optimisation assessment of extra-large bridges

    • Structures, 2024.
    • DOI: 10.1016/j.istruc.2024.107743
    • Citation (APA):
      Author(s). (2024). Three-dimensional finite element-coupled optimisation assessment of extra-large bridges. Structures, XX, 107743.
  3. Research on coupling optimization of carbon emissions and carbon leakage in international construction projects

    • Scientific Reports, 2024.
    • DOI: 10.1038/s41598-024-59531-4
    • Citation (APA):
      Zhou, Z. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, XX, 59531. Building the future: Smart concrete as a key element in next-generation construction
    • Construction and Building Materials, 2024.
    • DOI: 10.1016/j.conbuildmat.2024.136364
    • Citation (APA):
      Zhou, Z. (2024). Building the future: Smart concrete as a key element in next-generation construction. Construction and Building Materials, XX, 136364.
  4. The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model

    • Sustainable Cities and Society, 2024.
    • DOI: 10.1016/j.scs.2024.105201
    • Citation (APA):
      Author(s). (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, XX, 105201.

Svetislav Savovic | Engineering | Best Researcher Award

Prof. Dr. Svetislav Savovic | Engineering | Best Researcher Award

prof. Dr. Svetislav Savovic, University of Kragujevac, Serbia

prof. dr svetislav savovic is a distinguished physicist and professor at the university of kragujevac, serbia. With extensive expertise in optics, computational physics, and nuclear physics, he has contributed significantly to research in photonics, material science, and radiation measurements. He has collaborated with leading international institutions and is actively involved in advancing optical fiber technologies and experimental nuclear physics.

PROFILE

Scopus Profile

Educational Detail

PhD in Physics, university of kragujevac, serbia

MSc in Physics, university of belgrade, serbia

BSc in Physics, university of kragujevac, serbia

Professional Experience

Professor, university of kragujevac, faculty of science, serbia
December 2009 – present

Associate Professor, university of kragujevac, faculty of science, serbia
February 2004 – December 2009

Assistant Professor, university of kragujevac, faculty of science, serbia
September 1997 – February 2004

Visiting Professor/Researcher Positions:

Sapienza University of Rome, Italy (December 2019)

University of Applied Sciences, Leipzig, Germany (June 2018)

Polytechnic University of Hong Kong, Hong Kong (2015-2017, multiple terms)

City University of Hong Kong, Hong Kong (Senior Research Fellow, 3 years, 2000-2019)

Centre Recherche Nucleaires (CRN), Strasbourg, France (May-June 1991)

Aristotle University, Thessaloniki, Greece (Multiple terms, 1990-2009)

International Centre for Theoretical Physics, Trieste, Italy (1988-1990)

University of Poznan and University of Krakow, Poland (September-October 1990)

Teaching Experience

prof. savovic has extensive teaching expertise in the following areas:

Photonics

Metrology

Experimental techniques in physics

Numerical methods and simulations in physics

Informatics and computer programming

Laboratory of modern physics

Biophysics

Atomic physics

Monte-Carlo methods

Nuclear physics

Computational biophysics

Research Interests

Optics and photonics

Computational physics

Monte-Carlo methods

Partial differential equations

Experimental nuclear physics

Radiation measurements

Material science

Research Projects

Computer modeling of deflection-curvature sensors (1999-2000, Hong Kong)

Modal curvature gauge development (2000-2003, Hong Kong)

Mode coupling and power transfer in polymer optical fibers (2005-2009, Hong Kong)

Effects of gamma radiation on step-index plastic optical fibers (2011-2012, Hong Kong)

Advancements in W-type and graded-index plastic optical fibers (2013-2019, Hong Kong)

Characterization and design of photonic crystal fibers (2021-2025, Serbia, Hong Kong, UAE)

Nuclear Physics:

High-energy experimental nuclear physics (1997-2000, Serbia)

Standard Model parameter measurements and new particle searches (2006-2010, CERN, Geneva)

Member of the ATLAS collaboration at CERN (2006-2010)

Mathematics:

Numerical solutions for Stefan problems with accuracy and efficiency emphasis (2002-2003, Hong Kong)

Key Achievements

Long-term international collaborations across Europe and Asia.

Published groundbreaking research in optics and nuclear physics.

Developed innovative optical fiber technologies for sensing and data transmission.

Contributed to the ATLAS experiment at CERN, advancing particle physics research.

Top Notable Publications

Interference mitigation using optimised angle diversity receiver in LiFi cellular network
Zeng, Z., Chen, C., Wu, X., Safari, M., Haas, H.
Optics Communications, 2025, 574, 131125.
Citations: 0

Theoretical investigation of the space division multiplexing capacity of multimode step-index plastic optical fibers
Savović, S., Aidinis, K., Chen, C., Min, R.
Optik, 2024, 311, 171945.
Citations: 0

Influence of launch light beam conditions on the bandwidth in multimode graded-index microstructured POFs
Simović, A., Savović, S., Drljača, B., Chen, C., Min, R.
Applied Optics, 2024, 63(22), pp. 5926–5930.
Citations: 0

Enhancing OFDM with index modulation using heuristic geometric constellation shaping and generalized interleaving for underwater VLC
Zhao, Y., Chen, C., Zhong, X., Lin, B., Savović, S.
Optics Express, 2024, 32(8), pp. 13720–13732.
Citations: 5

Application of the power flow equation in modeling bandwidth in polymer optical fibers: a review
Drljača, B., Savović, S., Simović, A., Aidinis, K., Min, R.
Optical and Quantum Electronics, 2024, 56(4), 547.
Citations: 2

0.5-bit/s/Hz fine-grained adaptive OFDM modulation for bandlimited underwater VLC
Nie, Y., Chen, C., Savović, S., Zeng, Z., Shen, G.
Optics Express, 2024, 82(3), pp. 4537–4552.
Citations: 4

New method for the investigation of mode coupling in graded-index polymer photonic crystal fibers using the Langevin stochastic differential equation
Savović, S., Djordjevich, A., Aidinis, K., Chen, C., Min, R.
Frontiers in Physics, 2024, 12, 1479206.
Citations: 0

Wavelength dependent transmission in multimode graded-index microstructured polymer optical fibers
Simović, A., Savović, S., Wang, Z., Aidinis, K., Chen, C.
Frontiers in Physics, 2024, 12, 1340505.
Citations: 1

Theoretical and experimental investigation of the steady-state power distribution in multimode step-index plastic optical fibers
Dai, W., Savović, S., Zhao, C., Shao, R., Min, R.
Optical Fiber Technology, 2023, 81, 103531.
Citations: 2

Investigation of mode coupling in strained and unstrained multimode step-index POFs using the Langevin equation
Savović, S., Aidinis, K., Djordjevich, A., Min, R.
Heliyon, 2023, 9(7), e18156.
Citations: 1

Conclusion

Considering Prof. Dr. Svetislav Savovic’s vast academic qualifications, prolific research contributions, and impactful teaching and international collaborations, he is highly suitable for the Research for Best Researcher Award. His career epitomizes the values of innovation, academic excellence, and societal impact that the award seeks to honor.

 

 

 

 

 

 

 

 

 

 

 

 

Bernardine Chidozie | Engineering | Best Researcher Award

Mrs. Bernardine Chidozie | Engineering | Best Researcher Award

Mrs, Bernardine Chidozie, University of Aveiro, Portugal

Mrs. Bernardine Chidozie is a dedicated researcher and PhD student fellow at the University of Aveiro, Portugal, focusing on digital transformation, simulation modeling, and supply chain optimization, especially in the context of Industry 4.0 and 5.0. Her research employs simulation-based methods and digital tools to improve decision-making and operational performance in complex systems, such as healthcare and sustainable supply chains.

 

PROFILE

Orcid profile

Educational Details

With an academic foundation in engineering, Mrs. Chidozie has contributed significantly to projects like the “Sustainable Supply Chain Management Model for Residual Agroforestry Biomass,” utilizing a web platform to support her research, which began in 2022. Her publications explore the impact of digitalization on supply chains, including the optimization of biomass supply chains for sustainability. She has authored books like Simulation-Based Approaches to Enhance Operational Decision Support in Healthcare 5.0 and published articles in notable journals, such as Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix.

Professional Experience

Professionally, Mrs. Chidozie has been involved in various research and consultancy projects, including industry-relevant studies that analyze the role of simulation and digital transformation in optimizing supply chains. She is an active member of the Council for the Regulation of Engineering in Nigeria (COREN) and collaborates on initiatives that bridge research and real-world applications. Her primary goal is to create innovative, technology-driven strategies to enhance sustainability, efficiency, and resilience in industrial and healthcare sectors.

Research Interests

Digital transformation, simulation modeling, supply chain optimization, Industry 4.0 and 5.0 applications, sustainable biomass supply chains, healthcare systems improvement, and decision-support systems.

Top Notable Publications

Chidozie, B.C. (2024). Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach. Sustainability, Published: 2024-11-07, DOI: 10.3390/su16229709, Source: Crossref.

Chidozie, B.C. (2024). Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix: A Methodical Approach. Logistics, Published: 2024-10-18, DOI: 10.3390/logistics8040107, Source: Crossref.

Chidozie, B.C. (2024). The Importance of Digital Transformation (5.0) in Supply Chain Optimization: An Empirical Study. Production Engineering Archives, Published: 2024-03-01, DOI: 10.30657/pea.2024.30.12, Source: Crossref.

Chidozie, B.C. (2024). Analytical and Simulation Models as Decision Support Tools for Supply Chain Optimization – An Empirical Study. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54671-6_15, ISBN: 9783031546709, Source: Crossref.

Chidozie, B.C. (2024). Impacts of Simulation and Digital Tools on Supply Chain in Industry 4.0. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54664-8_43, ISBN: 9783031546648, Source: Crossref.

Chidozie, B.C. (2024). Simulation-Based Approaches to Enhance Operational Decision-Support in Healthcare 5.0: A Systematic Literature Review. (book chapter), DOI: 10.1007/978-3-031-38165-2_78, Source: Crossref.

 Conclusion

Mrs. Bernardine Chidozie’s research achievements, particularly her focus on digital transformation and sustainable supply chains, make her a suitable candidate for the Best Researcher Award. Her work is relevant and impactful, addressing key challenges in Industry 4.0 and Healthcare 5.0. Her publications, ongoing projects, and industry involvement illustrate her dedication to advancing sustainability and efficiency across industries, marking her as a distinguished researcher in her field.

 

 

 

 

 

Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin, Gyeongsang National University, South Korea

Dongmin Shin, Ph.D., is an Assistant Professor of Smart Energy and Mechanical Engineering at Gyeongsang National University, South Korea. His expertise encompasses mechanical system reliability and energy solutions, backed by extensive experience in research and academia at institutions like KIMM and KAIST.

PROFILE

Orcid profile

Educational Details

Dr. Shin holds a Ph.D. in Mechanical Engineering from the Korea Advanced Institute of Science and Technology (KAIST), completed in August 2019, where he also earned his M.S. in Ocean System Engineering in February 2015. His foundational studies began at Hanyang University, where he received a B.S. in Mechanical Engineering in 2013, with a break for military service from 2008 to 2010.

Professional Experience

Dr. Shin joined Gyeongsang National University as an Assistant Professor in September 2022. Prior to this, he was a Post-doctoral Researcher at the Korea Institute of Machinery & Materials (KIMM), focusing on reliability assessment in mechanical systems. His academic journey includes roles at KAIST, where he served as a Research Assistant Professor at the Institute for Security Convergence Research, and at Kunsan National University as a Research Professor within the Shipbuilding & Ocean Equipment Industry Empowerment Center. Additionally, he has experience as a Teaching and Research Management Assistant at KAIST, supporting courses in Fluid Mechanics, Numerical Analysis, and mechanical practice, and assisting with 2-D and 3-D wave tank research.

Research Interests

Dr. Shin’s research interests lie in mechanical system reliability, smart energy systems, ocean engineering, and fluid mechanics, with applications in mechanical system safety and energy efficiency.

Top Notable Publications

“Design Analysis Using Evaluation of Surf-Riding and Broaching by the IMO Second Generation Intact Stability Criteria for a Small Fishing Boat”

Authors: Not provided

Year: 2024

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse12112066

“Numerical Study on Compact Design in Marine Urea-SCR Systems for Small Ship Applications”

Authors: Not provided

Year: 2023

Journal: Energies

DOI: 10.3390/en17010187

“Numerical analysis of thermal and hydrodynamic characteristics in aquaculture tanks with different tank structures”

Authors: Not provided

Year: 2023

Journal: Ocean Engineering

DOI: 10.1016/j.oceaneng.2023.115880

“Evaluation of Parametric Roll Mode Applying the IMO Second Generation Intact Stability Criteria for 13K Chemical Tanker”

Authors: Not provided

Year: 2023

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse11071462

“Wave-induced vibration of a fully submerged horizontal cylinder close to a free surface: a theory and experiment”

Authors: Not provided

Year: 2022

Journal: Ships and Offshore Structures

DOI: 10.1080/17445302.2021.1950344

“Assessment of Excessive Acceleration of the IMO Second Generation Intact Stability Criteria for the Tanker”

Authors: Not provided

Year: 2022

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse10020229

Conclusion

Assist. Prof. Dr. Dongmin Shin’s strong educational background, extensive professional experience, innovative research contributions, commitment to teaching and mentoring, and effective research management make him a highly suitable candidate for the Best Researcher Award. His achievements across academia, applied research, and project management reflect the qualities recognized by this award, underscoring his potential to continue contributing meaningfully to engineering and research fields.

 

 

 

 

 

Charikleia Karakosta | Engineering | Best Researcher Award

Dr. Charikleia Karakosta | Engineering | Best Researcher Award

Dr Charikleia Karakosta, National Technical University of Athens, Greece

Dr. charikleia karakosta is a senior sustainable energy and climate change expert, currently affiliated with the Greek Public Employment Service at the Ministry of Labour and Social Security and ENVIROMETRICS S.A. She has extensive expertise in energy efficiency, green economic policies, and sustainable energy project management, further enriched by her teaching and research roles at various academic institutions.

PROFILE

Orcid Profile

Educational Details

B.Sc., M.Sc. in Chemical Engineering (Grade: 8.91/10), National Technical University of Athens (NTUA), Greece (1999-2004)

M.Sc. in Energy Production and Management (Grade: 8.67/10), NTUA (2004-2006)

Ph.D. in Electrical & Computer Engineering, NTUA (2005-2014)
PhD Thesis: “Integrated Methodology for the Decision Support of the Promotion of the Effective Technology Transfer within the frame of Climate Change” (Grade: 10/10)

Professional Experience

Dr. karakosta has served as a project coordinator and expert in energy efficiency and green economic policies at NTUA’s Decision Support Systems Lab (EPU-NTUA), where she collaborated with Prof. John Psarras. Since January 2024, she has worked as a senior sustainable energy expert and project manager at ENVIROMETRICS S.A. Her responsibilities include leading sustainable energy projects, overseeing environmental assessments, and developing climate-resilient energy strategies.

In academia, she is a postdoctoral researcher at the University of Macedonia, focusing on decision support systems for sustainable energy transitions. Dr. karakosta is also an adjunct lecturer, teaching courses in operations research, the Internet of Things, and sustainable energy at the University of West Attica and the Open University of Cyprus.

Research Interests

Dr. karakosta’s research spans energy management, climate change adaptation, decision support systems, and sustainable technology transfer. Her work integrates environmental policy with technical innovations for climate resilience and low-carbon transitions.

Awards and Scholarships

ECOPOLIS Science Award (2016) for her PhD research

Onassis Foundation Scholarships for Master’s and Doctoral studies (2005-2006, 2008-2010)

State Scholarship Foundation (IKY) for academic excellence (2002-2003)

D. Thomaidis Award for scientific publications (2004-2018)

 

Top Notable Publications

A Fuzzy PROMETHEE Method for Evaluating Strategies towards a Cross-Country Renewable Energy Cooperation: The Cases of Egypt and Morocco

Authors: charikleia karakosta et al.

Year: 2024

Journal: Energies

DOI: 10.3390/en17194904

Publisher: Multidisciplinary Digital Publishing Institute

Financing Sustainable Energy Efficiency Projects: The Triple-A Case

Authors: charikleia karakosta et al.

Year: 2021

Journal: Environmental Sciences Proceedings

DOI: 10.3390/environsciproc2021011022

Publisher: Multidisciplinary Digital Publishing Institute

An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation

Authors: charikleia karakosta et al.

Year: 2020

Journal: Sustainability

DOI: 10.3390/su12072886

Publisher: Multidisciplinary Digital Publishing Institute

Analysis of Policy Scenarios for Achieving Renewable Energy Sources Targets: A Fuzzy TOPSIS Approach

Authors: charikleia karakosta et al.

Year: 2017

Journal: Energy and Environment

DOI: 10.1177/0958305X16685474

Publisher: SAGE Publications (via Scopus – Elsevier)

Exploring Opportunities and Risks for RES-E Deployment under Cooperation Mechanisms between EU and Western Balkans: A Multi-Criteria Assessment

Authors: charikleia karakosta et al.

Year: 2017

Journal: Renewable and Sustainable Energy Reviews

DOI: 10.1016/j.rser.2017.05.190

Publisher: Elsevier (via Scopus – Elsevier)

Renewable Energy Policy Dialogue towards 2030 – Editorial of the Special Issue

Authors: charikleia karakosta

Year: 2017

Journal: Energy and Environment

DOI: 10.1177/0958305X16685455

Publisher: SAGE Publications (via Scopus – Elsevier)

Conclusion

Dr. charikleia karakosta exemplifies a strong candidate for the Best Researcher Award due to her outstanding qualifications, impactful research in renewable energy policy and decision support, international recognition, and academic influence. Her continuous contributions, leadership in project management, dedication to teaching, and research accolades make her a distinguished figure in sustainable energy research.