Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam at The Hong Kong Polytechnic University , Hong Kong

Prof. Hwa Yaw TAM ๐ŸŽ“๐Ÿ”ฌ, IEEE Life Fellow and OPTICA Fellow, is a visionary in photonics and optical fibre sensing. Currently Chair Professor of Photonics at The Hong Kong Polytechnic University ๐Ÿ‡ญ๐Ÿ‡ฐ, he has spearheaded groundbreaking innovations in fibre-optic sensor systems for transportation ๐Ÿš„, energy โšก, and medical ๐Ÿ‘‚ applications. With over 800 publications ๐Ÿ“š and 20 patents ๐Ÿ”–, he stands as the second most cited expert in fibre-optic sensing, boasting an H-index of 73. His trailblazing contributions span continents, from Hong Kong’s MTR to the Netherlands and Australia ๐ŸŒ. A laureate of the Berthold Leibinger Innovationspreis ๐Ÿ† and multiple Geneva Invention awards, Prof. Tamโ€™s legacy bridges academia, industry, and public safety. His work has also spun off seven photonics companies ๐Ÿš€. With unwavering passion and pioneering spirit, Prof. Tam continues to illuminate the future of smart sensing and laser technologies ๐Ÿ”ญ.

Professional Profileย 

๐ŸŽ“ Education

Prof. Hwa Yaw TAM embarked on his academic voyage at The University of Manchester, UK ๐Ÿ‡ฌ๐Ÿ‡ง, earning both his B.Eng in 1985 and Ph.D. in 1989 ๐ŸŽ“. His early educational foundations laid the groundwork for a lifelong commitment to photonics and optical engineering. Specializing in electrical and electronic engineering, his doctoral studies fused rigorous theory with hands-on research in laser systems and fibre technologies ๐Ÿ”. This dual emphasis cultivated a mindset driven by innovation and precision. The UK academic environment, rich in historical scientific achievement, greatly influenced his research ethos ๐ŸŒ. Prof. Tamโ€™s education not only equipped him with cutting-edge technical knowledge but also instilled in him a vision to translate science into impactful, real-world applications. Today, that foundation continues to echo through his advanced fibre-optic sensor innovations ๐Ÿ”ฌ, standing as a beacon for future generations of engineers and scientists ๐Ÿ“˜๐Ÿ’ก.

๐Ÿ›๏ธ Professional Experience

Prof. Tamโ€™s professional journey spans academia and industry in equal brilliance ๐ŸŒ . He began his research career at GEC-Marconi Ltd. (London) between 1989โ€“1993, delving into erbium-doped fibre amplifiers and laser systems ๐Ÿ’ก. He then joined The Hong Kong Polytechnic University in 1993, rising through the ranks from Lecturer to Chair Professor of Photonics. He also served as Head of the Electrical Engineering Department and was the Founding Director of the Photonics Research Centre (2000โ€“2022) ๐Ÿซ. Presently, he is Associate Director at PolyUโ€™s Photonics Research Institute, spearheading interdisciplinary innovations. Prof. Tamโ€™s work transcends traditional academiaโ€”his team has launched seven start-ups, catalyzing photonics-based solutions globally ๐Ÿš€. His leadership has shaped fibre-optic sensing systems for cities and industries across Asia, Europe, and Australia, turning theoretical breakthroughs into operational systems in railways ๐Ÿš‰, energy grids ๐Ÿ”‹, and hospitals ๐Ÿฅ, positioning him as a pivotal force in global smart sensing networks ๐ŸŒ.

๐Ÿ”ฌ Research Interest

Prof. Tamโ€™s research orbits around specialty optical fibres tailored for real-world sensor applications ๐Ÿ”. His core interests span the design and fabrication of advanced fibre-optic systems that serve as digital sentinels in complex infrastructures ๐Ÿง . From structural health monitoring (SHM) to real-time railway diagnostics, his innovations help prevent failures before they occur โš ๏ธ. His pioneering optical fibre networks have monitored everything from high-speed trains ๐Ÿš† to smart escalators and even cochlear implants for medical precision ๐Ÿ‘‚. By embedding fibre Bragg gratings (FBGs) into intelligent sensing webs, heโ€™s revolutionized predictive maintenance across industries. His groupโ€™s work is particularly transformative in railway monitoring, with deployment success stories in Hong Kong, Singapore, and the Netherlands ๐ŸŒ. Always ahead of the curve, Prof. Tamโ€™s research fuses AI ๐Ÿค–, photonic engineering, and real-time analytics to create a safer, more connected world through light ๐ŸŒˆ and precision sensing technologies ๐Ÿ“ˆ.

๐Ÿ… Awards and Honors

Prof. Tamโ€™s achievements are globally celebrated ๐Ÿ†. In 2025, he won the Special Prize and Gold Medal at Genevaโ€™s Invention Expo for a smart cochlear implant ๐Ÿ‘‚๐ŸŒŸ. In 2024, he secured another Gold Medal for lithium-ion battery health monitoring via FBG sensors ๐Ÿ”‹. Earlier, in 2022, his intelligent escalator monitoring system earned him yet another Geneva Gold Award ๐Ÿฅ‡. The Berthold Leibinger Innovationspreis in 2014, among the world’s highest laser tech honors, recognized his work in wavelength-tunable laser sensing for railways ๐Ÿš„. His team also received the Presidentโ€™s Award for Knowledge Transfer in 2022 at PolyU for creating AI-enhanced optical fibre networks ๐ŸŒ. Further accolades include a Best Paper finalist at IEEE SENSORS 2016 ๐Ÿ“ƒ. Each honor underscores Prof. Tamโ€™s deep impact on laser technology, smart sensing, and translational engineering. His consistent award-winning contributions reflect a perfect blend of scientific creativity, societal value, and engineering excellence ๐Ÿ’ผ๐Ÿ”ฌ.

๐Ÿ“š Publications Top Noteย 

  1. Title: Enhanced Quasi-Distributed Accelerometer Array Based on ฯ•-OTDR and Ultraweak Fiber Bragg Grating
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: IEEE Sensors Journal
    Summary: Proposes an enhanced accelerometer array using phase-sensitive optical time-domain reflectometry (ฯ•-OTDR) and ultraweak fiber Bragg gratings for distributed vibration sensing, suitable for applications like structural health monitoring.


  1. Title: Label-Free DNA Detection Using Etched Tilted Bragg Fiber Grating-Based Biosensor
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: Sensors
    Summary: Describes a label-free biosensor using etched tilted fiber Bragg gratings to detect DNA without the need for fluorescent labels, enhancing sensitivity and simplicity in genetic diagnostics.


  1. Title: Recovery of a Highly Reflective Bragg Grating in DPDS-Doped Polymer Optical Fiber by Thermal Annealing
    Authors: , , , …
    Year: 2023
    Citations: 2
    Source: Optics Letters
    Summary: Demonstrates the recovery of degraded Bragg gratings in doped polymer optical fibers using thermal annealing, showing potential for longer lifespan and reusability in fiber-optic sensors.


  1. Title: Accident Risk Tensor-Specific Covariant Model for Railway Accident Risk Assessment and Prediction
    Authors: , , , …
    Year: 2023
    Citations: 8
    Source: Reliability Engineering and System Safety
    Summary: Introduces a tensor-based statistical model for accurately assessing and predicting accident risks in railway systems by incorporating covariant risk factors.


  1. Title: Polymeric Fiber Sensors for Insertion Forces and Trajectory Determination of Cochlear Implants in Hearing Preservation
    Authors: , , , …
    Year: 2023
    Citations: 10
    Source: Biosensors and Bioelectronics
    Summary: Presents polymeric fiber-optic sensors designed to measure insertion force and trajectory during cochlear implant surgeries, helping to preserve hearing by reducing inner ear trauma.


  1. Title: Miniature Two-Axis Accelerometer Based on Multicore Fiber for Pantograph-Catenary System
    Authors: , , , ,
    Year: 2023
    Citations: 8
    Source: IEEE Transactions on Instrumentation and Measurement
    Summary: Develops a compact fiber-based accelerometer capable of sensing in two axes, tailored for monitoring the dynamics of pantograph-catenary interactions in electric rail systems.


  1. Title: Ultraminiature Optical Fiber-Tip Directly-Printed Plasmonic Biosensors for Label-Free Biodetection
    Authors: , , , …
    Year: 2022
    Citations: 19
    Source: Biosensors and Bioelectronics
    Summary: Describes a highly miniaturized fiber-tip plasmonic biosensor fabricated via direct printing, enabling sensitive and label-free detection of biomolecules at the microscale.


  1. Title: Accelerated Pyro-Catalytic Hydrogen Production Enabled by Plasmonic Local Heating of Au on Pyroelectric BaTiO3 Nanoparticles
    Authors: , , , …
    Year: 2022
    Citations: 83
    Source: Nature Communications
    Summary: Reports a novel hydrogen production method using gold-decorated BaTiOโ‚ƒ nanoparticles, where plasmonic heating enhances pyro-catalytic activity under mild conditions.


  1. Title: Biomechanical Assessment and Quantification of Femur Healing Process Using Fibre Bragg Grating Strain Sensors
    Authors: , , , …
    Year: 2022
    Citations: 5
    Source: Sensors and Actuators A: Physical
    Summary: Uses fiber Bragg grating strain sensors to monitor and quantify mechanical changes in the femur during bone healing, supporting better postoperative assessment.


  1. Title: Mach-Zehnder Interferometer Based Fiber-Optic Nitrate Sensor
    Authors: , , , ,
    Year: 2022
    Citations: Not listed
    Source: Optics Express
    Summary: Presents a Mach-Zehnder interferometer design using optical fiber for detecting nitrate concentrations in water, aiming at applications in environmental monitoring

๐Ÿ”š Conclusionย 

Prof. Hwa Yaw TAM is more than a scholarโ€”he is a trailblazer in light-based sensing technologies ๐ŸŒŸ. His career weaves together pioneering science, practical engineering, and impactful entrepreneurship ๐ŸŒ. Through over 800 papers, 20 patents, and numerous awards, he has reshaped how the world monitors structural, environmental, and human conditions using optical fibres ๐Ÿ’ก. His real-world implementationsโ€”from monitoring city-wide railways to enabling hearing restorationโ€”demonstrate how research can elevate safety, precision, and quality of life for millions ๐ŸŒ. He continues to mentor future innovators and drive collaborative photonic research through his leadership roles at PolyU and the Photonics Research Institute. With vision, dedication, and humility, Prof. Tam stands as a guiding light for the global photonics community ๐ŸŒ . His journey exemplifies how science, when paired with compassion and creativity, becomes a force for building a smarter, safer, and more sustainable world ๐Ÿ”—๐ŸŒฟ.

Sล‚awomir Michalak | Engineering | Industry Impact Award

Assist. Prof. Dr. Sล‚awomir Michalak | Engineering | Industry Impact Award

Avionics Division Manager at Air Force Institute of Technology, Poland

Prof. Sล‚awomir Michalak, Ph.D., D.Sc. Eng. โœˆ๏ธ, is a distinguished aviation expert whose work bridges academia, defense, and engineering innovation. With decades of experience in avionics systems, aircraft diagnostics, and battlefield electronic warfare systems ๐Ÿ› ๏ธ๐Ÿ“ก, he has led the Avionics Department at the Air Force Institute of Technology since 2001. His pioneering efforts span system integration, reliability assessment, and phonoscopic analysis, influencing modern aviation practices. Michalak is a prolific contributor ๐Ÿ“š with numerous publications and nine recognized implementations. As a mentor and reviewer, he has significantly shaped doctoral and post-doctoral research. He has also educated future aviation professionals ๐Ÿ‘จโ€๐Ÿซ at institutions like the Warsaw University of Technology and the SIMP NOT Technical School. Actively involved in national defense research and scientific committees, his legacy resonates across Polish military aviation and beyond ๐ŸŒ. His commitment to innovation and education makes him a keystone figure in aviation sciences and applied technologies.

Professional Profileย 

Orcid

Scopus

๐ŸŽ“ Educationย 

Dr. Sล‚awomir Michalakโ€™s academic journey ๐Ÿš€ is deeply rooted in technical aviation sciences, marked by a robust specialization in avionics and aircraft navigation systems. He earned his doctorate in engineering and later achieved the prestigious Doctor of Science (D.Sc.) degree in technical sciences in 2016 ๐ŸŽ“, with a concentration on machine construction and operational disciplines. His educational trajectory demonstrates a relentless pursuit of advanced knowledge in complex aircraft systems, enhancing Poland’s aerospace education infrastructure. Moreover, his authorial role in crafting and teaching curriculaโ€”especially the subject “Aviation Equipment” approved by Warsawโ€™s Education Boardโ€”reflects a deep commitment to pedagogy. His teaching efforts spanned nearly three decades and included lectures at Warsaw University of Technologyโ€™s Faculty of Transport, focusing on Air Navigation ๐Ÿงญ. His foundation in education has not only equipped him with specialized skills but has also enabled him to disseminate that knowledge to future leaders of aviation systems engineering.

๐Ÿ’ผ Professional Experienceย 

With an illustrious career spanning over three decades, Prof. Michalak has held pivotal roles that define Polandโ€™s aviation research and development landscape โœˆ๏ธ. Since 2001, he has been the head of the Avionics Department at the Air Force Institute of Technology, where he currently serves as a professor ๐Ÿ‘จโ€๐Ÿ”ฌ. His career is marked by excellence in integrating avionics systems, reliability diagnostics, and designing solutions for modern combat operations, including electronic countermeasures ๐Ÿ›ก๏ธ. He has played a key advisory role in national aviation safety as a long-standing member of the Aircraft Accident Investigation Board, later incorporated into the State Aviation Accident Investigation Board ๐Ÿ•ต๏ธ. He also lends expertise to the Polish Academy of Sciences’ Transport Committee. Parallelly, he has served as a reviewer and board member for multiple doctoral/post-doctoral theses, as well as contributing to national defense and R&D projects funded by premier agencies like the National Center for Research and Development ๐Ÿ’ก.

๐Ÿ”ฌ Research Interestsย 

Prof. Michalakโ€™s research interests are deeply embedded in the critical functionalities of advanced aircraft systems, with a core emphasis on avionics integration and optimization ๐Ÿš. His scholarly pursuits center on diagnostics, system reliability, and onboard information processing, including phonoscopic and parametric analysis of flight data recorders ๐Ÿ“ˆ๐Ÿ”Š. He investigates navigation system integrity, real-time data interpretation, and complex multi-sensor integration essential for military reconnaissance and electronic warfare systems. His innovations directly impact aircraft survivability and mission effectiveness in modern combat environments โš™๏ธ. His work also extends to analyzing flight incident data, enhancing aviation safety and post-mission assessments. Furthermore, his involvement in the Electromobility and Autonomous Transport Section reveals his forward-looking vision in adapting aviation technologies to land-based and autonomous platforms ๐Ÿš—๐Ÿ“ก. Through interdisciplinary collaborations and defense-funded projects, his research acts as a crucial bridge between theoretical foundations and operational implementation across aviation and defense sectors.

๐Ÿ… Awards and Honorsย 

Though specific award titles are not explicitly listed, Prof. Michalakโ€™s array of achievements reflects a highly decorated academic and technical career ๐Ÿ†. His recognition stems from the practical impact of nine notable implementation projects that brought real-world improvements in avionics system performance and safety โœจ. His invitations to serve on scientific committees, review doctoral works, and lecture at renowned institutions showcase the esteem he holds in academic and defense circles. His prolonged contribution to the Aircraft Accident Investigation Boardโ€”spanning eras of structural reorganizationโ€”further demonstrates his trusted leadership in critical national aviation oversight roles โœˆ๏ธ. Being part of elite organizations like the Transport Committee of the Polish Academy of Sciences and guiding R&D projects funded by the Ministry of Defense affirms his reputation as a thought leader ๐Ÿง . These honors, both formal and implied, are a testament to his sustained excellence and unwavering dedication to enhancing Poland’s aerospace defense and academic frontiers.

๐Ÿ“š Publications Top Noteย 

1. Power Quality in the Context of Aircraft Operational Safety
Authors: Tomasz Tokarski, Sล‚awomir Michalak, Barbara Kaczmarek, Mariusz Zieja, Tomasz Polus
Year: 2025 (Published April 10)
Journal: Energies
DOI: 10.3390/en18081945
Source: Crossref / MDPI
Summary:
This article investigates how power quality, particularly from Ground Power Units (GPUs), affects aircraft operational safety. It focuses on GPUs used by the Polish Armed Forces and highlights how aging equipment (some over 40 years old) leads to degraded performance in transient conditions, contributing to aircraft unserviceability. The paper proposes diagnostic methodologies in line with Polish military standards and emphasizes the need for modern monitoring systems to ensure power reliability.


2. Selected Problems of Determining Pilot Survival Time in Cold Water after the Aircraft Crash
Authors: Przemysล‚aw Stฤ™ลผalski, Sล‚awomir Michalak, Jerzy Borowski
Year: 2025 (Published January 17)
Journal: The Polish Journal of Aviation Medicine, Bioengineering and Psychology
DOI: 10.13174/pjambp.17.12.2024.04
Source: Crossref
Summary:
This research introduces a computational model to estimate pilot survival times in cold water following an aircraft crash. Using a thermodynamic body simulation with nonlinear heat transfer equations, the model accounts for factors such as temperature, body mass, clothing, and body position. The output helps in estimating hypothermia onset and unconsciousness time, aiding in rescue and survival strategy development.


3. The Effect of the Operation Time of the Aircraft Power System on Power Quality in Transient States
Authors: Not explicitly listed (likely includes Tomasz Tokarski and/or Sล‚awomir Michalak)
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4462
Source: Crossref
Summary:
The paper examines how long-term use and aging of aircraft power systems impact power quality, especially during transient events such as engine starts or system switches. It shows that older systems cause higher voltage deviations and fluctuations, compromising avionics performance and reliability. The findings support the importance of upgrading aging infrastructure to maintain operational integrity.


4. The Overview of Ecologic Military and Civilian Power Systems
Authors: Not specified
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4461
Source: Crossref
Summary:
This review paper presents current trends in environmentally friendly power systems used in both civilian and military aviation. It discusses energy-efficient GPU technologies, emission reduction strategies, and renewable energy integration, underlining how ecological considerations are increasingly shaping power system design without sacrificing reliability and performance.


5. The Polish Helmet Mounted Display Systems for Military Helicopters
Author: Sล‚awomir Michalak
Year: 2016 (June)
Conference: 2016 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2016.7573240
Source: Crossref
Summary:
The paper discusses development, features, and performance evaluation of Polish helmet-mounted display systems for military helicopter pilots. It includes metrological approaches for assessing system reliability and precision in dynamic environments.


6. Metrology Tools of Computer Communication Control on Board Military Aircraft
Author: Sล‚awomir Michalak
Year: 2015
Journal: Przeglad Elektrotechniczny
DOI: 10.15199/48.2015.08.13
Source: Scopus / Crossref
Summary:
This article covers the development of metrology tools designed to monitor and control server communications onboard military helicopters. The study emphasizes reliability and diagnostic accuracy in harsh operational environments.


7. AFIT’s Laboratory Test Equipment to Optimise the Integrated Avionics Systems for Polish Military Aircrafts
Author: Sล‚awomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865904
Source: Crossref
Summary:
The study describes laboratory instrumentation developed by AFIT to test and optimize avionics systems in Polish military aircraft. It focuses on system integration, fault simulation, and metrological evaluation.


8. AFIT’s Laboratory Test Equipment to Optimise the Integrated Communication Systems for Polish Military Helicopters
Author: Sล‚awomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865949
Source: Crossref
Summary:
This paper presents laboratory tools developed for assessing and refining communication systems in military helicopters. The research highlights signal integrity testing and communication protocol validation in simulated airborne conditions.


9. Computer Aided Diagnosis of Technical Condition of the SWLP-1 Helmet Mounted Flight Parameters Display System
Author: Sล‚awomir Michalak
Year: 2014
Journal: Journal of KONBiN
DOI: 10.2478/jok-2014-0025
Source: Crossref
Summary:
The paper introduces a computer-based diagnostic system for evaluating the SWLP-1 helmet display used in flight operations. It supports preventive maintenance through automated fault detection and performance assessment.


10. Naheล‚mowy System Celowniczy NSC-1 Orion dla Polskich ลšmigล‚owcรณw Wojskowych
Author: Sล‚awomir Michalak
Year: 2013
Journal: Scientific Letters of Rzeszow University of Technology – Mechanics
DOI: 10.7862/rm.2013.30
Source: Crossref
Summary:
This Polish-language article covers the NSC-1 Orion helmet-mounted sighting system, developed for Polish military helicopters. It details its targeting features, integration with aircraft systems, and effectiveness in operational scenarios.

๐Ÿ”š Conclusionย 

Prof. Sล‚awomir Michalak stands out as a trailblazer in aviation science, with his influence permeating research, defense, and education ๐ŸŒ. His technical command in avionics, experience in accident investigation, and commitment to academic excellence place him among Polandโ€™s most respected aerospace experts ๐Ÿš€. From developing navigation systems to interpreting flight data and advising national safety boards, his work has safeguarded lives and advanced technologies alike. His three-decade-long dedication to instructing young minds and contributing to global conferences reflects his dual passion for knowledge dissemination and innovation ๐Ÿ’ฌ๐Ÿ“˜. As a visionary integrating evolving avionics with real-time diagnostics and battlefield adaptability, he exemplifies the ideal intersection of theory and application ๐Ÿ›ซ. With continued contributions to autonomous systems and electromobility, Michalak remains not only a legacy figure in aerospace engineering but also a forward-thinker shaping its future. His professional journey is a compelling blueprint for excellence, innovation, and impactful service ๐Ÿ’ก๐ŸŽ–๏ธ.

Lei Liu | Engineering | Best Researcher Award

Prof. Lei Liu | Engineering | Best Researcher Award

Professor at Zhejiang University, China

Prof. Liu Lei is a Young Profenications, information theory, and signal processing. Liu received his Ph.D. in Communication and Information Systems from Xidian University and enriched his academic foundation as a visiting scholar at NTU Singapore. His postdoctoral and research appointments span SUTD, CityU Hong Kong, and JAIST Japan. Honored under ZJUโ€™s Hundred Talents Program, he actively leads in editorial and conference roles. With a track record of cutting-edge research, Prof. Liu has authored 39+ high-impact journal articles and continues to influence future innovations in modern channel coding and massive MIMO. ๐Ÿง ๐Ÿ“ก

Professional Profileย 

๐ŸŽ“ Education

Prof. Liu Lei began his academic journey in 2011 at Xidian University, earning his Ph.D. in Communication and Information System in March 2017. During his doctoral studies, he broadened his expertise with a prestigious exchange opportunity at Nanyang Technological University (NTU), Singapore (2014โ€“2016), where he engaged with globally renowned researchers in the field of Electrical and Electronic Engineering. This international exposure shaped his foundational understanding of statistical signal processing and message-passing algorithms. His academic pursuits combined rigorous theoretical knowledge with practical algorithmic development, laying the groundwork for his future innovations in wireless communication systems and information theory. ๐Ÿ“˜๐ŸŒ๐ŸŽ“

๐Ÿ’ผExperienceย 

Prof. Liu Lei has cultivated a rich academic career across leading global institutions. He began as a Postdoctoral Research Fellow at SUTD, Singapore (2016โ€“2017), followed by a Research Fellow role at City University of Hong Kong (2017โ€“2019). He then served as Assistant Professor at JAIST, Japan (2019โ€“2023), achieving top research rankings among faculty. Since 2023, he has been a Tenure-Track Young Professor and Doctoral Supervisor at Zhejiang University. His expertise spans message passing, compressed sensing, and channel coding. Prof. Liu has been active in IEEE conferences, serving in key editorial and chairing roles, and is a notable reviewer for top-tier journals. ๐ŸŒ๐Ÿ“š๐Ÿซ

๐Ÿ† Awards & Honors

Prof. Liu Lei has received several prestigious accolades for his research excellence. In 2023, he was honored with the Young Star Award and the Best Poster Award at the 30th Chinese Institute of Electronics Conference on Information Theory (CIEIT), recognizing his impactful contributions to information theory. His dedication to academic rigor earned him the Exemplary Reviewer Award from IEEE Transactions on Communications in 2020, an honor bestowed on less than 2% of reviewers. These distinctions underscore his leadership in developing cutting-edge algorithms and his commitment to advancing wireless communication systems. ๐Ÿฅ‡๐ŸŽ–๏ธ๐Ÿ…

๐Ÿ”ฌ Research Focusย 

Prof. Liuโ€™s research focuses on the development of high-performance algorithms and theoretical frameworks in wireless communications. His interests include Message Passing Theory, Statistical Signal Processing, Compressed Sensing, Modern Channel Coding, and Information Theory. He is especially noted for innovations in Approximate Message Passing (AMP) and Orthogonal AMP (OAMP) algorithms. His work aims to optimize capacity and performance in massive MIMO, NOMA, and RIS-aided systems. Prof. Liu’s vision integrates theoretical depth with engineering applications, contributing to next-generation communication systems with greater efficiency, robustness, and scalability. ๐Ÿ“ก๐Ÿ“Š๐Ÿ”

๐Ÿ› ๏ธ Skillsย 

Prof. Liu Lei has extensive expertise in ๐Ÿ“ถ wireless communication, particularly in emerging technologies such as massive MIMO, NOMA, mmWave, and Integrated Sensing and Communication (ISAC) systems. His work contributes to optimizing spectral efficiency and network reliability in next-generation wireless networks.

In the field of ๐Ÿ“ signal processing, he is highly skilled in compressed sensing and advanced channel estimation techniques, which enhance data recovery and transmission accuracy in complex environments.

His foundation in ๐Ÿ“Š information theory is robust, focusing on coding theory, achievable rates, and capacity optimization, all critical to efficient communication system design.

Prof. Liu is also a specialist in ๐Ÿงฎ message passing algorithms, including AMP, OAMP, GAMP, and GVAMP, which he applies to both theoretical models and practical systems.

He leverages ๐Ÿ”— machine learning tools such as neural networks and variational inference to improve signal decoding.

In addition, he is experienced in ๐Ÿ“š academic publishing and ๐Ÿง‘โ€๐Ÿซ teaching, mentoring students in both foundational and advanced courses.

๐Ÿ“š Publications Top Noteย 

  1. Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen, S. Sun

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 161

    • ๐Ÿ“… Year: 2018

  2. Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Chi, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 151

    • ๐Ÿ“… Year: 2019

  3. User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled IoT

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Z. Zhang, Y. Li, C. Huang, Q. Guo, L. Liu, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Internet of Things Journal

    • ๐Ÿ”ข Citations: 149

    • ๐Ÿ“… Year: 2020

  4. Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, C. Huang

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 140

    • ๐Ÿ“… Year: 2019

  5. Convergence Analysis and Assurance for Gaussian Message Passing in Massive MU-MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, Y. Su

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 108

    • ๐Ÿ“… Year: 2016

  6. Practical MIMO-NOMA: Low Complexity and Capacity-Approaching Solution

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Chi, L. Liu, G. Song, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 84

    • ๐Ÿ“… Year: 2018

  7. Memory AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, S. Huang, B.M. Kurkoski

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 83

    • ๐Ÿ“… Year: 2022

  8. Orthogonal AMP for Massive Access in Channels with Spatial and Temporal Correlations

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Cheng, L. Liu, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Journal on Selected Areas in Communications

    • ๐Ÿ”ข Citations: 68

    • ๐Ÿ“… Year: 2021

  9. Capacity Optimality of AMP in Coded Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Liang, J. Ma, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 53

    • ๐Ÿ“… Year: 2021

  10. On Orthogonal AMP in Coded Linear Vector Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: J. Ma, L. Liu, X. Yuan, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 39

    • ๐Ÿ“… Year: 2019

  11. A New Insight into GAMP and AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Li, C. Huang, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2019

  12. Over-the-Air Implementation of Uplink NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: S. Abeywickrama, L. Liu, Y.C. Yuhao, Chi

    • ๐Ÿ“ฐ Conference: IEEE Globecom

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2018

  13. Asymptotically Optimal Estimation for Sparse Signal with Arbitrary Distributions

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 28

    • ๐Ÿ“… Year: 2018

๐Ÿ Conclusion

Dr. Lei Liu exemplifies the qualities of a Best Researcher Award recipient: depth in theoretical research, breadth in global experience, and excellence in teaching and mentorship. His leadership roles, prolific output, and rising trajectory within academic and engineering communities make him a model scholar in the communications field. While areas like applied innovation and interdisciplinary expansion offer room for growth, his current achievements already place him at the forefront of his domain.

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Visiting faculty at Birla Institute of Technology and Science Pilai, India

Dr. K. Lakshmi Prasanna ๐ŸŽ“ is a passionate researcher and academician in the field of High Voltage Engineering, with a strong command over system modeling, fault diagnostics, and parameter estimation using MATLAB/Simulink ๐Ÿ› ๏ธ. She brings a unique blend of theoretical insight and hands-on expertise in simulation, optimization, control systems, and signal processing. Her innovative Ph.D. work at BITS Pilani, Hyderabad focused on transformer winding modeling and inter-turn fault diagnostics ๐Ÿ”, proposing novel, non-intrusive algorithms with real-world applicability. With a foundation in Power Electronics and Electrical Engineering โšก, she also has teaching experience at multiple esteemed engineering colleges, nurturing minds in core subjects. Driven by curiosity and adaptability, she actively embraces new software tools and collaborative environments ๐Ÿ’ก. Her professional trajectory reflects a consistent commitment to academic excellence, technical rigor, and transformative innovation in electrical engineering. ๐Ÿš€

Professional Profile

Orcid

Scopus

Google Scholar

๐Ÿ“š Education

Dr. Lakshmi Prasannaโ€™s educational journey ๐ŸŒฑ reflects a steady and impressive rise through the academic ranks of electrical engineering. Beginning with a remarkable 96.9% in her Higher Secondary ๐Ÿซ, she pursued her B.Tech in EEE and M.Tech in Power Electronics from JNTUA, scoring 85.1% and 85%, respectively ๐ŸŽฏ. Her academic excellence culminated in a Ph.D. in High Voltage Engineering at BITS Pilani, Hyderabad Campus, where she maintained an impressive 8.0 CGPA ๐Ÿ“ˆ. Her doctoral thesis delved into cutting-edge research on transformer fault diagnosis and system modeling, placing her at the forefront of innovation in condition monitoring and electrical diagnostics. Throughout her educational path, she has consistently demonstrated not just technical brilliance but also a hunger for knowledge and an ability to bridge theory and application seamlessly ๐Ÿ“˜โš™๏ธ.

๐Ÿ‘ฉโ€๐Ÿซ Professional Experienceย 

With over a decade of dedicated service in academia and research, Dr. Lakshmi Prasanna has built a versatile and impactful professional portfolio ๐Ÿง . Beginning her journey as an Assistant Professor at Rami Reddy Subbarami Reddy Engineering College (2012โ€“2017), she laid her pedagogical foundations teaching essential subjects like Electrical Machines, Circuits, and Power Electronics ๐Ÿ”Œ. Her journey continued at St. Martinโ€™s Engineering College (2017โ€“2019), where she continued imparting technical knowledge with enthusiasm and clarity. From 2018 to 2025, her role as a Research Assistant at BITS Hyderabad marked a turning point, as she immersed herself in advanced simulation and transformer fault diagnostics ๐Ÿ”ฌ. Beyond teaching, her experience also includes proposal writing, technical documentation using LaTeX, and collaborative interdisciplinary projects, marking her as a well-rounded professional ๐ŸŒ๐Ÿ“.

๐Ÿ” Research Interestsย 

Dr. Lakshmi Prasannaโ€™s research is deeply rooted in the intelligent modeling of electrical systems, with a spotlight on transformer winding diagnostics, state-space modeling, and parameter estimation using non-intrusive techniques ๐Ÿงฉ. Her innovative Ph.D. work proposed the integration of subspace identification and similarity transformations to estimate transformer parameters and detect inter-turn faults purely from terminal measurements โš™๏ธ๐Ÿ”. Her expertise in MATLAB M-script development, COMSOL Multiphysics simulations, and system optimization reflects a rare proficiency in both simulation and real-world application. Additionally, she is intrigued by control systems, fault-tolerant design, and signal processing, with a strong drive toward creating robust, adaptive models for condition monitoring ๐Ÿง ๐Ÿ“Š. Her work directly contributes to the reliability and safety of electrical infrastructure, making her research highly relevant to modern power systems and smart grid innovation ๐ŸŒโšก.

๐Ÿ… Awards and Honors

Dr. Lakshmi Prasannaโ€™s academic journey is marked by consistently high achievements and academic recognition ๐Ÿ†. From securing a 96.9% in her HSC to maintaining top scores through her undergraduate and postgraduate studies, her excellence has been evident from the outset ๐ŸŽ“. While formal awards during her doctoral years may not be listed, her selection and continuation at BITS Pilani, one of Indiaโ€™s premier institutions, is a distinction in itself ๐ŸŒŸ. Her progression into high-level research projects, including complex simulation and modeling of transformer systems, attests to her recognition within the academic and research community. Her teaching roles across reputed engineering colleges and involvement in technical proposal writing and collaborative research are testaments to her leadership and scholarly respect ๐Ÿฅ‡. She continues to be acknowledged for her dedication, depth of knowledge, and clarity in delivering technical content.

Publications Top Notesย 

1. Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100982

  • Source: e-Prime โ€“ Advances in Electrical Engineering, Electronics and Energy

  • Summary: This study introduces a non-invasive method for identifying and assessing the severity of inter-turn faults in transformer windings using only external terminal measurements. The approach enhances fault detection accuracy without requiring internal access to the transformer.


2. Radial deformation detection and localization in transformer windings: A terminal measured impedance approach

  • Authors: Lakshmi Prasanna Konjeti, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100945

  • Source: e-Prime โ€“ Advances in Electrical Engineering, Electronics and Energy

  • Summary: The paper presents a novel, non-invasive method for diagnosing radial deformation faults in transformer windings by analyzing terminal impedance measurements, enabling effective detection and severity assessment based on capacitance changes.


3. A non-iterative analytical approach for estimating series-capacitance in transformer windings solely from terminal measured frequency response data

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.epsr.2024.111086

  • Source: Electric Power Systems Research

  • Summary: This research proposes a non-iterative analytical method to estimate the series capacitance of transformer windings using only terminal frequency response data, simplifying the estimation process and improving accuracy.


4. Accurate Estimation of Transformer Winding Capacitances and Voltage Distribution Factor Using Driving Point Impedance Measurements

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2024

  • DOI: 10.1109/ACCESS.2024.3460968

  • Source: IEEE Access

  • Summary: The study introduces an innovative methodology for precisely estimating winding capacitances and the voltage distribution factor using driving point impedance measurements, enhancing transformer modeling and analysis.


5. A Symbolic Expression for Computing the Driving Point Impedance and Pole-Zero-Gain of a Transformer from its Winding Parameters

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1109/INDICON59947.2023.10440729

  • Source: 2023 IEEE 20th India Council International Conference (INDICON)

  • Summary: This paper presents a symbolic expression for computing the driving point impedance and pole-zero-gain of a transformer based on its winding parameters, facilitating efficient analysis of transformer behavior.


6. Analytical computation of driving point impedance in mutually coupled inhomogeneous ladder networks

  • Authors: K. Lakshmi Prasanna, Mithun Mondal

  • Year: 2023

  • DOI: 10.1002/cta.3839

  • Source: International Journal of Circuit Theory and Applications

  • Summary: The research introduces a new approach for computing the driving point impedance of inhomogeneous ladder networks with mutual coupling, enhancing the accuracy of electrical network modeling.


7. Analytical formulas for calculating the electrical characteristics of multiparameter arbitrary configurational homogenous ladder networks

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1002/cta.3547

  • Source: International Journal of Circuit Theory and Applications

  • Summary: This paper presents generalized analytical formulas for computing the electrical properties of multiparameter arbitrary configuration homogeneous ladder networks, aiding in the design and analysis of complex electrical circuits.


8. Terminal Measurements-Based Series Capacitance Estimation of Power Transformer Windings Using Frequency-Domain Subspace Identification

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2023

  • DOI: 10.1109/TIM.2023.3311074

  • Source: IEEE Transactions on Instrumentation and Measurement

  • Summary: The study proposes a method for estimating the series capacitance of power transformer windings using frequency-domain subspace identification based on terminal measurements, improving the accuracy of transformer diagnostics.


9. Elimination of Mutual Inductances from the State-Space Model of a Transformer Windingโ€™s Ladder Network Using Eigen Decomposition

  • Authors: K. Lakshmi Prasanna

  • Year: 2022

  • DOI: 10.1109/CATCON56237.2022.10077664

  • Source: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)

  • Summary: This paper presents a method to eliminate mutual inductances from the state-space model of a transformer winding’s ladder network using eigen decomposition, simplifying the analysis of transformer dynamics.

10. Internet Of Things (IOT) in Distribution grid using DSTATCOM

  • Authors: K. Lakshmi Prasanna

  • Year: 2019

  • DOI: 10.1109/RDCAPE47089.2019.8979044

  • Source: 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE)

  • Summary: The paper discusses the integration of Internet of Things (IoT) technology with DSTATCOM in distribution grids to improve power factor and enable real-time monitoring, enhancing the efficiency and reliability of power distribution systems.

โœ… Conclusionย 

In conclusion, Dr. K. Lakshmi Prasanna stands as a beacon of innovation, diligence, and academic integrity in the realm of electrical engineering and high voltage research ๐ŸŒŸ. Her journey from a stellar student to a dynamic researcher and dedicated educator is marked by technical excellence, innovative research, and a passion for teaching ๐ŸŽฏ. With deep expertise in MATLAB/Simulink, transformer modeling, and non-intrusive diagnostics, she contributes meaningfully to the future of smart and resilient power systems โšก๐Ÿ’ป. Her collaborative spirit, adaptability to emerging tools, and constant pursuit of knowledge ensure her continued relevance and impact in the scientific community ๐Ÿ“š๐Ÿš€. As she continues to explore new horizons in diagnostics and system modeling, her work promises to empower more efficient and intelligent energy systems of tomorrow ๐Ÿ”‹๐Ÿ”ฌ.

Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Assoc. Prof. Dr. Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Dr. Darvish Falehi at Islamic Azad University, Iran

Ali Darvish Falehi is a distinguished academic and professional in the field of Electrical Power Engineering. With a Ph.D. and Post-Ph.D. from Shahid Beheshti University, he ranks among the worldโ€™s top 2% scientists as listed by Stanford University in 2020. He is currently an Assistant Professor at Iran Islamic Azad University, a technical expert at Iran North Drilling Company, and the Chairman of the R&D Board at HICOBI Company. He has delivered keynote speeches at several international conferences and holds numerous patents. His contributions extend to supervising over 50 theses and reviewing for prestigious journals. ๐ŸŒŸ๐Ÿ”ฌ๐Ÿ“š

Professional Profile:

Google Scholar

Education and Experience:

  • Post-Ph.D. & Ph.D. in Electrical Power Engineering, Shahid Beheshti University (First Class Honors) ๐ŸŽ“

  • Ranked among the worldโ€™s top 2% scientists by Stanford University in 2020 ๐ŸŒ

  • Chairman of R&D Board at HICOBI Company ๐Ÿข

  • Assistant Professor at Iran Islamic Azad University ๐Ÿ‘จโ€๐Ÿซ

  • Technical Expert at Iran North Drilling Company โš™๏ธ

  • Main Speaker at national and international conferences ๐ŸŽค

  • Reviewer for prestigious journals (IEEE, Elsevier, Springer) ๐Ÿ“–

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses ๐Ÿ“

  • TOEFL-PBT score: 630 (Writing Score: 6) ๐Ÿ†

  • Patents and medals at invention festivals in Iran, South Korea, and Romania ๐Ÿ…

Professional Development:ย 

Ali Darvish Falehi has continuously developed his professional expertise by participating in global conferences and providing thought leadership as a main speaker and reviewer for high-impact journals such as IEEE and Elsevier. His dedication to research has led him to supervise over 50 graduate and doctoral theses, contributing to the academic growth of the next generation of engineers. He is also deeply involved in the industrial sector, where he serves as a technical expert for Iran North Drilling Company and leads the R&D board at HICOBI Company, driving innovation and technology forward. His work bridges academia and industry, enhancing both fields. ๐Ÿ”ง๐ŸŒ๐Ÿ“Š

Research Focus:

Ali Darvish Falehi’s research is centered around Electrical Power Engineering, with particular attention to energy systems, power distribution, and renewable energy solutions. His work aims to optimize power engineering technologies, focusing on improving energy efficiency and sustainability. He is known for his contributions to the development of advanced electrical systems and has been actively involved in creating patented innovations. His expertise in power engineering is complemented by his role as a technical expert, where he advises on industrial applications of electrical power systems. His research seeks to solve complex energy challenges, aligning with global sustainability goals. โšก๐ŸŒฑ๐Ÿ”‹

Awards and Honors:

  • Ranked among the worldโ€™s top 2% scientists by Stanford University (2020) ๐ŸŒ

  • Chairman of the R&D Board at HICOBI Company ๐Ÿข

  • Main Speaker at several international conferences ๐ŸŽค

  • Reviewer for leading ISI journals like IEEE, Elsevier, Springer ๐Ÿ“š

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses ๐Ÿ“

  • TOEFL-PBT Score: 630 ๐Ÿ†

  • Patents and medals from invention festivals in Iran, South Korea, and Romania ๐Ÿ…

Publication Top Notes

  1. “An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities” (2020)

    • Authors: A.D. Falehi

    • Journal: Chaos, Solitons & Fractals

    • Summary: This paper proposes an innovative control strategy using a multi-objective Grasshopper Optimization Algorithm (GOA) to enhance the MPPT and Fault Ride Through (FRT) capabilities of DFIG-based wind turbines. The use of Fractional-Order Sliding Mode Control (FOSMC) is central to this work.

  2. “Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbines” (2021)

    • Authors: A.D. Falehi, H. Torkaman

    • Journal: Journal of Energy Storage

    • Summary: This paper focuses on enhancing the FRT and Power Quality (PQ) capabilities of DFIG-based wind turbines. The authors propose a robust fractional-order control scheme for supercapacitors integrated with a Dynamic Voltage Restorer (DVR).

  3. “LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIฮปDฮผ-AMLI based DVR” (2018)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Sustainable Energy, Grids and Networks

    • Summary: This work aims to enhance the Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) capabilities of DFIG wind turbines by optimizing the design and control of a novel DVR based on a PIฮปDฮผ-AMLI (Proportional-Integral-Derivative) controller.

  4. “Enhancement of DFIG-wind turbineโ€™s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter” (2017)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Engineering Science and Technology, an International Journal

    • Summary: This paper explores improving the LVRT capability of DFIG wind turbines by integrating a novel Dynamic Voltage Restorer (DVR) system with an odd-nary cascaded asymmetric multi-level inverter.

  5. “Neoteric HANFISCโ€“SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems” (2016)

    • Authors: A.D. Falehi, A. Mosallanejad

    • Journal: IET Generation, Transmission & Distribution

    • Summary: This paper addresses the oscillation suppression in interconnected multi-source power systems using a Hybrid Active Networked Flexible Integrated Supply Chain (HANFISC)-Static Synchronous Series Compensator (SSSC) controlled by the Multi-Objective Particle Swarm Optimization (MOPSO) technique.

Conclusion:

Ali Darvish Falehi is undoubtedly a deserving candidate for the Excellence in Researcher Award. His combination of academic excellence, significant contributions to electrical power engineering, leadership in both academia and industry, and his global recognition positions him as a standout figure in his field. His ability to balance research with innovation, along with his dedication to mentoring future researchers, makes him an exemplary choice for this prestigious award.

Shirko Faroughi | Engineering | Best Researcher Award

Prof. Shirko Faroughi | Engineering | Best Researcher Award

Academic at Urmia University of Technoloy, Iran

Dr. Shirko Faroughi, an esteemed Professor of Mechanical Engineering at Urmia University of Technology, Iran, specializes in Computational Mechanics, Isogeometric Analysis, and Finite Element Methods. With a Ph.D. from Iran University of Science and Technology, he has held research positions at KTH University (Sweden), Swansea University (UK), and Bauhaus University Weimar (Germany). His work spans fracture mechanics, machine learning, and 3D printing simulations. As a CICOPS Scholar at the University of Pavia, Italy, Dr. Faroughi actively collaborates on international research projects, contributing significantly to advanced numerical methods. ๐Ÿ“š๐ŸŒ

Professional Profile:

Scopus

Google Scholar

Education & Experience ๐ŸŽ“๐Ÿ“œ

  • Ph.D. in Mechanical Engineering (2010) โ€“ Iran University of Science and Technology ๐Ÿ›๏ธ

  • M.S. in Mechanical Engineering (2005) โ€“ Iran University of Science and Technology ๐Ÿ—๏ธ

  • B.S. in Mechanical Engineering (2003) โ€“ Tabriz University ๐Ÿš—

๐Ÿ”น Academic Roles

  • Professor (2020 โ€“ Present) โ€“ Urmia University of Technology ๐Ÿ‘จโ€๐Ÿซ

  • Associate Professor (2015 โ€“ 2020) โ€“ Urmia University of Technology ๐Ÿ”ฌ

  • Assistant Professor (2011 โ€“ 2015) โ€“ Urmia University of Technology ๐Ÿ“–

  • Visiting Researcher (2008 โ€“ 2009) โ€“ KTH University, Sweden ๐Ÿ‡ธ๐Ÿ‡ช

๐Ÿ”น Administrative & International Positions

  • Dean of Mechanical Engineering Department (2022 โ€“ Present) ๐Ÿข

  • CICOPS Scholar โ€“ University of Pavia, Italy (2022) ๐Ÿ‡ฎ๐Ÿ‡น

  • Research Collaborator โ€“ Swansea University, UK (2015 โ€“ Present) ๐Ÿ‡ฌ๐Ÿ‡ง

  • Research Collaborator โ€“ New Mexico State University, USA (2016 โ€“ Present) ๐Ÿ‡บ๐Ÿ‡ธ

  • Research Collaborator โ€“ Bauhaus University Weimar, Germany (2017 โ€“ Present) ๐Ÿ‡ฉ๐Ÿ‡ช

Professional Development ๐ŸŒ๐Ÿ“š

Dr. Shirko Faroughi has made remarkable contributions to mechanical engineering through computational mechanics, finite element analysis, and machine learning. His research advances superconvergent mass and stiffness matrices, isogeometric methods, phase-field methods, and energy harvesting. He also integrates AI-driven techniques to enhance engineering simulations. His collaborations span Europe and the U.S., working with top researchers on thin structures, 3D printing, and structural dynamics. As a department dean and international collaborator, he plays a pivotal role in engineering education and research innovations, fostering global academic partnerships. ๐ŸŒŽ๐Ÿ’ก

Research Focus ๐Ÿ”๐Ÿง 

Dr. Faroughi’s research primarily revolves around Computational Mechanics and Advanced Numerical Methods, integrating Artificial Intelligence and Machine Learning for engineering applications. His work focuses on:

  • Superconvergent mass and stiffness matrices ๐Ÿ“๐Ÿ”ฌ

  • Isogeometric and finite element methods ๐Ÿ—๏ธ๐Ÿ“Š

  • Fracture mechanics and phase-field modeling ๐Ÿš๏ธ๐Ÿ’ฅ

  • Tensegrity structures and energy harvesting โšก๐Ÿ”ฉ

  • Machine learning and transfer learning in mechanical simulations ๐Ÿค–๐Ÿ“ˆ

  • 3D printing simulations and advanced material modeling ๐Ÿ–จ๏ธ๐Ÿงฉ

His research bridges traditional mechanical engineering with AI and computational techniques, pushing engineering boundaries through innovative numerical simulations. ๐Ÿš€๐Ÿ”ข

Awards & Honors ๐Ÿ†๐ŸŽ–๏ธ

  • CICOPS Scholarship โ€“ University of Pavia, Italy (2022) ๐Ÿ‡ฎ๐Ÿ‡น

  • Visiting Researcher โ€“ KTH University, Sweden (2008-2009) ๐Ÿ‡ธ๐Ÿ‡ช

  • Research Collaborator โ€“ Swansea University, UK (2015-Present) ๐Ÿ‡ฌ๐Ÿ‡ง

  • Research Collaborator โ€“ Bauhaus University Weimar, Germany (2017-Present) ๐Ÿ‡ฉ๐Ÿ‡ช

  • Research Collaborator โ€“ New Mexico State University, USA (2016-Present) ๐Ÿ‡บ๐Ÿ‡ธ

  • Dean of Mechanical Engineering Department โ€“ Urmia University of Technology (2022-Present) ๐Ÿ›๏ธ

  • Multiple Grants for Advanced Computational Mechanics Research ๐ŸŽ“๐Ÿ”

Publication Top Notes

  1. Wave Propagation in 2D Functionally Graded Porous Rotating Nano-Beams

    • Authors: S. Faroughi, A. Rahmani, M.I. Friswell

    • Published in Applied Mathematical Modelling (2020)

    • Citations: 71

    • Focus: Investigates wave propagation in porous nano-beams using a general nonlocal higher-order beam theory, considering functionally graded materials and rotation effects.

  2. Vibration of 2D Imperfect Functionally Graded Porous Rotating Nanobeams

    • Authors: A. Rahmani, S. Faroughi, M.I. Friswell

    • Published in Mechanical Systems and Signal Processing (2020)

    • Citations: 54

    • Focus: Examines vibration behavior of imperfect functionally graded porous rotating nanobeams based on a generalized nonlocal theory.

  3. Non-linear Dynamic Analysis of Tensegrity Structures Using a Co-Rotational Method

    • Authors: S. Faroughi, H.H. Khodaparast, M.I. Friswell

    • Published in International Journal of Non-Linear Mechanics (2015)

    • Citations: 47

    • Focus: Develops a co-rotational method for analyzing nonlinear dynamics of tensegrity structures.

  4. Physics-Informed Neural Networks for Solute Transport in Heterogeneous Porous Media

    • Authors: S.A. Faroughi, R. Soltanmohammadi, P. Datta, S.K. Mahjour, S. Faroughi

    • Published in Mathematics (2023)

    • Citations: 40

    • Focus: Uses physics-informed neural networks (PINNs) with periodic activation functions to model solute transport in heterogeneous porous media.

  5. Nonlinear Transient Vibration of Viscoelastic Plates Using a NURBS-Based Isogeometric HSDT Approach

    • Authors: E. Shafei, S. Faroughi, T. Rabczuk

    • Published in Computers & Mathematics with Applications (2021)

    • Citations: 30

    • Focus: Investigates nonlinear transient vibrations of viscoelastic plates using an isogeometric high-order shear deformation theory (HSDT) approach.

Shakil Ahmed | Engineering | Best Researcher Award

Prof. Shakil Ahmed | Engineering | Best Researcher Award

Assistant Processor, Term at Iowa State University, United States

Shakil Ahmed is an Assistant Teaching Professor in Computer Engineering at Iowa State University (ISU), specializing in AI/ML, cybersecurity, IoT, cloud computing, and advanced networking. With a Ph.D. in Computer Engineering from ISU (2023) and over 2,000 citations across 35+ publications, he leads cutting-edge research on AI-driven solutions, digital twins, and quantum networks. As a principal investigator (PI), he mentors undergraduate, MS, and Ph.D. students while actively securing external grants. His expertise spans reinforcement learning, large language models, explainable AI, and meta-learning, contributing to pioneering advancements in next-gen networking and intelligent systems. ๐Ÿš€๐Ÿ”

Professional Profile

Education & Experience ๐Ÿ“š๐Ÿ‘จโ€๐Ÿซ

  • Ph.D. in Computer Engineering โ€“ Iowa State University (2023) ๐ŸŽ“
  • M.S. in Electrical Engineering โ€“ Utah State University (2019) โšก
  • B.S. in Electrical and Electronic Engineering โ€“ Khulna University of Engineering & Technology, Bangladesh (2014) ๐Ÿ…
  • Assistant Teaching Professor โ€“ Iowa State University (2024โ€“Present) ๐ŸŽ“
  • Researcher & PI โ€“ Leading projects on AI, 6G, cybersecurity, IoT, and digital twins ๐Ÿ”ฌ
  • Advisor & Mentor โ€“ Supervising undergraduate, MS, and Ph.D. students in advanced networking and AI ๐Ÿง‘โ€๐ŸŽ“

Professional Development ๐Ÿ“ˆ๐Ÿง 

Shakil Ahmed actively contributes to AI-driven networking, secure systems, and IoT advancements. He plays a vital role in research funding, securing grants exceeding millions of dollars. As a guest editor at MDPI and reviewer for 150+ articles, he ensures high research standards. His teaching experience spans multiple STEM courses, where he integrates hands-on learning tools like Zybooks and Canvas. He has delivered invited talks on next-gen wireless technologies and collaborates with multidisciplinary teams to shape the future of AI, cloud computing, and quantum networking. His work has significantly impacted academia, research, and industry. ๐Ÿš€๐Ÿ”ฌ๐Ÿ“ก

Research Focus ๐Ÿ†๐Ÿ”

Shakil Ahmedโ€™s research is at the intersection of AI, networking, and cybersecurity, with a focus on:

  • AI/ML & Deep Learning โ€“ Reinforcement Learning (RL), Large Language Models (LLM), Explainable AI (XAI) ๐Ÿค–
  • Cybersecurity & Quantum Networking โ€“ Secure network protocols, quantum neural networks (QNN) ๐Ÿ”’
  • IoT & Cloud Computing โ€“ System design for connected environments, mobile edge computing โ˜๏ธ
  • Digital Twin & 6G+ Networks โ€“ AI-driven tactile internet, smart infrastructure, and futuristic networking ๐ŸŒ๐Ÿ“ก
    His work integrates cutting-edge AI techniques, optimization frameworks, and network simulations to solve real-world challenges.

Awards & Honors ๐Ÿ…๐ŸŽ–๏ธ

  • Professional Development Fund โ€“ Iowa State University ($10,000) ๐Ÿ’ฐ
  • Presidential Fellowship โ€“ Utah State University ($90,000) ๐Ÿ†
  • Best Paper Award โ€“ IEEE International Conference on Informatics, Electronics, and Vision (2016) ๐Ÿฅ‡
  • Graduate & Professional Student Senate Research Award โ€“ ISU ($700) ๐Ÿ“œ
  • ECpE Department Support Grant โ€“ ISU ($600) ๐ŸŽ“
  • Professional Advancement Grant (PAG) โ€“ ISU ($400) ๐ŸŽ–๏ธ
  • Military Communications Conference Student Travel Grants โ€“ 2021 & 2022 ($1,000) โœˆ๏ธ
  • Graduate & Professional Student Council Grant โ€“ ISU ($750) ๐Ÿ…
  • ECE Department Support Grant โ€“ Utah State University ($1,000) ๐Ÿ†

Publication Top Notes

  1. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions

    • Authors: Mostafa Zaman Chowdhury, Md. Shahjalal, Shakil Ahmed, Yeong Min Jang
    • Journal: IEEE Open Journal of the Communications Society
    • Year: 2020
    • Citation: Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957โ€“975.
  2. Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Access
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks. IEEE Access, 8, 21215โ€“21225.
  3. Energy-Efficient UAV Relaying Communications to Serve Ground Nodes

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Communications Letters
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 24(4), 849โ€“852.
  4. Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT

    • Authors: Hao Sun, Qiang Wang, Shakil Ahmed, Rose Hu
    • Conference: IEEE Vehicular Technology Conference (VTC Spring)
    • Year: 2017
    • Citation: Sun, H., Wang, Q., Ahmed, S., & Hu, R. (2017). Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1โ€“5).
  5. A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology

    • Authors: Shakil Ahmed, Md Rashid, Farzana Alam, B. Fakhruddin
    • Conference: 2019 29th International Telecommunication Networks and Applications Conference (ITNAC)
    • Year: 2019
    • Citation: Ahmed, S., Rashid, M., Alam, F., & Fakhruddin, B. (2019). A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 20โ€“25).

 

Shengnan Zhang | Engineering | Best Researcher Award

Dr. Shengnan Zhang | Engineering | Best Researcher Award

Noneย  at School of Mechatronic Engineering and Automation, Shanghai University

Short Bio

  • shengnan zhang is a Ph.D. researcher at Shanghai University specializing in electromagnetic flowmeters, signal processing, and mathematical modeling for industrial processes. With experience in engineering and automation, she integrates theoretical and applied research to enhance industrial measurement accuracy and efficiency.

Professional Profile

Educational Background

  • shengnan zhang is currently pursuing a Ph.D. in the School of Mechatronic Engineering and Automation at Shanghai University (2021โ€“2024). She earned her masterโ€™s degree in Control Science and Engineering (Automation) from Inner Mongolia University of Science and Technology in 2020.

Professional Experience

  • shengnan zhang has gained diverse experience in both industry and academia. She worked as a junior engineer in the Mechanical and Electrical Department at State Grid Xinyuan Chifeng Company, Inner Mongolia (2020โ€“2021). She later transitioned into roles as a Hardware R&D Engineer at JiDan Biotechnology Co., Ltd. and a High School Mathematics Teacher at Nanjing Yunjushi Education Co., Ltd. in 2021.

Research Interests

    • Her research focuses on electromagnetic flowmeters, signal processing, and mathematical modeling of complex industrial processes. She is particularly interested in developing advanced computational techniques for industrial automation and measurement systems.

Author Metrics

  • Currently, shengnan zhang is actively engaged in research and has contributed to scholarly publications in her field. Her work includes studies on signal processing applications in industrial automation and measurement technologies.

Publication Top Noted

  • Study on the Match-Filtering Ability of the Electromagnetic Flowmeter Signals Based on the Generalized Dual-Frequency Walsh Transform
    Flow Measurement and Instrumentation, March 2025
    DOI: 10.1016/j.flowmeasinst.2024.102767
  • Generalized Walsh Transform Sequency-Domain-Based Match Filtering for Electromagnetic Flowmeter Signal Measurement
    IEEE Sensors Journal, April 2024
    DOI: 10.1109/JSEN.2024.3366238
  • A Sequency Match Filtering Algorithm Based on the Generalized Walsh Transform for Processing Rectangular Wave Signals
    Review of Scientific Instruments, February 2024
    DOI: 10.1063/5.0175079
  • Study on Match Filtering Based on Sequency Spectrum Characteristics of the Walsh Transform for Electromagnetic Flowmeter Signal Measurement
    Measurement, February 2024
    DOI: 10.1016/j.measurement.2023.114021

Conclusion

  • Dr. shengnan zhang is a highly qualified researcher with notable contributions to signal processing and industrial measurement systems. Her innovative approaches using Generalized Walsh Transform have the potential to improve electromagnetic flowmeter accuracy significantly. With further collaboration, higher citation impact, and real-world application of her research, she would be an excellent candidate for the Best Researcher Award.

IfeOlorun Olofin | Structural Engineering | Best Researcher Award

Dr. IfeOlorun Olofin | Structural Engineering | Best Researcher Awardย 

Lecturer, at Afe Babalola University, Nigeria.

Dr. IfeOlorun Olofin is a distinguished civil/structural engineer with expertise in solid mechanics and advanced construction materials. Holding a Ph.D. from Jiangsu University, China, he has made significant contributions to structural optimization and the application of innovative materials like carbon fiber-reinforced polymers (CFRP) in large-scale structures. With over a decade of experience spanning academia and industry, Dr. Olofin has served as a lecturer at Afe Babalola University and Federal University, Oye Ekiti. An accomplished researcher and educator, he has published extensively in high-impact journals, advancing the frontiers of structural engineering.

Professional Profile

ORCID

Education ๐ŸŽ“

  • Ph.D. in Solid Mechanics (2018) – Jiangsu University, China, with a GPA of 4.24/5.0, focusing on CFRP tensegrity systems.
  • M.Sc. in Structural Engineering (2008) – Bayero University Kano, Nigeria, achieving a GPA of 3.44/5.0 while balancing a full-time banking role.
  • B.Sc. in Civil Engineering (2003) – Bayero University Kano, graduating as the best student with a GPA of 3.92/5.0.
  • Additional qualifications include certifications from the Council for the Regulation of Engineering in Nigeria and achievements in linguistic proficiency (HSK2).

Experience ๐Ÿ› ๏ธ

Dr. Olofin’s career spans academia and industry. He currently lectures at Afe Babalola University and serves as an adjunct lecturer at Federal University, Oye Ekiti, focusing on curriculum development, research supervision, and innovative pedagogy. His previous roles include a Substitute Teacher in China, where he taught business English, and a Banking Officer at First Bank of Nigeria, where he excelled in customer service and data analysis. He also served as an Inventory & Procurement Officer and Site Supervisor, contributing to geological projects and small-scale infrastructure.

Research Interests ๐Ÿ”ฌ

Dr. Olofinโ€™s research focuses on:

  • Innovative Materials: Exploring the application of CFRP cables in tensegrity systems and their thermal and mechanical properties.
  • Structural Optimization: Enhancing large-span structures such as suspen domes using advanced modeling techniques.
  • Sustainability: Investigating nano-materials like nano-cement and steel for eco-friendly construction.
  • Emerging Frontiers: Utilizing graph theory and Roman concrete techniques for modern infrastructure.

Awards and Achievements ๐Ÿ†

  • Jiangsu Presidential Scholarship recipient for academic excellence.
  • Best graduating student at Bayero University Kano.
  • Federal Government and Bayero University scholarships for outstanding performance.
  • Numerous conference presentations, including as keynote speaker and poster presenter.
  • Designed a unique small-scale suspen dome using CFRP cables.
  • Published over 10 high-impact articles indexed in Scopus, SCI, and EI.

Top Notes Publications ๐Ÿ“š

Dr. Olofin has authored groundbreaking articles in reputed journals:

  • “The Application of CFRP Cables in Civil Engineering Structures” (2015) – Published in SSRG International Journal of Civil Engineering. Indexed in Scopus, this research explores the potential of CFRP cables in enhancing the structural integrity of civil engineering projects.
  • “Numerical Modal Analysis of a Suspen Dome with CFRP Tensegrity System” (2016) – Appeared in Modelling, Measurement and Control, Series A. Indexed in EI, this study uses numerical methods to assess modal characteristics of innovative Suspen Dome structures.
  • “Structural Optimization of Beijing Gymnasium Suspen Dome” (2017) – Published in the Russian Journal of Building Construction and Architecture. Indexed in EBSCO, the paper analyzes optimization strategies for this iconic structure using CFRP cables.
  • “Research on the Static Behaviour of a Suspen Dome” (2020) – Featured in Iranian Journal of Science and Technology, Transactions of Civil Engineering. Indexed in SCIE, this work evaluates the static performance of Suspen Domes utilizing advanced materials.
  • “Harmonic Response of CFRP Tensegrity System” (2023) – Published in Selected Scientific Papers โ€“ Journal of Civil Engineering. Indexed in EI, this paper delves into harmonic analysis of CFRP-based tensegrity systems in architectural domes.

Conclusion

Dr. IfeOlorun Olofin presents a strong case for the Best Researcher Award due to his exceptional academic background, significant research contributions, and demonstrated ability to innovate in structural engineering. His impactful work on CFRP materials and suspen dome systems showcases his expertise and relevance in addressing modern challenges in civil engineering. Enhancing industry collaborations and diversifying research could further solidify his candidacy for future accolades.

 

Jian-Fei Sun | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jian-Fei Sun | Engineering | Best Researcher Award

Assoc. Prof. Dr Jian-Fei Sun, Qingdao University of Technology, China

Dr. Jian-Fei Sun is an Associate Professor at Qingdao University of Technology, specializing in chemical engineering with a focus on green solvent technology and chemical equipment. His research has led to several SCI/EI publications and collaborations with industry, advancing environmentally sustainable solutions in chemical processes.

PROFILE

Orcid Profile

Scopus Profile

Educational Details

Assoc. Prof. Dr. Jian-Fei Sun completed his Bachelorโ€™s degree at Shandong Normal University in 2016, followed by a Masterโ€™s degree from Inner Mongolia University of Technology in 2019. He earned his Ph.D. from Dalian University of Technology in 2023, showcasing a solid academic progression in engineering and chemical sciences. As of September 2024, Dr. Sun is a post-doctoral researcher and visiting scholar in the Department of Chemical Engineering at Qingdao University of Science and Technology.

Professional Experience

Dr. Sun is an Associate Professor at the School of Mechanical and Automotive Engineering, Qingdao University of Technology, where he has developed expertise in gas adsorption, green solvents, and chemical process equipment. His collaborations extend to the Chinese Chemical Society and the China Occupational Safety and Health Association, where he is an active member.

Research Interest

Thermodynamics and Applications of Green Solvents: Involving supercritical and CO2-expanded liquids, critical for eco-friendly chemical processes.

Nanomaterial Synthesis and Catalysis: Focused on catalytic conversion and pretreatment of biomass.

Chemical Engineering Equipment Design: Including innovations in vaporization, heat exchange, and coating processes.

Research Innovations

Dr. Sunโ€™s research is pioneering in green solvent technology, encompassing supercritical fluids, CO2-expanded liquids, and ionic liquids. His work emphasizes the synthesis of nanomaterials, catalytic conversion of lignocellulosic biomass, and advanced chemical engineering equipment design. Notable projects include submerged combustion vaporizers, heat exchangers, jet cavitation cleaning, and supercritical cleaning technologies.

Top Notable Publications

Chen, X., Sun, J., Yu, K., Wu, J., & Yin, J. (2024). Design of novel bracket structure for falling film devolatilizer and numerical simulation of its film-forming property. Chemical Engineering Journal, 499, 156317.

Citations: 0

Sun, J., Yu, K., Zhou, D., Sun, H., & Wu, J. (2024). Continuous process for CO2 cycloaddition reaction in a fixed bed reactor: Kinetic model of reaction transport. Chemical Engineering Science, 283, 119415.

Citations: 2

Zhou, D., Sun, J., Xue, M., Xu, Q., & Yin, J. (2024). Imidazole based ionic liquid grafted graphene for enhancing the new green conversion process of carbon dioxide. Journal of Cleaner Production, 434, 140083.

Citations: 5

Sun, H., Qi, J., Sun, J., Wu, J., & Yin, J. (2024). Solubility of iron(III) and nickel(II) acetylacetonates in supercritical carbon dioxide. Chinese Journal of Chemical Engineering, 65, 29โ€“34.

Citations: 0

Chen, X., Sun, J., Wu, J., Zhang, Y., & Yin, J. (2023). Simulation study on mass transfer characteristics and disk structure optimization of a rotating disk reactor with high viscosity region. Journal of Applied Polymer Science, 140(48), e54717.

Citations: 1

Chen, X., Wu, J., Sun, J., Yu, K., & Yin, J. (2023). Numerical investigation of film-forming characteristics and mass transfer enhancement in horizontal polycondensation kettle. Chinese Journal of Chemical Engineering, 63, 31โ€“42.

Citations: 0

Li, X., Sun, J., Xue, M., Wu, J., & Yin, J. (2023). The imidazole ionic liquid was chemically grafted on SBA-15 to continuously catalyze carbon dioxide to prepare propylene carbonate. Journal of Environmental Chemical Engineering, 11(5), 110438.

Citations: 9

Sun, J.-F., Chen, X.-P., Li, X.-T., Li, L., & Yin, J.-Z. (2023). Theoretical study of supported ionic liquid membrane reaction and transport for CO2 cycloaddition reaction. Chemical Engineering Journal, 470, 144299.

Citations: 2

Yu, K., Liu, J., Sun, J., Shen, Z., & Yin, J. (2023). Study of polyester degradation by sub/supercritical ethanol and enhancement of carbon dioxide. Journal of Supercritical Fluids, 194, 105837.

Citations: 7

Conclusion

Dr. Sun has published numerous SCI and EI-indexed papers and collaborated with chemical enterprises to secure research funding. His contributions emphasize his dedication to both academic excellence and real-world applications, reinforcing his suitability for the Best Researcher Award through innovation and impactful research in sustainable chemical processes.