Bernardine Chidozie | Engineering | Best Researcher Award

Mrs. Bernardine Chidozie | Engineering | Best Researcher Award

Mrs, Bernardine Chidozie, University of Aveiro, Portugal

Mrs. Bernardine Chidozie is a dedicated researcher and PhD student fellow at the University of Aveiro, Portugal, focusing on digital transformation, simulation modeling, and supply chain optimization, especially in the context of Industry 4.0 and 5.0. Her research employs simulation-based methods and digital tools to improve decision-making and operational performance in complex systems, such as healthcare and sustainable supply chains.

 

PROFILE

Orcid profile

Educational Details

With an academic foundation in engineering, Mrs. Chidozie has contributed significantly to projects like the “Sustainable Supply Chain Management Model for Residual Agroforestry Biomass,” utilizing a web platform to support her research, which began in 2022. Her publications explore the impact of digitalization on supply chains, including the optimization of biomass supply chains for sustainability. She has authored books like Simulation-Based Approaches to Enhance Operational Decision Support in Healthcare 5.0 and published articles in notable journals, such as Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix.

Professional Experience

Professionally, Mrs. Chidozie has been involved in various research and consultancy projects, including industry-relevant studies that analyze the role of simulation and digital transformation in optimizing supply chains. She is an active member of the Council for the Regulation of Engineering in Nigeria (COREN) and collaborates on initiatives that bridge research and real-world applications. Her primary goal is to create innovative, technology-driven strategies to enhance sustainability, efficiency, and resilience in industrial and healthcare sectors.

Research Interests

Digital transformation, simulation modeling, supply chain optimization, Industry 4.0 and 5.0 applications, sustainable biomass supply chains, healthcare systems improvement, and decision-support systems.

Top Notable Publications

Chidozie, B.C. (2024). Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach. Sustainability, Published: 2024-11-07, DOI: 10.3390/su16229709, Source: Crossref.

Chidozie, B.C. (2024). Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix: A Methodical Approach. Logistics, Published: 2024-10-18, DOI: 10.3390/logistics8040107, Source: Crossref.

Chidozie, B.C. (2024). The Importance of Digital Transformation (5.0) in Supply Chain Optimization: An Empirical Study. Production Engineering Archives, Published: 2024-03-01, DOI: 10.30657/pea.2024.30.12, Source: Crossref.

Chidozie, B.C. (2024). Analytical and Simulation Models as Decision Support Tools for Supply Chain Optimization – An Empirical Study. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54671-6_15, ISBN: 9783031546709, Source: Crossref.

Chidozie, B.C. (2024). Impacts of Simulation and Digital Tools on Supply Chain in Industry 4.0. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54664-8_43, ISBN: 9783031546648, Source: Crossref.

Chidozie, B.C. (2024). Simulation-Based Approaches to Enhance Operational Decision-Support in Healthcare 5.0: A Systematic Literature Review. (book chapter), DOI: 10.1007/978-3-031-38165-2_78, Source: Crossref.

 Conclusion

Mrs. Bernardine Chidozie’s research achievements, particularly her focus on digital transformation and sustainable supply chains, make her a suitable candidate for the Best Researcher Award. Her work is relevant and impactful, addressing key challenges in Industry 4.0 and Healthcare 5.0. Her publications, ongoing projects, and industry involvement illustrate her dedication to advancing sustainability and efficiency across industries, marking her as a distinguished researcher in her field.

 

 

 

 

 

Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin, Gyeongsang National University, South Korea

Dongmin Shin, Ph.D., is an Assistant Professor of Smart Energy and Mechanical Engineering at Gyeongsang National University, South Korea. His expertise encompasses mechanical system reliability and energy solutions, backed by extensive experience in research and academia at institutions like KIMM and KAIST.

PROFILE

Orcid profile

Educational Details

Dr. Shin holds a Ph.D. in Mechanical Engineering from the Korea Advanced Institute of Science and Technology (KAIST), completed in August 2019, where he also earned his M.S. in Ocean System Engineering in February 2015. His foundational studies began at Hanyang University, where he received a B.S. in Mechanical Engineering in 2013, with a break for military service from 2008 to 2010.

Professional Experience

Dr. Shin joined Gyeongsang National University as an Assistant Professor in September 2022. Prior to this, he was a Post-doctoral Researcher at the Korea Institute of Machinery & Materials (KIMM), focusing on reliability assessment in mechanical systems. His academic journey includes roles at KAIST, where he served as a Research Assistant Professor at the Institute for Security Convergence Research, and at Kunsan National University as a Research Professor within the Shipbuilding & Ocean Equipment Industry Empowerment Center. Additionally, he has experience as a Teaching and Research Management Assistant at KAIST, supporting courses in Fluid Mechanics, Numerical Analysis, and mechanical practice, and assisting with 2-D and 3-D wave tank research.

Research Interests

Dr. Shin’s research interests lie in mechanical system reliability, smart energy systems, ocean engineering, and fluid mechanics, with applications in mechanical system safety and energy efficiency.

Top Notable Publications

“Design Analysis Using Evaluation of Surf-Riding and Broaching by the IMO Second Generation Intact Stability Criteria for a Small Fishing Boat”

Authors: Not provided

Year: 2024

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse12112066

“Numerical Study on Compact Design in Marine Urea-SCR Systems for Small Ship Applications”

Authors: Not provided

Year: 2023

Journal: Energies

DOI: 10.3390/en17010187

“Numerical analysis of thermal and hydrodynamic characteristics in aquaculture tanks with different tank structures”

Authors: Not provided

Year: 2023

Journal: Ocean Engineering

DOI: 10.1016/j.oceaneng.2023.115880

“Evaluation of Parametric Roll Mode Applying the IMO Second Generation Intact Stability Criteria for 13K Chemical Tanker”

Authors: Not provided

Year: 2023

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse11071462

“Wave-induced vibration of a fully submerged horizontal cylinder close to a free surface: a theory and experiment”

Authors: Not provided

Year: 2022

Journal: Ships and Offshore Structures

DOI: 10.1080/17445302.2021.1950344

“Assessment of Excessive Acceleration of the IMO Second Generation Intact Stability Criteria for the Tanker”

Authors: Not provided

Year: 2022

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse10020229

Conclusion

Assist. Prof. Dr. Dongmin Shin’s strong educational background, extensive professional experience, innovative research contributions, commitment to teaching and mentoring, and effective research management make him a highly suitable candidate for the Best Researcher Award. His achievements across academia, applied research, and project management reflect the qualities recognized by this award, underscoring his potential to continue contributing meaningfully to engineering and research fields.

 

 

 

 

 

Naoufel Ben Hamadi | Engineering | Excellence in Scientific Innovation Award

Prof. Naoufel Ben Hamadi | Engineering | Excellence in Scientific Innovation Award

Prof. Naoufel Ben Hamadi, Chemistry Department, College of Science, IMSIU, Imam Mohammad Ibn Saud Islamic University, P.O. Box 5701, Riyadh 11432, Saudi Arabia

Prof. naoufel ben hamadi is a distinguished professor of chemistry at IMSIU, specializing in organic synthesis, photochemistry, and environmental applications of chemistry. His research emphasizes sustainable technologies, and he serves as a reviewer for leading international journals, contributing to advances in organic and polymer chemistry.

PROFILE

Orcid Profile

Scopus Profile

Educational Details

Prof. naoufel ben hamadi has built a strong foundation in organic chemistry through comprehensive academic achievements at the Monastir Faculty of Sciences in Tunisia. He earned his Ph.D. in Organic Chemistry Sciences in 2008, graduating with the distinction of “Very Honorable with felicitation of the Jury.” Continuing his academic pursuit, he achieved his Habilitation à Diriger des Recherches (HDR) in Organic Chemistry in 2013, again with the highest honors and jury recognition. Prof. ben hamadi also holds a post-graduate diploma (2002) and a bachelor’s degree (2000) in Physics Sciences, both awarded with commendable grades.

Professional Experience

Prof. ben hamadi began his teaching career in 2003 as an Assistant at the Higher Institute of Technology Studies in Zaghouan, Tunisia. He advanced to Assistant Professor at Gabes Faculty of Sciences from 2008 to 2014. Since joining the College of Sciences at Imam Mohammad Ibn Saud Islamic University (IMSIU) in 2014, he has held positions as Associate Professor and, since 2023, full Professor. His teaching experience spans organic synthesis, photochemistry, and bioresource technology, among other fields within the discipline of chemistry.

Research Interest

Prof. ben hamadi’s research expertise encompasses various aspects of chemistry, particularly organic synthesis, photochemistry, polymer chemistry, textile dyeing, bioresource technology, and waste treatment. His work often emphasizes sustainable practices and innovative applications of organic compounds across different industries.

Peer Review Contributions

As a dedicated academic, Prof. ben hamadi contributes to the scientific community by acting as a peer reviewer for multiple international journals, including Letters in Organic Chemistry, Molecules, Arabian Journal of Chemistry, Natural Science, Scientific Research and Essays, Industrial Crops and Products, and the Journal of Cleaner Production.

Top Notable Publications

“Insights into Co (II)-based hybrid materials for photocatalytic and antioxidant applications”

Authors: Gassara, M., Hchicha, K., Mhadhbi, N., Hamadi, N.B., Boufahja, F.

Journal: Journal of Molecular Structure

Year: 2025

Volume/Issue/Page: 1319, Article 139458

Citations: 1

“Synthesis, structure, and luminescence properties of a 0D organic-inorganic cadmium iodide: Combined experimental and theoretical approach”

Authors: Fandouli, A., Hamadi, N.B., Guesmi, A., Houas, A., Rayes, A.

Journal: Journal of Molecular Structure

Year: 2024

Volume/Issue/Page: 1314, Article 138683

Citations: 0

“Erratum to ‘Synthesis, thermal, dielectric and electro-optic properties of new series of fluorinated hydrogen-bonded liquid crystals, [J. Mol. Liq. 367 (2022) 120510]’”

Authors: Derbali, M., Soltani, T., Guesmi, A., Jeanneau, E., Chevalier, Y.

Journal: Journal of Molecular Liquids

Year: 2024

Volume/Issue/Page: 407, Article 125246

Citations: 0

“A new non-centrosymmetric material (C5H9N3)[ZnBr4]·H2O : Molecular structure, characterization, optical properties, and biological activities”

Authors: Dammak, S.W., Tlili, H., Trabelsi, I., Hamadi, N.B., Naïli, H.

Journal: Journal of Molecular Structure

Year: 2024

Volume/Issue/Page: 1307, Article 137907

Citations: 1

“Novel composite from chitosan and a metal-organic framework for removal of tartrazine dye from aqueous solutions; adsorption isotherm, kinetic, and optimization using Box-Benkhen design”

Authors: El-Fattah, W.A., Guesmi, A., Hamadi, N.B., El-Desouky, M.G., Shahat, A.

Journal: International Journal of Biological Macromolecules

Year: 2024

Volume/Issue/Page: 273, Article 133015

Citations: 9

“Hydrothermal synthesis of (C5H14N2)[CoCl4]⸳0.5H2O: Crystal structure, spectroscopic characterization, thermal behavior, magnetic properties, and biological evaluation”

Authors: Walha, S., Mhadhbi, N., Ali, B.F., Costantino, F., Naïli, H.

Journal: Chemical Physics Impact

Year: 2024

Volume/Issue/Page: 8, Article 100597

Citations: 1

Conclusion

Prof. Naoufel Ben Hamadi’s distinguished academic background, extensive teaching experience, impactful research focus, and active involvement in scientific publishing strongly support his candidacy for the Best Researcher Award. His achievements and commitment to advancing the field of chemistry make him a highly qualified nominee.

 

 

Alex Chandraraj | Engineering | Excellence in Research

Dr. Alex Chandraraj | Engineering | Excellence in Research

Dr. Alex Chandraraj, Kieluniversity, Germany

Dr. Alex Chandraraj is a post-doctoral fellow at Christian-Albrechts-Universität zu Kiel, Germany. He holds a Ph.D. in Physics, specializing in condensed matter physics and materials science. His research focuses on advanced materials, nanostructures, and their applications in renewable energy technologies. Dr. Chandraraj has authored several peer-reviewed publications in prestigious scientific journals and has presented his work at international conferences. He is dedicated to exploring innovative solutions to global energy challenges through material science.

PROFILE

Orcid Profile

Educational Details

Dr. Chandraraj earned his Ph.D. in Chemistry, specializing in electro-catalysis, from the Centre for Nano and Soft Matter Sciences, Bangalore, in 2022. His thesis, titled “Nanomaterials for Electrochemical Water Activation,” was supervised by Dr. Neena Susan John. He also holds an M.Sc. (2014) and B.Sc. (2012) in Chemistry from S.T. Hindu College, Nagercoil, affiliated with Manonmaniam Sundaranar University, where he was a university rank holder in both degrees.

Professional Experience

Dr. Alex Chandraraj has extensive experience in the field of electro-catalysis, having worked on various research projects focused on advanced nanomaterials and sustainable energy applications. Since February 2024, he has been a Post-doctoral Fellow at Christian-Albrechts-Universität zu Kiel, Germany, where he focuses on modifying nickel surfaces through wet-chemical deposition as part of the PrometH2eus project. His work aims to enhance the performance of nickel-based catalysts for energy-efficient applications. Prior to this, from August 2023 to January 2024, he was a Guest Researcher at the same institution, where he investigated oxide interface structures under real-time reaction conditions using operando surface X-ray diffraction techniques. Between February 2022 and July 2023, he served as a Project Associate at the Centre for Nano and Soft Matter Sciences in Bangalore, where he developed and characterized high-valent nickel-based electrocatalysts for urea electrolysis, emphasizing hydrogen production and energy efficiency. Additionally, as a Research Associate from August 2022 to January 2023, Dr. Chandraraj contributed to the development of nanomaterials for catalytic processes and renewable energy applications. His diverse research background underscores his expertise in electro-catalysis and nanomaterials for clean energy technologies.

Research  Interest

Dr. Alex Chandraraj’s research focuses on electro-catalysis and advanced nanomaterials, with a particular emphasis on sustainable energy solutions. His work explores the use of nanomaterials and metal oxides in water splitting and electrochemical water activation, aiming to improve the efficiency of hydrogen production through oxygen and hydrogen evolution reactions. He is also deeply involved in urea electrolysis, where he investigates high-valent nickel-based catalysts to develop cost-effective and energy-efficient processes for hydrogen production from urea-based waste. Additionally, Dr. Chandraraj’s research addresses nitrate and oxygen reduction reactions by tuning metal oxidation states in catalyst systems, optimizing their performance for environmental and energy applications. His broader goal is to innovate in renewable energy by developing advanced nanomaterials and surface modifications that enhance the efficiency and durability of catalysts used in clean energy technologies.

Top Notable Publications

“Role of active redox sites and charge transport resistance at reaction potentials in spinel ferrites for improved oxygen evolution reaction”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: Journal of Electroanalytical Chemistry

DOI: 10.1016/j.jelechem.2024.118613

“Unfolding the Significance of Regenerative Active Species in Nickel Hydroxide-Based Systems for Sustained Urea Electro-Oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: Chemistry of Materials

DOI: 10.1021/acs.chemmater.3c03062

“In-situ generated Ni(OH)2 on chemically activated spent catalyst sustains urea electro-oxidation in extensive alkaline conditions”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: International Journal of Hydrogen Energy

DOI: 10.1016/j.ijhydene.2024.01.339

“Evidence for Exclusive Direct Mechanism of Urea Electro-Oxidation Driven by In Situ-Generated Resilient Active Species on a Rare-Earth Nickelate”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: ACS Catalysis

DOI: 10.1021/acscatal.3c04967

“Spontaneous decoration of Ultrasmall Pt Nanoparticles on size‐separated MoS2 nanosheets”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2023

Journal: Chemistry – A European Journal

DOI: 10.1002/chem.202301596

“Probing the Evolution of Active Sites in MoO2 for Hydrogen Generation in Acidic Medium”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2023

Journal: ACS Applied Energy Materials

DOI: 10.1021/acsaem.3c00320

“Hydrogen and Hydrocarbons as Fuel”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2022

Book Chapter: Green Energy Harvesting: Materials for Hydrogen Generation and Carbon Dioxide Reduction

DOI: 10.1002/9781119776086.ch2

“Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2022

Journal: Journal of Materials Chemistry A

DOI: 10.1039/D1TA05753G

“Role of Metal Ion Sites in Bivalent Cobalt Phosphorus Oxygen Systems toward Efficient Oxygen Evolution Reaction”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2021

Journal: The Journal of Physical Chemistry C

DOI: 10.1021/acs.jpcc.1c05614

“Introduction of surface defects in NiO with effective removal of adsorbed catalyst poisons for improved electrochemical urea oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2021

Journal: Electrochimica Acta

DOI: 10.1016/j.electacta.2021.138425

“Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: ACS Applied Energy Materials

DOI: 10.1021/acsaem.0c00297

“A general route to free-standing films of nanocrystalline molybdenum chalcogenides at a liquid/liquid interface under hydrothermal conditions”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: Applied Surface Science

DOI: 10.1016/j.apsusc.2020.145579

“Nickel Cobalt Phosphite Nanorods Decorated with Carbon Nanotubes as Bifunctional Electrocatalysts in Alkaline Medium with a High Yield of Hydrogen Peroxide”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: ChemElectroChem

DOI: 10.1002/celc.202000176