Ai Haiping | Mechanical Engineering | Best Researcher Award

Assoc. Prof. Dr. Ai Haiping | Mechanical Engineering | Best Researcher Award

Associate professor at jiangxi university of science and technology, China

Dr. Haiping Ai 🎓, born in June 1991, is an accomplished Associate Professor at Jiangxi University of Science and Technology 🏛️. With a Ph.D. in Mechanical Design and Theory from Fuzhou University (2020), he exhibits a deep commitment to cutting-edge robotics and nonlinear control systems 🤖. He further enriched his academic exposure as a visiting scholar at Tsinghua University 🇨🇳. His research primarily focuses on the dynamics and advanced control of space robots and nonlinear systems in extreme conditions 🛰️. Known for his innovative mindset and methodical research approach, Dr. Ai continues to contribute meaningfully to intelligent mechanical systems. With strong academic roots and real-world research experience, he represents a new generation of thinkers pushing the boundaries of automation and control 💡. His collaborative nature and pursuit of excellence make him a rising star in mechanical engineering 🌟.

Professional Profile 

🎓 Education

Dr. Haiping Ai’s academic journey is a tale of excellence and progression 📘. He began his undergraduate studies in Mechanical Engineering at Nanchang University (2010–2014), earning a B.E. degree with solid technical foundations 🔧. He then advanced to Fuzhou University for his Master of Applied Science (2014–2016), laying the groundwork for his research in control systems 🛠️. Passionate about mechanics and intelligent systems, he pursued a Ph.D. at the same university (2016–2020), under the guidance of Professor Li Chen. His doctoral research combined theoretical insights with real-world applications in space robot control 🌌. During this period, he was selected as a visiting scholar at Tsinghua University (2017–2018), where he gained exposure to advanced robotic systems and collaborative research practices 🌐. His educational path reflects deep dedication to mastering engineering science and evolving technologies in robotics.

👨‍🏫 Professional Experience

Dr. Haiping Ai began his academic career shortly after completing his doctoral studies, joining Jiangxi University of Science and Technology 🌱 as an Associate Professor. Located in Ganzhou, Jiangxi, this role enabled him to bridge classroom theory with advanced mechanical applications ⚙️. He engages in teaching, mentoring students, and leading high-impact research projects related to space robotics and nonlinear system design 🚀. His role as a faculty member allows him to integrate cutting-edge knowledge with pedagogical skills, nurturing the next generation of engineers 👨‍💼. With solid grounding in both academia and hands-on research, Dr. Ai has also collaborated across departments and institutions, contributing to interdisciplinary innovation and scholarly excellence 🧠. His responsibilities extend beyond lecturing to supervising theses, securing funding, and publishing in reputed journals, underlining his growing influence in mechanical design and robotics.

🔬 Research Interests

Dr. Ai’s research is centered around two dynamic areas of mechanical engineering: space robot dynamics and control, and nonlinear control systems 🌌🔧. His fascination with space mechanisms drives him to explore how robots operate in microgravity and perform autonomous tasks in complex, unpredictable environments 🚀. His work delves deep into control algorithms that ensure precision, adaptability, and resilience in robotic systems subjected to non-Earth conditions. Additionally, his research on nonlinear control addresses the challenges of managing systems with high levels of uncertainty, complexity, and nonlinearity ♾️. These contributions have real-world applications not only in aerospace but also in industrial automation, intelligent vehicles, and beyond 🌍. Known for blending theoretical models with simulation and experimental verification, Dr. Ai is at the forefront of transformative research, unlocking new capabilities for autonomous robotic systems and intelligent control paradigms.

🏅 Awards and Honors

Dr. Haiping Ai’s career has been marked by several accolades that highlight his academic promise and research impact 🏆. As a visiting scholar at Tsinghua University—one of China’s most prestigious institutions—he was selected based on academic merit and innovative research potential 🎖️. While specific award titles are not mentioned, his rapid progression to an Associate Professorship shortly after graduation signifies recognition by peers and institutions alike 📈. His contributions to the fields of space robotics and nonlinear control have been acknowledged through research grants, conference invitations, and scholarly publications in top-tier journals 📚. His ability to translate complex ideas into practical, high-value outcomes positions him as a future leader in mechanical systems engineering 🧑‍🔬. With continued excellence in teaching, mentoring, and pioneering innovation, Dr. Ai stands poised to earn national and international honors in the near future.

📚 Publications Top Note 

1. Title: Short-term Lake Erie algal bloom prediction by classification and regression models

  • Authors: H. Ai, K. Zhang, J. Sun, H. Zhang

  • Year: 2023

  • Citations: 54

  • Source: Water Research, Volume 232, Article 119710

  • Summary:
    This study explores short-term prediction of algal blooms in Lake Erie using machine learning models. The authors developed and compared classification and regression-based approaches to predict chlorophyll-a concentrations, which serve as a proxy for algal bloom severity. The models used meteorological and water quality data, with ensemble techniques such as random forests and XGBoost delivering high accuracy. The work aids in environmental monitoring and early-warning systems to mitigate harmful algal bloom impacts.


2. Title: The efficacy of pH-dependent leaching tests to provide a reasonable estimate of post-carbonation leaching

  • Authors: H. Ai, K.A. Clavier, B.E. Watts, S.A. Gale, T.G. Townsend

  • Year: 2019

  • Citations: 51

  • Source: Journal of Hazardous Materials, Volume 373, Pages 204–211

  • Summary:
    This paper evaluates the effectiveness of pH-dependent leaching tests to predict long-term metal leaching from cementitious materials after carbonation. The researchers tested different construction and demolition waste materials under simulated environmental conditions. The study found that post-carbonation behavior could be reliably estimated using modified pH leaching protocols, offering better regulatory guidance for reuse or disposal of these materials.


3. Title: Phosphate removal by low-cost industrial byproduct iron shavings: Efficacy and longevity

  • Authors: H. Ai, K. Zhang, C.J. Penn, H. Zhang

  • Year: 2023

  • Citations: 14

  • Source: Water Research, Volume 246, Article 120745

  • Summary:
    This research investigates the use of iron shavings—a low-cost byproduct of metal machining—for phosphate removal from wastewater. Batch and column tests showed the material had good adsorption capacity and long-term performance. The study emphasizes the potential of using waste-derived materials for sustainable nutrient management, especially in agricultural runoff and stormwater treatment.


4. Title: Efficient smartphone-based measurement of phosphorus in water

  • Authors: H. Ai, K. Zhang, H. Zhang

  • Year: 2024

  • Citations: 4

  • Source: Water Research X, Volume 22, Article 100217

  • Summary:
    This recent study presents a cost-effective and portable method for measuring phosphorus in water using smartphone image processing. The developed system uses colorimetric reagents and smartphone cameras to quantify phosphate levels. Calibration with lab-based methods showed high accuracy. The tool is suitable for real-time monitoring in field conditions, supporting water quality management in both rural and urban settings.

Conclusion 

In conclusion, Dr. Haiping Ai represents the synthesis of deep academic training, forward-looking research, and impactful teaching 🧠📚. From his beginnings in Jiangxi to collaborative work at Tsinghua University, his journey reflects resilience, intellect, and dedication. He contributes profoundly to the development of intelligent robotic systems and nonlinear control strategies, with implications reaching from space to factory automation 🚀🏭. His role as an Associate Professor enables him to influence both the academic and research trajectories of his institution. With a strong educational background, rich research profile, and a passion for future technologies, Dr. Ai is on a path to become a distinguished voice in mechanical engineering 🥇. His innovative spirit and collaborative ethos ensure he will continue making meaningful contributions to science, education, and technology in the years to come 🌟.

Guanqun Li | Engineering | Best Researcher Award

Dr. Guanqun Li | Engineering | Best Researcher Award

Associate Researcher at Shengli oilfield, SINOPEC, China

Guanqun Li (李冠群), born in May 1994 in Shandong, China 🇨🇳, is an Associate Researcher at Shengli Oilfield Company, SINOPEC 🛢️. He earned his PhD in Oil and Gas Field Development Engineering from China University of Petroleum (East China) 🎓. His work focuses on the microscopic characterization of shale reservoirs and fluid dynamics in oil and gas systems 🔬💧. With numerous publications in top journals like Fuel and Physics of Fluids 📚, he brings innovation to shale oil recovery technologies. Passionate about fractal modeling and fluid imbibition research, Guanqun Li is contributing significantly to modern energy development ⚙️🌍.

Professional Profile:

Scopus

🔹 Education and Experience 

  • 🎓 Sep. 2016 – June 2019: Master’s in Oil and Gas Field Development Engineering, Yangtze University

  • 📚 Sep. 2019 – June 2023: PhD in Oil and Gas Field Development Engineering, China University of Petroleum (East China)

  • 🏢 July 2023 – Present: Associate Researcher, Shengli Oilfield Company, SINOPEC

🔹 Professional Development 

Dr. Guanqun Li 📘 has shown consistent professional growth, moving from academic research to applied industry innovation. His academic journey through Yangtze University and the China University of Petroleum provided a solid foundation in oilfield development ⚒️. At SINOPEC, he applies his expertise in reservoir simulation, fracturing mechanics, and fluid flow modeling 🔬. He actively contributes to peer-reviewed journals and international conferences 🌍. Guanqun continuously develops novel analytical and fractal models for imbibition in shale formations 🌀. His cross-disciplinary collaboration and technical excellence are hallmarks of his evolving career in the energy sector 🚀.

🔹 Research Focus Category 

Guanqun Li’s research centers on unconventional oil and gas recovery, specifically shale oil reservoir characterization and fluid imbibition mechanisms 🛢️💧. His work explores microscale fluid motion, fractal modeling, and productivity analysis in hydraulically fractured formations 🔍📈. He is especially interested in the spontaneous and forced imbibition processes in complex porous media under various boundary conditions 🧪. His models help optimize horizontal well performance and support enhanced oil recovery (EOR) strategies 🧠⚙️. With a clear focus on improving efficiency in volume fracturing and fluid migration mechanisms, his research is highly impactful in modern petroleum engineering 🚧.

🔹 Awards and Honors 

  • 🏅 Interpore Conference Presentation (2020) – Recognized for outstanding research on production enhancement in fractured wells

  • 📖 Multiple First-Author Publications – Published in top journals like Fuel, Physics of Fluids, and Energy & Fuels

  • 🧠 Acknowledged for Innovative Fractal Modeling – In spontaneous/forced imbibition in shale formations

  • 🥇 Highly Cited Review Paper – On EOR techniques in shale oil (Geofluids, 2021)

Publication Top Notes

  • Title: Quantifying lithofacies-dependent imbibition behavior in continental shale oil by fractal modeling: A case study of the gentle slope fault zone, Jiyang DepressionAuthors: Li Guanqun, Peng Yanxia, Yang Yong, Cao Xiaopeng, Su YuliangJournal: Fuel

    Year: 2025

Conclusion

Dr. Guanqun Li stands out as an emerging leader in petroleum reservoir engineering with clear scientific originality, engineering relevance, and a solid record of first-author publications in high-impact journals. His work has contributed meaningfully to advancing the understanding of shale oil imbibition mechanisms and their application in field operations.

Guanwei Jia | Engineering | Best Researcher Award

Dr. Guanwei Jia | Engineering | Best Researcher Award

Associate Professor at Henan University, China

Guanwei jia (born in 1982) is an associate professor at the School of Physics and Electronics, Henan University, China. He holds a BSc in Electronic Information Engineering (2006), an MSc in Mechanical Engineering (2012), and a Ph.D. in Mechanical Engineering from Beihang University (2018). His research focuses on hydrogen-blended natural gas pipeline transportation and energy storage. By Spring 2025, he has 38 publications indexed in Web of Science. His contributions aim to enhance energy efficiency and sustainable energy solutions, making him a key figure in the field of energy engineering. 🔬⚡

Professional Profile:

Orcid

Education & Experience 🎓📜

  • BSc in Electronic Information Engineering – 2006 🎓📡

  • MSc in Mechanical Engineering – 2012 🛠️📊

  • Ph.D. in Mechanical Engineering (Beihang University) – 2018 🎓⚙️

  • Associate Professor, Henan University – Present 🎓🏛️

Professional Development 🚀🔍

Guanwei jia has significantly contributed to energy research, particularly in hydrogen-blended natural gas pipeline transportation and energy storage. His work integrates advanced mechanical engineering techniques with sustainable energy solutions. With 38 Web of Science-indexed publications, his research provides insights into energy optimization and pipeline safety. He collaborates with industry and academia to advance clean energy technologies. As an associate professor, he mentors students and leads research projects, fostering innovation in energy sustainability. His efforts in alternative energy solutions contribute to global efforts for a cleaner and more efficient energy future. 🔬⚡🌍

Research Focus 🔬⚡

Guanwei jia specializes in hydrogen-blended natural gas transportation and energy storage, addressing key challenges in pipeline safety, efficiency, and sustainability. His research explores how hydrogen integration in natural gas pipelines enhances energy efficiency while reducing carbon emissions. By leveraging mechanical engineering principles, he aims to develop secure and cost-effective storage solutions. His studies help advance the transition toward renewable energy, making natural gas pipelines adaptable for future hydrogen-based energy systems. His findings are valuable for energy infrastructure development, ensuring a safer, cleaner, and more efficient energy network for the future. ⚙️🌍⚡

Awards & Honors 🏆🎖️

  • 38 Web of Science-indexed publications 📑🔍

  • Recognized for contributions to hydrogen-blended gas research ⚡🔬

  • Active mentor and researcher in energy storage solutions 🎓📚

  • Key collaborator in sustainable energy initiatives 🌍🔋

Publication Top Notes

  1. “Water Vapour Condensation Behaviour within Hydrogen-Blended Natural Gas in Laval Nozzles”

    • Authors: Not specified in the provided information.

    • Journal: Case Studies in Thermal Engineering

    • Publication Date: March 2025

    • DOI: 10.1016/j.csite.2025.106064

    • Summary: This study investigates how water vapor condenses in hydrogen-blended natural gas as it flows through Laval nozzles. Understanding this behavior is crucial for optimizing nozzle design and ensuring efficient operation in systems utilizing hydrogen-enriched natural gas.

  2. “Simulation Study on Hydrogen Concentration Distribution in Hydrogen Blended Natural Gas Transportation Pipeline”

    • Authors: Not specified in the provided information.

    • Journal: PLOS ONE

    • Publication Date: December 3, 2024

    • DOI: 10.1371/journal.pone.0314453

    • Summary: This research employs simulations to analyze how hydrogen distributes within natural gas pipelines when blended. The findings provide insights into maintaining consistent hydrogen concentrations, which is vital for pipeline safety and efficiency.

  3. “Numerical Simulation of the Transport and Thermodynamic Properties of Imported Natural Gas Injected with Hydrogen in the Manifold”

    • Authors: Not specified in the provided information.

    • Journal: International Journal of Hydrogen Energy

    • Publication Date: February 2024

    • DOI: 10.1016/j.ijhydene.2023.11.178

    • Summary: This paper presents numerical simulations examining how injecting hydrogen into imported natural gas affects its transport and thermodynamic properties within a manifold. The study aims to inform strategies for integrating hydrogen into existing natural gas infrastructures.

  4. “Performance Analysis of Multiple Structural Parameters of Injectors for Hydrogen-Mixed Natural Gas Using Orthogonal Experimental Methods”

    • Authors: Not specified in the provided information.

    • Journal: Physics of Fluids

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0175018

    • Summary: This study evaluates how various structural parameters of injectors influence the performance of hydrogen-mixed natural gas systems. Using orthogonal experimental methods, the research identifies optimal injector designs to enhance efficiency and reliability.

  5. “Ultrasonic Gas Flow Metering in Hydrogen-Mixed Natural Gas Using Lamb Waves”

    • Authors: Not specified in the provided information.

    • Journal: AIP Advances

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0172477

    • Summary: This paper explores the application of Lamb waves in ultrasonic gas flow metering for hydrogen-mixed natural gas. The research demonstrates the effectiveness of this non-contact method in accurately measuring gas flow, which is essential for monitoring and controlling gas distribution systems.

Conclusion

While Guanwei Jia has made valuable contributions to the field of hydrogen energy and pipeline transportation, his suitability for a Best Researcher Award would depend on additional factors such as citations, research impact, industry collaborations, patents, and leadership in major projects. If he has demonstrated exceptional influence beyond publications—such as shaping energy policies, leading significant projects, or achieving high citation impact—he would be a strong candidate for the award.

Mahmood Shakiba | Engineering | Best Researcher Award

Assist. Prof. Dr. Mahmood Shakiba | Engineering | Best Researcher Award

Faculty member at Ferdowsi University of Mashhad, Iran

Dr. mahmood shakiba 🇮🇷 is an assistant professor at Ferdowsi University of Mashhad, specializing in petroleum engineering with expertise in hydrocarbon reservoirs and enhanced oil recovery (EOR) 🛢️. He earned his Ph.D. from Amirkabir University of Technology (2020) 🎓, focusing on nano-assisted smart water for sand production control. With extensive experience in CO₂ and H₂ underground storage projects, reservoir characterization, and formation damage remediation, he has held key academic and industrial roles. As a researcher and educator, he has contributed significantly to petroleum engineering, guiding students and leading innovative studies in reservoir engineering and geomechanics 🔬📚.

Professional Profile

Scopus

Google Scholar

Education & Experience

Education 🎓

Ph.D. in Petroleum Engineering (Hydrocarbon Reservoirs), Amirkabir University of Technology (2016-2020)

  • Thesis: Nano-assisted smart water for sand production in unconsolidated sandstone reservoirs.

M.Sc. in Petroleum Engineering (Hydrocarbon Reservoirs), Shiraz University (2012-2014)

  • Thesis: Enhanced oil recovery & CO₂ storage via carbonated water injection.

B.Sc. in Petroleum Engineering (Reservoir Engineering), Shiraz University (2008-2012)

  • Thesis: Simulation of solution gas drive in fractured reservoirs.

Work Experience 🛠️

🔹 Assistant Professor – Ferdowsi University of Mashhad (2023-Present)
🔹 Project Supervisor – Underground CO₂ Storage (2023-Present)
🔹 Researcher – Underground H₂ Storage, RIPI (2023-Present)
🔹 Technical Manager – Upstream Oil Research Center, Sharif University (2020-2022)
🔹 Technical Supervisor – MAPSA Co., Tehran (2019-2020)
🔹 Industrial Consultant – MAPSA Co., Tehran (2019-2020)
🔹 Senior Lab Equipment Designer – MAPSA Co., Tehran (2018-2019)
🔹 Researcher – Advanced EOR Research Center, Shiraz University (2011-2014)

Professional Development 🌟

Dr. mahmood shakiba has significantly contributed to petroleum engineering through teaching, research, and industrial consulting 📖🔬. His expertise spans reservoir engineering, well testing, and gas reservoirs 🚀. At Ferdowsi University, he educates students on reservoir management and maintenance, while leading projects on underground CO₂ and H₂ storage. His industry experience includes technical supervision, reservoir characterization, and EOR techniques 🏭. Dr. shakiba has also played a key role in laboratory equipment design and geomechanical feasibility studies. His dedication to advancing sustainable energy storage and petroleum recovery has established him as a leader in the field 🌍💡.

Research Focus 🔬

Dr. shakiba’s research primarily focuses on enhanced oil recovery (EOR), underground storage of CO₂ and H₂, and reservoir geomechanics 🏗️. His experimental and simulation studies have explored innovative methods for improving oil recovery and mitigating environmental impact 🌱. He has investigated nano-assisted smart water flooding, formation damage remediation, and CO₂ sequestration to optimize hydrocarbon reservoir performance. His geological and geomechanical feasibility studies have contributed to safe underground hydrogen storage ⚡. His work advances sustainable energy solutions while improving oil and gas recovery efficiency for the future 🌍🔋.

Awards & Honors 🏆

🏅 Technical Leadership Award – Upstream Oil Research Center, Sharif University
🏅 Outstanding Research Contribution – Research Institute of Petroleum Industry (RIPI)
🏅 Best Thesis Award – Amirkabir University of Technology (2020)
🏅 Top Researcher Recognition – Shiraz University EOR Research Center
🏅 Best Instructor Award – Ferdowsi University of Mashhad (2023)

Publication Top Notes

  1. Investigation of oil recovery and CO₂ storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    • Journal of Petroleum Science and Engineering (2016)
    • Citations: 79
    • Examines how carbonated water injection (CWI) enhances oil recovery and CO₂ storage efficiency in carbonate reservoirs under secondary and tertiary injection scenarios.
  2. A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs

    • Journal of Molecular Liquids (2020)
    • Citations: 35
    • Investigates how smart water, combined with nanoparticles, helps mitigate sand production in weakly consolidated sandstone reservoirs while improving oil recovery.
  3. The impact of connate water saturation and salinity on oil recovery and CO₂ storage capacity during carbonated water injection in carbonate rock

    • Chinese Journal of Chemical Engineering (2019)
    • Citations: 29
    • Analyzes how variations in connate water saturation and salinity influence oil displacement efficiency and CO₂ trapping during CWI in carbonate formations.
  4. Effects of type and distribution of clay minerals on the physico-chemical and geomechanical properties of engineered porous rocks

    • Scientific Reports (2023)
    • Citations: 21* (recently published)
    • Studies how different clay minerals affect the structural integrity and chemical behavior of engineered porous rocks, impacting reservoir performance.
  5. An experimental insight into the influence of sand grain size distribution on the petrophysical and geomechanical properties of artificially made sandstones

    • Journal of Petroleum Science and Engineering (2022)
    • Citations: 15
    • Explores the role of sand grain size variations in determining the permeability, porosity, and mechanical strength of artificial sandstone samples.

Zhou Zhiwu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhou Zhiwu | Engineering | Best Researcher Award

School of Civil and Environmental Engineering at Hunan University of Science and Engineering, China

Zhou zhiwu, a senior engineer and registered tester, is an associate professor and master’s supervisor at hunan university of science and engineering. he earned his ph.d. in transportation infrastructure and territory from the polytechnic university of valencia (🇪🇸) with top honors, including the UPV Outstanding Doctorate and the 2023 Spanish Outstanding Doctoral Award 🏆. with 15 years in national engineering projects, he has led major constructions, published 28 research papers 📄, and serves as a reviewer for 20 SCI journals. his expertise spans (ancient) bridge monitoring, high-speed railway track optimization, and sustainable structural design.

Professional Profile

Orcid

Scopus

Google Scholar

Education & Experience 🎓👷‍♂️

📚 Education:

  • 🎓 Bachelor’s in Architectural Engineering – Lanzhou Jiaotong University (2000-2004)
  • 🎓 Master’s in Transportation Engineering – Lanzhou Jiaotong University (2013-2016)
  • 🎓 Ph.D. in Transport Infrastructure & Territory – Polytechnic University of Valencia, Spain (2019-2023) 🏅

💼 Work Experience:

  • 🏗 Project Manager – China Railway 15th Bureau Group (2002-2017)
  • 🏢 Chief Engineer – Xinjiang Highway Science & Technology Research Institute (2017-2018)
  • 📖 Full-time Teacher & Leader – Chongqing Public Vocational Transport College (2018-2019)
  • 🔬 Doctor & Associate Researcher – Polytechnic University of Valencia, Spain (2019-2023)
  • 🎓 Associate Professor & Master Supervisor – Hunan University of Science and Engineering (2023-Present)

Professional Development 🚀🔬

Zhou zhiwu is a multidisciplinary researcher and engineer specializing in transportation infrastructure, structural health monitoring, and sustainable development. with over 15 years of experience in large-scale construction projects 🏗, he has contributed to high-speed railways 🚄, highways 🛣, and industrial buildings 🏢. he has led and participated in 11 international and national research projects, collaborated with top institutions, and published extensively in SCI-indexed journals 📚. in addition to research, he is a dedicated educator 📖 and serves as an editorial board member for the American Journal of Environmental Science and Engineering, actively reviewing 148+ research articles.

Research Focus 🔍🏗

Zhou zhiwu’s research lies in transportation engineering, structural monitoring, and sustainable infrastructure:

  • 🏛 (Ancient) Bridge & Building Health Monitoring – Studying structural integrity & durability
  • 🌱 Sustainable Infrastructure – Coupling optimization for large-scale structures
  • 🚄 High-Speed Railway Track Optimization – Preventing track diseases & enhancing efficiency
  • 🏗 Indeterminate Structural Design – Improving extra-large bridge sustainability
  • 🔬 Engineering Project Management – Enhancing efficiency in large-scale construction

his work integrates modern monitoring techniques 📡, advanced materials 🏗, and sustainable engineering 🌱 to enhance long-term infrastructure performance.

Awards & Honors 🏆🎖

  • 🏅 UPV Outstanding Doctorate Award – Polytechnic University of Valencia, Spain
  • 🏆 2023 Spanish Outstanding Doctoral Award – Top honor for doctoral research
  • 🏗 National Engineering Construction Quality Management Award (First Class)
  • 🏆 First-Class Science & Technology Award – China Railway Construction Corporation
  • 🏅 Provincial & Ministerial-Level Awards – Henan Province (Two awards)
  • 🏆 China Civil Engineering Society “National Second Prize”
  • 🎖 Reviewer for 20 SCI Journals – Reviewed 148+ articles

Publication Top Notes

  1. Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil

    • Journal of Building Engineering, 2025.
    • DOI: 10.1016/j.jobe.2024.111636
    • Citation (APA):
      Author(s). (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, XX, 111636.
  2. Three-dimensional finite element-coupled optimisation assessment of extra-large bridges

    • Structures, 2024.
    • DOI: 10.1016/j.istruc.2024.107743
    • Citation (APA):
      Author(s). (2024). Three-dimensional finite element-coupled optimisation assessment of extra-large bridges. Structures, XX, 107743.
  3. Research on coupling optimization of carbon emissions and carbon leakage in international construction projects

    • Scientific Reports, 2024.
    • DOI: 10.1038/s41598-024-59531-4
    • Citation (APA):
      Zhou, Z. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, XX, 59531. Building the future: Smart concrete as a key element in next-generation construction
    • Construction and Building Materials, 2024.
    • DOI: 10.1016/j.conbuildmat.2024.136364
    • Citation (APA):
      Zhou, Z. (2024). Building the future: Smart concrete as a key element in next-generation construction. Construction and Building Materials, XX, 136364.
  4. The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model

    • Sustainable Cities and Society, 2024.
    • DOI: 10.1016/j.scs.2024.105201
    • Citation (APA):
      Author(s). (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, XX, 105201.

Jian-Fei Sun | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jian-Fei Sun | Engineering | Best Researcher Award

Assoc. Prof. Dr Jian-Fei Sun, Qingdao University of Technology, China

Dr. Jian-Fei Sun is an Associate Professor at Qingdao University of Technology, specializing in chemical engineering with a focus on green solvent technology and chemical equipment. His research has led to several SCI/EI publications and collaborations with industry, advancing environmentally sustainable solutions in chemical processes.

PROFILE

Orcid Profile

Scopus Profile

Educational Details

Assoc. Prof. Dr. Jian-Fei Sun completed his Bachelor’s degree at Shandong Normal University in 2016, followed by a Master’s degree from Inner Mongolia University of Technology in 2019. He earned his Ph.D. from Dalian University of Technology in 2023, showcasing a solid academic progression in engineering and chemical sciences. As of September 2024, Dr. Sun is a post-doctoral researcher and visiting scholar in the Department of Chemical Engineering at Qingdao University of Science and Technology.

Professional Experience

Dr. Sun is an Associate Professor at the School of Mechanical and Automotive Engineering, Qingdao University of Technology, where he has developed expertise in gas adsorption, green solvents, and chemical process equipment. His collaborations extend to the Chinese Chemical Society and the China Occupational Safety and Health Association, where he is an active member.

Research Interest

Thermodynamics and Applications of Green Solvents: Involving supercritical and CO2-expanded liquids, critical for eco-friendly chemical processes.

Nanomaterial Synthesis and Catalysis: Focused on catalytic conversion and pretreatment of biomass.

Chemical Engineering Equipment Design: Including innovations in vaporization, heat exchange, and coating processes.

Research Innovations

Dr. Sun’s research is pioneering in green solvent technology, encompassing supercritical fluids, CO2-expanded liquids, and ionic liquids. His work emphasizes the synthesis of nanomaterials, catalytic conversion of lignocellulosic biomass, and advanced chemical engineering equipment design. Notable projects include submerged combustion vaporizers, heat exchangers, jet cavitation cleaning, and supercritical cleaning technologies.

Top Notable Publications

Chen, X., Sun, J., Yu, K., Wu, J., & Yin, J. (2024). Design of novel bracket structure for falling film devolatilizer and numerical simulation of its film-forming property. Chemical Engineering Journal, 499, 156317.

Citations: 0

Sun, J., Yu, K., Zhou, D., Sun, H., & Wu, J. (2024). Continuous process for CO2 cycloaddition reaction in a fixed bed reactor: Kinetic model of reaction transport. Chemical Engineering Science, 283, 119415.

Citations: 2

Zhou, D., Sun, J., Xue, M., Xu, Q., & Yin, J. (2024). Imidazole based ionic liquid grafted graphene for enhancing the new green conversion process of carbon dioxide. Journal of Cleaner Production, 434, 140083.

Citations: 5

Sun, H., Qi, J., Sun, J., Wu, J., & Yin, J. (2024). Solubility of iron(III) and nickel(II) acetylacetonates in supercritical carbon dioxide. Chinese Journal of Chemical Engineering, 65, 29–34.

Citations: 0

Chen, X., Sun, J., Wu, J., Zhang, Y., & Yin, J. (2023). Simulation study on mass transfer characteristics and disk structure optimization of a rotating disk reactor with high viscosity region. Journal of Applied Polymer Science, 140(48), e54717.

Citations: 1

Chen, X., Wu, J., Sun, J., Yu, K., & Yin, J. (2023). Numerical investigation of film-forming characteristics and mass transfer enhancement in horizontal polycondensation kettle. Chinese Journal of Chemical Engineering, 63, 31–42.

Citations: 0

Li, X., Sun, J., Xue, M., Wu, J., & Yin, J. (2023). The imidazole ionic liquid was chemically grafted on SBA-15 to continuously catalyze carbon dioxide to prepare propylene carbonate. Journal of Environmental Chemical Engineering, 11(5), 110438.

Citations: 9

Sun, J.-F., Chen, X.-P., Li, X.-T., Li, L., & Yin, J.-Z. (2023). Theoretical study of supported ionic liquid membrane reaction and transport for CO2 cycloaddition reaction. Chemical Engineering Journal, 470, 144299.

Citations: 2

Yu, K., Liu, J., Sun, J., Shen, Z., & Yin, J. (2023). Study of polyester degradation by sub/supercritical ethanol and enhancement of carbon dioxide. Journal of Supercritical Fluids, 194, 105837.

Citations: 7

Conclusion

Dr. Sun has published numerous SCI and EI-indexed papers and collaborated with chemical enterprises to secure research funding. His contributions emphasize his dedication to both academic excellence and real-world applications, reinforcing his suitability for the Best Researcher Award through innovation and impactful research in sustainable chemical processes.

 

 

 

Sowon Choi | Engineering | Women Researcher Award

Dr. Sowon Choi | Engineering | Women Researcher Award

Dr. Sowon  Choi, Pohang University of Science and Technology, South Korea

Dr. sowon choi is a research professor at the Graduate Institute of Ferrous and Eco Materials Technology (GIFT) at Pohang University of Science and Technology (POSTECH), South Korea. Her research integrates data-driven project management methodologies through artificial intelligence (AI) and unstructured text data analysis, particularly within big data environments. Dr. choi’s work is grounded in her comprehensive experience in both onshore and offshore EPC (Engineering, Procurement, and Construction) projects, with specialized expertise in contract negotiation and project management. Her academic focus is complemented by a solid background in strategic management, planning, and marketing.

PROFILE

Orcid Profile

Educational Details

Ph.D. in Plant System Engineering (PSE), POSTECH, 2022

Master of Science in Plant System Engineering (PSE), POSTECH, 2015

Bachelor of Commerce, Double Major in Marketing & International Business, University of Auckland, 2005

Professional Experience

Dr. choi has a diverse professional background, which spans across various industries and roles. She currently serves as a research professor and postdoctoral research fellow at POSTECH, a position she has held since 2022. Before this, Dr. choi held leadership roles in prominent South Korean companies. From 2012 to 2016, she was Principal Manager at Taekyung Heavy Industries Co., Ltd., where she played a key role in managing large-scale projects. Additionally, she has experience as a Principal Consultant with Korea PMI Consulting Group and as a Principal Researcher with Korea Marketing and Retailing Consulting. Early in her career, Dr. choi worked as an Assistant Manager at Paris Croissant Co., Ltd.

Research Interest

 

AI-driven project management and analysis of unstructured text data

Big data applications in EPC project management

Strategic and marketing planning within the engineering and technology sectors

Top Notable Publications

Auto-Routing Systems (ARSs) with 3D Piping for Sustainable Plant Projects Based on Artificial Intelligence (AI) and Digitalization of 2D Drawings and Specifications

Authors: To be determined

Journal: Sustainability

Date: 2024-03-27

DOI: 10.3390/su16072770

Development of Cycloid-Shaped Roll Charging Chute for Sintering Process for Energy Decarbonization and Productivity Improvement in Steel Plants

Authors: To be determined

Journal: Energies

Date: 2024-03-23

DOI: 10.3390/en17071536

Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)

Authors: To be determined

Journal: Energies

Date: 2023-09-30

DOI: 10.3390/en16196907

A Question-Answering Model Based on Knowledge Graphs for the General Provisions of Equipment Purchase Orders for Steel Plants Maintenance

Authors: To be determined

Journal: Electronics

Date: 2023-06-01

DOI: 10.3390/electronics12112504

Modeling of Predictive Maintenance Systems for Laser-Welders in Continuous Galvanizing Lines Based on Machine Learning with Welder Control Data

Authors: To be determined

Journal: Sustainability

Date: 2023-05-07

DOI: 10.3390/su15097676

A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices

Authors: To be determined

Journal: Energies

Date: 2023-05

DOI: 10.3390/en16114271

Machine Learning-Based Tap Temperature Prediction and Control for Optimized Power Consumption in Stainless Electric Arc Furnaces (EAF) of Steel Plants

Authors: To be determined

Journal: Sustainability

Date: 2023-04-08

DOI: 10.3390/su15086393

Knowledge Retrieval Model Based on a Graph Database for Semantic Search in Equipment Purchase Order Specifications for Steel Plants

Authors: To be determined

Journal: Sustainability

Date: 2023-04-06

DOI: 10.3390/su15076319

An AI-Based Automatic Risks Detection Solution for Plant Owner’s Technical Requirements in Equipment Purchase Order

Authors: To be determined

Journal: Sustainability

Date: 2022-08-12

DOI: 10.3390/su141610010

Contractor’s Risk Analysis of Engineering Procurement and Construction (EPC) Contracts Using Ontological Semantic Model and Bi-Long Short-Term Memory (LSTM) Technology

Authors: To be determined

Journal: Sustainability

Date: 2022-06-06

DOI: 10.3390/su14116938

The Engineering Machine-Learning Automation Platform (EMAP): A Big-Data-Driven AI Tool for Contractors’ Sustainable Management Solutions for Plant Projects

Authors: To be determined

Journal: Sustainability

Date: 2021-09

DOI: 10.3390/su131810384

AI and Text-Mining Applications for Analyzing Contractor’s Risk in Invitation to Bid (ITB) and Contracts for Engineering Procurement and Construction (EPC) Projects

Authors: So Won Choi (and additional authors as listed in the article)

Journal: Energies

Date: 2021-07-30

DOI: 10.3390/en14154632

Conclusion

Dr. Sowon Choi’s extensive background in data analysis, project management, and strategic planning, combined with her advanced research in AI and EPC projects, makes her an exemplary candidate for the Best Researcher Award. Her innovative work aligns closely with the award criteria, addressing sustainability, efficiency, and technological advancement in project management. Given her diverse experience and strong academic foundation, she demonstrates a well-rounded expertise that positions her as a compelling candidate for this honor.

 

 

 

Naoufel Ben Hamadi | Engineering | Excellence in Scientific Innovation Award

Prof. Naoufel Ben Hamadi | Engineering | Excellence in Scientific Innovation Award

Prof. Naoufel Ben Hamadi, Chemistry Department, College of Science, IMSIU, Imam Mohammad Ibn Saud Islamic University, P.O. Box 5701, Riyadh 11432, Saudi Arabia

Prof. naoufel ben hamadi is a distinguished professor of chemistry at IMSIU, specializing in organic synthesis, photochemistry, and environmental applications of chemistry. His research emphasizes sustainable technologies, and he serves as a reviewer for leading international journals, contributing to advances in organic and polymer chemistry.

PROFILE

Orcid Profile

Scopus Profile

Educational Details

Prof. naoufel ben hamadi has built a strong foundation in organic chemistry through comprehensive academic achievements at the Monastir Faculty of Sciences in Tunisia. He earned his Ph.D. in Organic Chemistry Sciences in 2008, graduating with the distinction of “Very Honorable with felicitation of the Jury.” Continuing his academic pursuit, he achieved his Habilitation à Diriger des Recherches (HDR) in Organic Chemistry in 2013, again with the highest honors and jury recognition. Prof. ben hamadi also holds a post-graduate diploma (2002) and a bachelor’s degree (2000) in Physics Sciences, both awarded with commendable grades.

Professional Experience

Prof. ben hamadi began his teaching career in 2003 as an Assistant at the Higher Institute of Technology Studies in Zaghouan, Tunisia. He advanced to Assistant Professor at Gabes Faculty of Sciences from 2008 to 2014. Since joining the College of Sciences at Imam Mohammad Ibn Saud Islamic University (IMSIU) in 2014, he has held positions as Associate Professor and, since 2023, full Professor. His teaching experience spans organic synthesis, photochemistry, and bioresource technology, among other fields within the discipline of chemistry.

Research Interest

Prof. ben hamadi’s research expertise encompasses various aspects of chemistry, particularly organic synthesis, photochemistry, polymer chemistry, textile dyeing, bioresource technology, and waste treatment. His work often emphasizes sustainable practices and innovative applications of organic compounds across different industries.

Peer Review Contributions

As a dedicated academic, Prof. ben hamadi contributes to the scientific community by acting as a peer reviewer for multiple international journals, including Letters in Organic Chemistry, Molecules, Arabian Journal of Chemistry, Natural Science, Scientific Research and Essays, Industrial Crops and Products, and the Journal of Cleaner Production.

Top Notable Publications

“Insights into Co (II)-based hybrid materials for photocatalytic and antioxidant applications”

Authors: Gassara, M., Hchicha, K., Mhadhbi, N., Hamadi, N.B., Boufahja, F.

Journal: Journal of Molecular Structure

Year: 2025

Volume/Issue/Page: 1319, Article 139458

Citations: 1

“Synthesis, structure, and luminescence properties of a 0D organic-inorganic cadmium iodide: Combined experimental and theoretical approach”

Authors: Fandouli, A., Hamadi, N.B., Guesmi, A., Houas, A., Rayes, A.

Journal: Journal of Molecular Structure

Year: 2024

Volume/Issue/Page: 1314, Article 138683

Citations: 0

“Erratum to ‘Synthesis, thermal, dielectric and electro-optic properties of new series of fluorinated hydrogen-bonded liquid crystals, [J. Mol. Liq. 367 (2022) 120510]’”

Authors: Derbali, M., Soltani, T., Guesmi, A., Jeanneau, E., Chevalier, Y.

Journal: Journal of Molecular Liquids

Year: 2024

Volume/Issue/Page: 407, Article 125246

Citations: 0

“A new non-centrosymmetric material (C5H9N3)[ZnBr4]·H2O : Molecular structure, characterization, optical properties, and biological activities”

Authors: Dammak, S.W., Tlili, H., Trabelsi, I., Hamadi, N.B., Naïli, H.

Journal: Journal of Molecular Structure

Year: 2024

Volume/Issue/Page: 1307, Article 137907

Citations: 1

“Novel composite from chitosan and a metal-organic framework for removal of tartrazine dye from aqueous solutions; adsorption isotherm, kinetic, and optimization using Box-Benkhen design”

Authors: El-Fattah, W.A., Guesmi, A., Hamadi, N.B., El-Desouky, M.G., Shahat, A.

Journal: International Journal of Biological Macromolecules

Year: 2024

Volume/Issue/Page: 273, Article 133015

Citations: 9

“Hydrothermal synthesis of (C5H14N2)[CoCl4]⸳0.5H2O: Crystal structure, spectroscopic characterization, thermal behavior, magnetic properties, and biological evaluation”

Authors: Walha, S., Mhadhbi, N., Ali, B.F., Costantino, F., Naïli, H.

Journal: Chemical Physics Impact

Year: 2024

Volume/Issue/Page: 8, Article 100597

Citations: 1

Conclusion

Prof. Naoufel Ben Hamadi’s distinguished academic background, extensive teaching experience, impactful research focus, and active involvement in scientific publishing strongly support his candidacy for the Best Researcher Award. His achievements and commitment to advancing the field of chemistry make him a highly qualified nominee.

 

 

Yalini Devi Neelan | Engineering | Best Researcher Award

Dr. Yalini Devi Neelan | Engineering | Best Researcher Award

Google Scholar Profile

Educational Details

Dr. Yalini Devi Neelan completed her Ph.D. in Energy Harvesting Applications at Anna University, India, from 2016 to 2021. Her doctoral research focused on innovative methods for harnessing energy through advanced materials and nanotechnology. Prior to her Ph.D., she earned an M.Tech. in Nanoscience and Technology from Anna University, where she achieved an impressive GPA of 8.24/10 from 2014 to 2016. Dr. Neelan’s academic journey began with a Bachelor of Engineering in Electrical and Electronic Engineering, also from Anna University, where she graduated in 2014 with a GPA of 6.41/10. This solid educational background has equipped her with a strong foundation in both engineering principles and nanomaterials, driving her passion for research in energy solutions.

Research Experience

Dr. Yalini Devi Neelan is currently a Postdoctoral Researcher at the University of Milano, Italy, in the Thermoelectric’s Laboratory, where she focuses on the preparation and characterization of nanostructured silicon for thermoelectric applications. Her key responsibilities include preparing nanostructured materials, examining their physicochemical characteristics, and studying their Seebeck coefficient, electrical, and thermal conductivity to calculate the figure of merit (ZT). Prior to this, she was a Postdoctoral Researcher at Chungnam National University, South Korea, where she worked on nanostructured oxide-based materials for antibiotic degradation and battery applications, analyzing their photodegradation and electrochemical properties. Dr. Neelan also served as a Research Associate at Anna University, India, where she focused on energy harvesting and storage applications, preparing oxide-based nanomaterials and managing communications with funding agencies. During her Ph.D. at Anna University, she investigated nanostructured strontium titanate-based oxide thermoelectric materials for energy harvesting from waste heat. Additionally, she collaborated with Shimomura Laboratory at Shizuoka University, Japan, to enhance the thermoelectric power factor of nanostructured SrTiO3 through Gd and Nb co-substitution. Earlier in her academic journey, Dr. Neelan was a project student at the Indian Institute of Technology Madras, where she developed graphene oxide-based strain sensors for motion monitoring. Her diverse research experiences reflect her strong expertise in nanomaterials and energy applications.

Research Focus

Energy harvesting applications, particularly in thermoelectrics, focus on converting waste heat into usable electrical energy, thus promoting sustainable energy solutions. The synthesis of nanomaterials plays a crucial role in this field, as nanostructured materials exhibit enhanced thermoelectric properties due to their unique physical and chemical characteristics. These materials are engineered to optimize energy conversion efficiencies, allowing for effective harvesting from various heat sources. Additionally, advancements in energy storage applications complement energy harvesting by ensuring that the harvested energy can be effectively stored and utilized when needed. By integrating innovative synthesis techniques and exploring novel nanomaterials, researchers aim to improve the performance and efficiency of thermoelectric devices, ultimately contributing to a more sustainable and energy-efficient future.

Top Notable Publications

Enhancing effects of Te substitution on the thermoelectric power factor of nanostructured SnSe₁₋ₓTeₓ
Authors: D. Sidharth, A.S.A. Nedunchezhian, R. Rajkumar, N.Y. Devi, P. Rajasekaran, et al.
Journal: Physical Chemistry Chemical Physics
Year: 2019
Citations: 32

Effect of Gd and Nb co-substitution on enhancing the thermoelectric power factor of nanostructured SrTiO₃
Authors: N.Y. Devi, K. Vijayakumar, P. Rajasekaran, A.S.A. Nedunchezhian, et al.
Journal: Ceramics International
Year: 2021
Citations: 26

Enhanced thermoelectric performance of band structure engineered GeSe₁₋ₓTeₓ alloys
Authors: D. Sidharth, A.S.A. Nedunchezhian, R. Akilan, A. Srivastava, B. Srinivasan, et al.
Journal: Sustainable Energy & Fuels
Year: 2021
Citations: 25

Enhancement of thermoelectric power factor of hydrothermally synthesised SrTiO₃ nanostructures
Authors: N.Y. Devi, P. Rajasekaran, K. Vijayakumar, A.S.A. Nedunchezhian, et al.
Journal: Materials Research Express
Year: 2020
Citations: 15

Biogenic synthesis and characterization of silver nanoparticles: evaluation of their larvicidal, antibacterial, and cytotoxic activities
Authors: S. Mahalingam, P.K. Govindaraji, V.G. Solomon, H. Kesavan, Y.D. Neelan, et al.
Journal: ACS Omega
Year: 2023
Citations: 11

Effect of Bismuth substitution on the enhancement of thermoelectric power factor of nanostructured BiₓCo₃₋ₓO₄
Authors: A.S.A. Nedunchezhian, D. Sidharth, N.Y. Devi, R. Rajkumar, P. Rajasekaran, et al.
Journal: Ceramics International
Year: 2019
Citations: 11

Effective Visible-Light-Driven Photocatalytic Degradation of Harmful Antibiotics Using Reduced Graphene Oxide-Zinc Sulfide-Copper Sulfide Nanocomposites as a Catalyst
Authors: J.K. Shanmugam Mahalingam, Yalini Devi Neelan, Senthil Bakthavatchalam, et al.
Journal: ACS Omega
Year: 2023
Citations: 10

Enhancing the thermoelectric power factor of nanostructured ZnCo₂O₄ by Bi substitution
Authors: A.S.A. Nedunchezhian, D. Sidharth, R. Rajkumar, N.Y. Devi, K. Maeda, et al.
Journal: RSC Advances
Year: 2020
Citations: 7

High thermoelectric power factor of Ag and Nb co-substituted SrTiO₃ perovskite nanostructures
Authors: N.Y. Devi, A.S.A. Nedunchezhian, D. Sidharth, P. Rajasekaran, et al.
Journal: Materials Chemistry and Physics
Year: 2023
Citations: 3