Assoc. Prof. Dr. Sadia Ameen | Materials Science | Outstanding Scientist Award
Associate Professor | Jeonbuk National University | South Korea
Assoc. Prof. Dr. Sadia Ameen is a distinguished academic in Materials Science with extensive contributions to nanomaterials, thin films, nanocomposites, optoelectronic devices, catalysts, biosensors, supercapacitors, and energy storage systems. With strong educational foundations culminating in a doctorate in Materials Science, she has advanced knowledge through innovative synthesis and characterization techniques such as PECVD, sol-gel, hydrothermal, and solid-state methods. Her professional career includes roles as Associate Professor at Jeonbuk National University, Republic of Korea, and Adjunct Visiting Associate Professor at La Trobe University, Australia, demonstrating her global engagement in Materials Science. Her research interests span organic semiconductors, perovskite solar cells, nanostructured materials for energy and environmental applications, and device fabrication, with over 160 SCI/SCIE publications as author and corresponding author. She has received multiple recognitions and serves as a reviewer and editorial board member for international journals in Materials Science. Her research skills include nanomaterial synthesis, electrochemical analysis, device fabrication, and advanced characterization. Through leadership in collaborative projects, she has strengthened international scientific networks. In conclusion, Assoc. Prof. Dr. Sadia Ameen’s career embodies excellence in Materials Science, integrating innovative research, international collaboration, and impactful publications, highlighting her as a globally recognized expert advancing sustainable technologies and applications through Materials Science. Her Google Scholar citations 6759, h-index 42, i10-index 121, showcasing measurable research impact.
Profiles: Google Scholar | ORCID
Featured Publications
1. Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., & Singh, G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632, 321–325.
2. Ameen, S., Rub, M. A., Kosa, S. A., Alamry, K. A., Akhtar, M. S., Shin, H. S., Seo, H. K., … (2016). Perovskite solar cells: Influence of hole transporting materials on power conversion efficiency. ChemSusChem, 9(1), 10–27.
3. Malik, S., Singh, J., Goyat, R., Saharan, Y., Chaudhry, V., Umar, A., Ibrahim, A. A., … (2023). Nanomaterials-based biosensor and their applications: A review. Heliyon, 9(9), e19934.
4. Ameen, S., Akhtar, M. S., Seo, H. K., Kim, Y. S., & Shin, H. S. (2012). Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chemical Engineering Journal, 187, 351–356.
5. Ameen, S., Seo, H. K., Akhtar, M. S., & Shin, H. S. (2012). Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chemical Engineering Journal, 210, 220–228.