Guanwei Jia | Engineering | Best Researcher Award

Dr. Guanwei Jia | Engineering | Best Researcher Award

Associate Professor at Henan University, China

Guanwei jia (born in 1982) is an associate professor at the School of Physics and Electronics, Henan University, China. He holds a BSc in Electronic Information Engineering (2006), an MSc in Mechanical Engineering (2012), and a Ph.D. in Mechanical Engineering from Beihang University (2018). His research focuses on hydrogen-blended natural gas pipeline transportation and energy storage. By Spring 2025, he has 38 publications indexed in Web of Science. His contributions aim to enhance energy efficiency and sustainable energy solutions, making him a key figure in the field of energy engineering. 🔬⚡

Professional Profile:

Orcid

Education & Experience 🎓📜

  • BSc in Electronic Information Engineering – 2006 🎓📡

  • MSc in Mechanical Engineering – 2012 🛠️📊

  • Ph.D. in Mechanical Engineering (Beihang University) – 2018 🎓⚙️

  • Associate Professor, Henan University – Present 🎓🏛️

Professional Development 🚀🔍

Guanwei jia has significantly contributed to energy research, particularly in hydrogen-blended natural gas pipeline transportation and energy storage. His work integrates advanced mechanical engineering techniques with sustainable energy solutions. With 38 Web of Science-indexed publications, his research provides insights into energy optimization and pipeline safety. He collaborates with industry and academia to advance clean energy technologies. As an associate professor, he mentors students and leads research projects, fostering innovation in energy sustainability. His efforts in alternative energy solutions contribute to global efforts for a cleaner and more efficient energy future. 🔬⚡🌍

Research Focus 🔬⚡

Guanwei jia specializes in hydrogen-blended natural gas transportation and energy storage, addressing key challenges in pipeline safety, efficiency, and sustainability. His research explores how hydrogen integration in natural gas pipelines enhances energy efficiency while reducing carbon emissions. By leveraging mechanical engineering principles, he aims to develop secure and cost-effective storage solutions. His studies help advance the transition toward renewable energy, making natural gas pipelines adaptable for future hydrogen-based energy systems. His findings are valuable for energy infrastructure development, ensuring a safer, cleaner, and more efficient energy network for the future. ⚙️🌍⚡

Awards & Honors 🏆🎖️

  • 38 Web of Science-indexed publications 📑🔍

  • Recognized for contributions to hydrogen-blended gas research ⚡🔬

  • Active mentor and researcher in energy storage solutions 🎓📚

  • Key collaborator in sustainable energy initiatives 🌍🔋

Publication Top Notes

  1. “Water Vapour Condensation Behaviour within Hydrogen-Blended Natural Gas in Laval Nozzles”

    • Authors: Not specified in the provided information.

    • Journal: Case Studies in Thermal Engineering

    • Publication Date: March 2025

    • DOI: 10.1016/j.csite.2025.106064

    • Summary: This study investigates how water vapor condenses in hydrogen-blended natural gas as it flows through Laval nozzles. Understanding this behavior is crucial for optimizing nozzle design and ensuring efficient operation in systems utilizing hydrogen-enriched natural gas.

  2. “Simulation Study on Hydrogen Concentration Distribution in Hydrogen Blended Natural Gas Transportation Pipeline”

    • Authors: Not specified in the provided information.

    • Journal: PLOS ONE

    • Publication Date: December 3, 2024

    • DOI: 10.1371/journal.pone.0314453

    • Summary: This research employs simulations to analyze how hydrogen distributes within natural gas pipelines when blended. The findings provide insights into maintaining consistent hydrogen concentrations, which is vital for pipeline safety and efficiency.

  3. “Numerical Simulation of the Transport and Thermodynamic Properties of Imported Natural Gas Injected with Hydrogen in the Manifold”

    • Authors: Not specified in the provided information.

    • Journal: International Journal of Hydrogen Energy

    • Publication Date: February 2024

    • DOI: 10.1016/j.ijhydene.2023.11.178

    • Summary: This paper presents numerical simulations examining how injecting hydrogen into imported natural gas affects its transport and thermodynamic properties within a manifold. The study aims to inform strategies for integrating hydrogen into existing natural gas infrastructures.

  4. “Performance Analysis of Multiple Structural Parameters of Injectors for Hydrogen-Mixed Natural Gas Using Orthogonal Experimental Methods”

    • Authors: Not specified in the provided information.

    • Journal: Physics of Fluids

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0175018

    • Summary: This study evaluates how various structural parameters of injectors influence the performance of hydrogen-mixed natural gas systems. Using orthogonal experimental methods, the research identifies optimal injector designs to enhance efficiency and reliability.

  5. “Ultrasonic Gas Flow Metering in Hydrogen-Mixed Natural Gas Using Lamb Waves”

    • Authors: Not specified in the provided information.

    • Journal: AIP Advances

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0172477

    • Summary: This paper explores the application of Lamb waves in ultrasonic gas flow metering for hydrogen-mixed natural gas. The research demonstrates the effectiveness of this non-contact method in accurately measuring gas flow, which is essential for monitoring and controlling gas distribution systems.

Conclusion

While Guanwei Jia has made valuable contributions to the field of hydrogen energy and pipeline transportation, his suitability for a Best Researcher Award would depend on additional factors such as citations, research impact, industry collaborations, patents, and leadership in major projects. If he has demonstrated exceptional influence beyond publications—such as shaping energy policies, leading significant projects, or achieving high citation impact—he would be a strong candidate for the award.

Shakil Ahmed | Engineering | Best Researcher Award

Prof. Shakil Ahmed | Engineering | Best Researcher Award

Assistant Processor, Term at Iowa State University, United States

Shakil Ahmed is an Assistant Teaching Professor in Computer Engineering at Iowa State University (ISU), specializing in AI/ML, cybersecurity, IoT, cloud computing, and advanced networking. With a Ph.D. in Computer Engineering from ISU (2023) and over 2,000 citations across 35+ publications, he leads cutting-edge research on AI-driven solutions, digital twins, and quantum networks. As a principal investigator (PI), he mentors undergraduate, MS, and Ph.D. students while actively securing external grants. His expertise spans reinforcement learning, large language models, explainable AI, and meta-learning, contributing to pioneering advancements in next-gen networking and intelligent systems. 🚀🔍

Professional Profile

Education & Experience 📚👨‍🏫

  • Ph.D. in Computer Engineering – Iowa State University (2023) 🎓
  • M.S. in Electrical Engineering – Utah State University (2019) ⚡
  • B.S. in Electrical and Electronic Engineering – Khulna University of Engineering & Technology, Bangladesh (2014) 🏅
  • Assistant Teaching Professor – Iowa State University (2024–Present) 🎓
  • Researcher & PI – Leading projects on AI, 6G, cybersecurity, IoT, and digital twins 🔬
  • Advisor & Mentor – Supervising undergraduate, MS, and Ph.D. students in advanced networking and AI 🧑‍🎓

Professional Development 📈🧠

Shakil Ahmed actively contributes to AI-driven networking, secure systems, and IoT advancements. He plays a vital role in research funding, securing grants exceeding millions of dollars. As a guest editor at MDPI and reviewer for 150+ articles, he ensures high research standards. His teaching experience spans multiple STEM courses, where he integrates hands-on learning tools like Zybooks and Canvas. He has delivered invited talks on next-gen wireless technologies and collaborates with multidisciplinary teams to shape the future of AI, cloud computing, and quantum networking. His work has significantly impacted academia, research, and industry. 🚀🔬📡

Research Focus 🏆🔍

Shakil Ahmed’s research is at the intersection of AI, networking, and cybersecurity, with a focus on:

  • AI/ML & Deep Learning – Reinforcement Learning (RL), Large Language Models (LLM), Explainable AI (XAI) 🤖
  • Cybersecurity & Quantum Networking – Secure network protocols, quantum neural networks (QNN) 🔒
  • IoT & Cloud Computing – System design for connected environments, mobile edge computing ☁️
  • Digital Twin & 6G+ Networks – AI-driven tactile internet, smart infrastructure, and futuristic networking 🌍📡
    His work integrates cutting-edge AI techniques, optimization frameworks, and network simulations to solve real-world challenges.

Awards & Honors 🏅🎖️

  • Professional Development Fund – Iowa State University ($10,000) 💰
  • Presidential Fellowship – Utah State University ($90,000) 🏆
  • Best Paper Award – IEEE International Conference on Informatics, Electronics, and Vision (2016) 🥇
  • Graduate & Professional Student Senate Research Award – ISU ($700) 📜
  • ECpE Department Support Grant – ISU ($600) 🎓
  • Professional Advancement Grant (PAG) – ISU ($400) 🎖️
  • Military Communications Conference Student Travel Grants – 2021 & 2022 ($1,000) ✈️
  • Graduate & Professional Student Council Grant – ISU ($750) 🏅
  • ECE Department Support Grant – Utah State University ($1,000) 🏆

Publication Top Notes

  1. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions

    • Authors: Mostafa Zaman Chowdhury, Md. Shahjalal, Shakil Ahmed, Yeong Min Jang
    • Journal: IEEE Open Journal of the Communications Society
    • Year: 2020
    • Citation: Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957–975.
  2. Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Access
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks. IEEE Access, 8, 21215–21225.
  3. Energy-Efficient UAV Relaying Communications to Serve Ground Nodes

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Communications Letters
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 24(4), 849–852.
  4. Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT

    • Authors: Hao Sun, Qiang Wang, Shakil Ahmed, Rose Hu
    • Conference: IEEE Vehicular Technology Conference (VTC Spring)
    • Year: 2017
    • Citation: Sun, H., Wang, Q., Ahmed, S., & Hu, R. (2017). Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1–5).
  5. A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology

    • Authors: Shakil Ahmed, Md Rashid, Farzana Alam, B. Fakhruddin
    • Conference: 2019 29th International Telecommunication Networks and Applications Conference (ITNAC)
    • Year: 2019
    • Citation: Ahmed, S., Rashid, M., Alam, F., & Fakhruddin, B. (2019). A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 20–25).