Joshua Benjamin | Physics | Best Researcher Award

Mr. Joshua Benjamin | Physics | Best Researcher Award

Lagos Nigeria at TYDACOMM Nigeria Limited, Nigeria

benjamin, joshua olamide is a dedicated scholar and researcher passionate about space physics, ionospheric studies, and space weather. He holds a first-class degree in pure and applied physics from Ladoke Akintola University of Technology and a distinction in space physics from the African University of Science and Technology. With experience in RF network planning and optimization, teaching, and research, he combines technical expertise with strong analytical skills. Proficient in MATLAB, Microsoft Office, and data analysis tools, he is committed to innovation, leadership, and academic excellence. His research contributes to understanding ionospheric models and their impact on space weather. 🚀📡

Professional Profile

Education & Experience 🎓💼

  • [2022] MSc in Space Physics (Distinction) – African University of Science and Technology 📡
  • [2019] B.Tech in Pure and Applied Physics (First Class) – Ladoke Akintola University of Technology 🔬
  • [2023 – Present] RF Network Planning & Field Test Engineer – TYDACOMM Nigeria Limited 📶
  • [2020 – 2021] NYSC Mathematics & Economics Teacher – Jofegal International School 📚
  • [2018] Internship at Perfect Seven Solar Company – Solar System Maintenance ☀️
  • [2011 – 2012] Mathematics Teacher – Fountain of Knowledge Group of School 📏

Professional Development 📖🔍

benjamin, joshua olamide has actively participated in multiple international colloquiums and workshops related to space science, GNSS, and ionospheric studies. He has certifications in health, safety, and environment (HSE Levels 1-3) and has completed training in soft skills, entrepreneurship, and critical thinking. His involvement in research and development, coupled with hands-on experience in field testing, data collection, and RF network optimization, showcases his versatility. Passionate about academic excellence, he regularly engages in professional training, leadership roles, and mentorship programs to enhance his expertise in space physics and its applications. 🌍🛰️

Research Focus 🔬🌌

benjamin, joshua olamide specializes in ionospheric physics, space weather, and solar-terrestrial interactions. His research explores the global climatological performance of ionospheric models using Swarm satellite electron density measurements, evaluating their accuracy and implications for GNSS and communication systems. He has worked on latitudinal electron density profiles, comparing SWARM measurements with IRI models, and studying biophysics applications. His goal is to improve predictive models for space weather impacts on Earth, ensuring the safety and reliability of communication and navigation technologies. His research contributes to scientific advancements in space physics and atmospheric studies. 🌞🌍📡

Awards & Honors 🏆🎖️

  • [2022] Best Graduating Student – Institute of Space Science and Engineering 🏅
  • [2022] Best Graduating Student – Department of Space Physics 🏆
  • [2019] Akinrogun Trust Fund Award 💰
  • [2019] Best WAEC Result – New Era High School 🏅
  • [2007] One of the Best Junior WAEC Results – Greater Tomorrow College 🎓

Publication Top Notes

  1. “Investigation of the global climatologic performance of ionospheric models utilizing in-situ Swarm satellite electron density measurements”
    This paper was published in Advances in Space Research, Volume 75, Issue 5, pages 4274-4290, in 2025. The authors are:

    • D. Okoh
    • C. Cesaroni
    • J.B. Habarulema
    • Y. Migoya-Orué
    • B. Nava
    • L. Spogli
    • B. Rabiu
    • J. Benjamin

    The study offers a comprehensive investigation into the climatologic performance of three ionospheric models when compared to in-situ measurements from Swarm satellites. The models evaluated are the International Reference Ionosphere (IRI), NeQuick, and a 3-dimensional electron density model based on artificial neural network training of COSMIC satellite radio occultation measurements (3D-NN). The findings indicate that while all three models provide fairly accurate representations of the Swarm measurements, the 3D-NN model consistently performed better across various conditions.

  2. “Global Comparison of Instantaneous Electron Density Latitudinal Profiles from SWARM Satellites and IRI Model”
    This paper was published in Advances in Space Research in 2025. The authors are:

    • J.O. Benjamin
    • D.I. Okoh
    • B.A. Rabiu

    This study focuses on comparing instantaneous electron density latitudinal profiles obtained from Swarm satellites with predictions from the IRI model. The comparison aims to assess the accuracy of the IRI model in representing real-time electron density variations observed by the Swarm mission.

For full access to these publications, you may consider visiting the publisher’s website or accessing them through academic databases such as IEEE Xplore or ScienceDirect. If you are affiliated with an academic institution, you might have institutional access to these resources.

Conclusion

Benjamin, joshua olamide stands out as a promising researcher in space physics, with notable contributions to ionospheric studies, climatology models, and research-driven technological applications. His exceptional academic achievements, research output, leadership roles, and technical expertise position him as a deserving candidate for the Best Researcher Award.

Bilal Ramzan | Physics | Best Researcher Award

Dr. Bilal Ramzan | Physics and Astronomy | Best Researcher Award

Assistant Professor at University of Management and Technology Lahore Pakistan, Pakistan.

Dr. Bilal Ramzan is a distinguished astrophysicist and academic affiliated with the University of Agriculture, Faisalabad, Pakistan. As an HEC-approved Ph.D. supervisor, he has made significant contributions to the fields of astrophysics and space sciences. His research primarily focuses on cosmic rays, astrophysical plasma, and interstellar medium dynamics. With a strong academic background and extensive publication record, Dr. Ramzan has established himself as a leading researcher in his domain. He has collaborated with esteemed international scholars and presented his findings at global conferences. His work is widely cited, reflecting its impact on the scientific community. Dr. Ramzan is also deeply involved in mentoring young researchers, guiding them in theoretical and computational astrophysics. His dedication to advancing space sciences in Pakistan and beyond highlights his commitment to academic excellence and scientific discovery.

Professional Profile:

Education

Dr. Bilal Ramzan has a robust academic background, with a Ph.D. in Astronomy and Astrophysics from the Graduate Institute of Astronomy, National Central University, Taiwan, where he graduated in 2021 with a GPA of 3.4/4.0. He holds a Master’s degree in Physics from COMSATS Institute of Information and Technology, Lahore, Pakistan, completed in 2014, and a Bachelor’s degree in Physics from the same institution, obtained in 2011. Additionally, he pursued a Bachelor’s in Education from the University of Education, Lahore, in 2012. His early education includes pre-engineering studies at Nishtar College for Boys, Lahore, and matriculation from Nishtar School for Boys. His strong educational foundation in physics and astrophysics has equipped him with the necessary knowledge and skills to contribute significantly to space sciences and interstellar research.

Professional Experience

Dr. Bilal Ramzan is currently affiliated with the University of Agriculture, Faisalabad, Pakistan, where he serves as a researcher and academic mentor. His role as an HEC-approved Ph.D. supervisor enables him to guide doctoral candidates in cutting-edge astrophysical research. He has an extensive research background in cosmic-ray physics, astrophysical fluid dynamics, and magnetohydrodynamics. Dr. Ramzan has actively participated in numerous international conferences, presenting his findings on cosmic-ray-driven outflows and galactic evolution. His experience extends to collaborative projects with leading space research institutes, where he has contributed to numerical simulations and theoretical modeling of interstellar phenomena. His expertise is sought after for peer reviews, and he serves as a referee for reputed scientific journals in astrophysics. His professional career is marked by a commitment to scientific innovation, interdisciplinary collaboration, and academic leadership.

Research Interest

Dr. Bilal Ramzan’s research interests lie in the study of cosmic rays, astrophysical plasmas, interstellar medium dynamics, and space weather phenomena. He explores the impact of cosmic rays on galactic evolution, particularly in the formation of outflows and winds. His work delves into the behavior of astrophysical fluids under extreme conditions, utilizing magnetohydrodynamic (MHD) models to simulate cosmic-ray interactions. Dr. Ramzan is also interested in the applications of deep learning and quantum computing in astrophysics, focusing on algorithmic approaches to understanding space-time structures such as wormholes. His research integrates computational astrophysics with observational data, aiming to provide deeper insights into cosmic-ray propagation and the thermodynamic behavior of interstellar clouds. Through his studies, he seeks to unravel the fundamental mechanisms governing high-energy astrophysical processes.

Research Skills

Dr. Bilal Ramzan possesses advanced research skills in numerical simulations, theoretical modeling, and data analysis in astrophysics. His expertise in magnetohydrodynamics (MHD) allows him to develop computational models for cosmic-ray interactions and plasma dynamics. He is proficient in coding and utilizing high-performance computing techniques to simulate astrophysical environments. Dr. Ramzan is skilled in analyzing observational data from space telescopes and ground-based observatories, correlating theoretical models with real-world astronomical phenomena. His familiarity with deep learning and quantum algorithms enables him to explore innovative approaches in astrophysical research. He also has strong technical writing skills, with a track record of publishing in high-impact scientific journals. His ability to synthesize complex theoretical concepts into tangible research findings showcases his analytical acumen and scientific rigor.

Awards and Honors

Dr. Bilal Ramzan has received multiple recognitions for his contributions to astrophysical research. He has been invited to present his work at prestigious international conferences, including the COSPAR Scientific Assemblies and ASROC Meetings. His publications in renowned journals such as Astrophysical Journal, Astronomy & Astrophysics, and Scientific Reports reflect the high quality and impact of his research. His contributions to understanding cosmic-ray-driven outflows have been acknowledged by the scientific community, leading to collaborative opportunities with leading researchers. As an HEC-approved Ph.D. supervisor, he has also been recognized for his role in mentoring young scientists and advancing astrophysical research in Pakistan. His work continues to shape the field, earning him accolades for scientific excellence and academic leadership.

Publication Top Notes

  1. Galactic outflows in different geometries
    • Authors: Majeed, U., Ramzan, B.
    • Year: 2025
  2. A fluid approach to cosmic-ray modified shocks
    • Authors: Ramzan, B., Qazi, S.N.A., Salarzai, I., Rasheed, A., Jamil, M.
    • Year: 2024
    • Citations: 1
  3. The formation of invariant optical soliton structures…
    • Authors: Faridi, W.A., Iqbal, M., Ramzan, B., Akinyemi, L., Mostafa, A.M.
    • Year: 2024
    • Citations: 18
  4. Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
    • Authors: Iqbal, A., Rasheed, A., Fatima, A., Ramzan, B., Jamil, M.
    • Year: 2024
  5. Deep learning and quantum algorithms approach to investigating the feasibility of wormholes: A review
    • Authors: Rahmaniar, W., Ramzan, B., Ma’arif, A.
    • Year: 2024
    • Citations: 1
  6. Determination of the optical properties of tungsten trioxide thin film…
    • Authors: Adnan, M., Jamil, M.I., Ramzan, B., Ahmad, A., Ghani, M.U.
    • Year: 2024
  7. Propagation of dust lower hybrid wave in dusty magneto dense plasma…
    • Authors: Yaseen, A., Mir, Z., Ramzan, B.
    • Year: 2024
  8. Continuous solutions of cosmic-rays and waves in astrophysical environments
    • Authors: Irshad, K., Ramzan, B., Qazi, S.N.A., Rasheed, A., Jamil, M.
    • Year: 2023
    • Citations: 1
  9. Transonic plasma winds with cosmic-rays and waves
    • Authors: Ramzan, B., Mir, Z., Rasheed, A., Jamil, M.
    • Year: 2023
    • Citations: 2
  10. Kelvin-Helmholtz instability in magnetically quantized dense plasmas
  • Authors: Rasheed, A., Nazir, A., Fatima, A., Kiran, Z., Jamil, M.
  • Year: 2023

Conclusion

Dr. Bilal Ramzan’s remarkable contributions to astrophysics, his extensive publication record, and his commitment to academic mentorship make him a strong contender for the Best Researcher Award. His expertise in cosmic rays, space plasmas, and astrophysical fluid dynamics is evident in his high-impact research and international collaborations. His ability to integrate computational techniques with observational astrophysics highlights his innovative approach to scientific inquiry. While his achievements are significant, continued interdisciplinary collaborations and the pursuit of larger research grants could further enhance his influence in the field. Overall, Dr. Ramzan stands out as a leading researcher whose work is shaping the future of space science.

Rachid Amrani | Physics | Best Researcher Award

Dr. Rachid Amrani | Physics | Best Researcher Award

Dr. Rachid Amrani, University of Algiers, Algeria

Dr. Rachid Amrani is a faculty member at the University of Algiers, Algeria. He currently holds the position of Lecturer B, a role he has occupied since July 2023, after serving as Lecturer A from February 2018. Before that, he was an Assistant Professor at the University of Algiers from February 2017 to February 2018. Dr. Amrani has a strong research background, having worked as a Research Scientist at the Center of Development of Advanced Technologies (CDTA) in Algiers from March 2016 to January 2017. Earlier in his career, from 2011 to 2013, he served as a Research Assistant to Dr. Yvan Cuminal at the Institut D’électronique Du Sud (IES), CNRS, University of Montpellier, France. His academic and research experience spans various institutions, focusing on advanced technologies and electronics.

PROFILE

Scopus Profile

Educational Details

Dr. Rachid Amrani earned his Ph.D. from the University of Montpellier, France, in December 2013, with a thesis focused on the “Growth and Properties of Hydrogenated Silicon Thin Films Deposited Near the Nanocrystalline Amorphous Transition Region from Argon Diluted Silane Plasma.” This work reflects his deep expertise in the field of material sciences, particularly in the study of thin films. Prior to his doctoral studies, Dr. Amrani completed a Magister degree in Physics with a specialization in material sciences at Université d’Oran Es-Senia, Algeria, from 2001 to 2006. His Magister thesis explored the “Optical Properties of Nanocrystalline Silicon Films Prepared by RF Magnetron Sputtering.” His academic journey began at Université d’Oran Es-Senia, where he earned his undergraduate degree in Physics with a focus on Theoretical Physics between 1992 and 1997. Throughout his career, Dr. Amrani has demonstrated a strong foundation in both theoretical and applied physics, particularly in the study of nanomaterials and thin film technologies.

Research  Interest

Dr. Rachid Amrani’s research interests lie at the intersection of material sciences and nanotechnology, with a particular focus on the growth, deposition, and characterization of thin films. His expertise encompasses a range of advanced techniques, including Plasma Enhanced Chemical Vapor Deposition (PECVD), RF magnetron sputtering, and thermal evaporation. Dr. Amrani has extensive experience in cleanroom processes, such as UV lithography, chemical etching, and reactive ion etching, which are essential for fabricating precise nanostructures. His work in characterizing thin films involves sophisticated methods like ellipsometry, Raman scattering spectroscopy, and Atomic Force Microscopy (AFM), aiming to understand the optical and structural properties of nanocrystalline silicon films and other functional materials. Dr. Amrani’s contributions to the field are reflected in his numerous publications and presentations at international conferences, where he has shared his findings on nanomaterials for energy conversion, storage, and other cutting-edge applications in electronics and photonics.

Honours and Awards

The Journal of Non-Crystalline Solids (Elsevier) and the Journal of Nanotechnology (IOPscience) are both prestigious publications in their respective fields. The Journal of Non-Crystalline Solids focuses on the latest research in amorphous materials, including glasses, polymers, and composites, and is known for publishing cutting-edge studies that advance the understanding of non-crystalline structures. Meanwhile, the Journal of Nanotechnology provides a platform for the dissemination of research on nanoscience and nanotechnology, covering topics ranging from the synthesis and characterization of nanomaterials to their applications in various industries. These journals are widely recognized for their rigorous peer-review process and their role in promoting scientific advancements.

 

Top Notable Publications

Investigation of Structural Heterogeneities in Hydrogenated Nanocrystalline Silicon Thin Films from Argon-Diluted Silane Dusty Plasma PECVD

Authors: R. Amrani, F. Lekoui, F. Pichot, S. Oussalah, Y. Cuminal

Year: 2024

Journal: Vacuum

Volume: 229

Article ID: 113568

Citations: 0

Machine Learning-Based Method for Predicting C–V-T Characteristics and Electrical Parameters of GaAs/AlGaAs Multi-Quantum Wells Schottky Diodes

Authors: E. Garoudja, A. Baouta, A. Derbal, N. Sengouga, M. Henini

Year: 2024

Journal: Physica B: Condensed Matter

Volume: 685

Article ID: 415998

Citations: 0

Structural and Optical Properties of Highly Ag-Doped TiO2 Thin Films Prepared by Flash Thermal Evaporation

Authors: R. Amrani, F. Lekoui, E. Garoudja, S. Oussalah, S. Hassani

Year: 2024

Journal: Physica Scripta

Volume: 99(6)

Article ID: 065914

Citations: 0

Optical Parameters Extraction of Zinc Oxide Thin Films Doped with Manganese Using an Innovative Technique Based on the Dragonfly Algorithm and Their Correlation to the Structural Properties

Authors: K. Settara, F. Lekoui, H. Akkari, S. Oussalah, S. Hassani

Year: 2024

Journal: Journal of Ovonic Research

Volume: 20(3)

Pages: 365–380

Citations: 0

On the Substrate Heating Effects on Structural, Mechanical, and Linear/Non-Linear Optical Properties of Ag–Mn Co-Doped ZnO Thin Films

Authors: F. Lekoui, R. Amrani, S. Hassani, N. Hendaoui, S. Oussalah

Year: 2024

Journal: Optical Materials

Volume: 150

Article ID: 115151

Citations: 4

A B3LYP-D3 Computational Study of Electronic, Structural, and Torsional Dynamic Properties of Mono-Substituted Naphthalenes: The Effect of the Nature and Position of Substituent

Authors: A. Benalia, A. Boukaoud, R. Amrani, A. Krid

Year: 2024

Journal: Journal of Molecular Modeling

Volume: 30(3)

Article ID: 88

Citations: 2

Electrical Parameters Extraction of Diode Using Whale Optimization Algorithm

Authors: E. Garoudja, W. Filali, S. Oussalah, F. Lekoui, R. Amrani

Year: 2024

Conference: 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC 2024)

Citations: 0

Effect of Ti/TiN Thin Film Geometrical Design on the Response of RTDs

Authors: W. Filali, E. Garoudja, F. Lekoui, S. Oussalah, R. Amrani

Year: 2024

Conference: 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC 2024)

Citations: 0

Artificial Intelligence Approach to Analyze SIMS Profiles of 11B, 31P, and 75As in n- and p-type Silicon Substrates: Experimental Investigation

Authors: W. Filali, M. Boubaaya, E. Garoudja, S. Oussalah, N. Sengouga

Year: 2023

Journal: Zeitschrift für Naturforschung – Section A Journal of Physical Sciences

Volume: 78(12)

Pages: 1143–1151

Citations: 0

Elaboration and Characterization of Pure ZnO, Ag, and Ag-Fe

Thin Films: Effect of Ag and Ag-Fe Doping on ZnO Physical Properties

Authors: F. Lekoui, S. Hassani, E. Garoudja, O. Sifi, S. Oussalah

Year: 2023

Journal: Revista Mexicana de Fisica

Volume: 69(5)

Article ID: 051005

Citations: 3