Jian-Fei Sun | Engineering | Best Researcher Award

Assoc. Prof. Dr. Jian-Fei Sun | Engineering | Best Researcher Award

Assoc. Prof. Dr Jian-Fei Sun, Qingdao University of Technology, China

Dr. Jian-Fei Sun is an Associate Professor at Qingdao University of Technology, specializing in chemical engineering with a focus on green solvent technology and chemical equipment. His research has led to several SCI/EI publications and collaborations with industry, advancing environmentally sustainable solutions in chemical processes.

PROFILE

Orcid Profile

Scopus Profile

Educational Details

Assoc. Prof. Dr. Jian-Fei Sun completed his Bachelor’s degree at Shandong Normal University in 2016, followed by a Master’s degree from Inner Mongolia University of Technology in 2019. He earned his Ph.D. from Dalian University of Technology in 2023, showcasing a solid academic progression in engineering and chemical sciences. As of September 2024, Dr. Sun is a post-doctoral researcher and visiting scholar in the Department of Chemical Engineering at Qingdao University of Science and Technology.

Professional Experience

Dr. Sun is an Associate Professor at the School of Mechanical and Automotive Engineering, Qingdao University of Technology, where he has developed expertise in gas adsorption, green solvents, and chemical process equipment. His collaborations extend to the Chinese Chemical Society and the China Occupational Safety and Health Association, where he is an active member.

Research Interest

Thermodynamics and Applications of Green Solvents: Involving supercritical and CO2-expanded liquids, critical for eco-friendly chemical processes.

Nanomaterial Synthesis and Catalysis: Focused on catalytic conversion and pretreatment of biomass.

Chemical Engineering Equipment Design: Including innovations in vaporization, heat exchange, and coating processes.

Research Innovations

Dr. Sun’s research is pioneering in green solvent technology, encompassing supercritical fluids, CO2-expanded liquids, and ionic liquids. His work emphasizes the synthesis of nanomaterials, catalytic conversion of lignocellulosic biomass, and advanced chemical engineering equipment design. Notable projects include submerged combustion vaporizers, heat exchangers, jet cavitation cleaning, and supercritical cleaning technologies.

Top Notable Publications

Chen, X., Sun, J., Yu, K., Wu, J., & Yin, J. (2024). Design of novel bracket structure for falling film devolatilizer and numerical simulation of its film-forming property. Chemical Engineering Journal, 499, 156317.

Citations: 0

Sun, J., Yu, K., Zhou, D., Sun, H., & Wu, J. (2024). Continuous process for CO2 cycloaddition reaction in a fixed bed reactor: Kinetic model of reaction transport. Chemical Engineering Science, 283, 119415.

Citations: 2

Zhou, D., Sun, J., Xue, M., Xu, Q., & Yin, J. (2024). Imidazole based ionic liquid grafted graphene for enhancing the new green conversion process of carbon dioxide. Journal of Cleaner Production, 434, 140083.

Citations: 5

Sun, H., Qi, J., Sun, J., Wu, J., & Yin, J. (2024). Solubility of iron(III) and nickel(II) acetylacetonates in supercritical carbon dioxide. Chinese Journal of Chemical Engineering, 65, 29–34.

Citations: 0

Chen, X., Sun, J., Wu, J., Zhang, Y., & Yin, J. (2023). Simulation study on mass transfer characteristics and disk structure optimization of a rotating disk reactor with high viscosity region. Journal of Applied Polymer Science, 140(48), e54717.

Citations: 1

Chen, X., Wu, J., Sun, J., Yu, K., & Yin, J. (2023). Numerical investigation of film-forming characteristics and mass transfer enhancement in horizontal polycondensation kettle. Chinese Journal of Chemical Engineering, 63, 31–42.

Citations: 0

Li, X., Sun, J., Xue, M., Wu, J., & Yin, J. (2023). The imidazole ionic liquid was chemically grafted on SBA-15 to continuously catalyze carbon dioxide to prepare propylene carbonate. Journal of Environmental Chemical Engineering, 11(5), 110438.

Citations: 9

Sun, J.-F., Chen, X.-P., Li, X.-T., Li, L., & Yin, J.-Z. (2023). Theoretical study of supported ionic liquid membrane reaction and transport for CO2 cycloaddition reaction. Chemical Engineering Journal, 470, 144299.

Citations: 2

Yu, K., Liu, J., Sun, J., Shen, Z., & Yin, J. (2023). Study of polyester degradation by sub/supercritical ethanol and enhancement of carbon dioxide. Journal of Supercritical Fluids, 194, 105837.

Citations: 7

Conclusion

Dr. Sun has published numerous SCI and EI-indexed papers and collaborated with chemical enterprises to secure research funding. His contributions emphasize his dedication to both academic excellence and real-world applications, reinforcing his suitability for the Best Researcher Award through innovation and impactful research in sustainable chemical processes.

 

 

 

Sowon Choi | Engineering | Women Researcher Award

Dr. Sowon Choi | Engineering | Women Researcher Award

Dr. Sowon  Choi, Pohang University of Science and Technology, South Korea

Dr. sowon choi is a research professor at the Graduate Institute of Ferrous and Eco Materials Technology (GIFT) at Pohang University of Science and Technology (POSTECH), South Korea. Her research integrates data-driven project management methodologies through artificial intelligence (AI) and unstructured text data analysis, particularly within big data environments. Dr. choi’s work is grounded in her comprehensive experience in both onshore and offshore EPC (Engineering, Procurement, and Construction) projects, with specialized expertise in contract negotiation and project management. Her academic focus is complemented by a solid background in strategic management, planning, and marketing.

PROFILE

Orcid Profile

Educational Details

Ph.D. in Plant System Engineering (PSE), POSTECH, 2022

Master of Science in Plant System Engineering (PSE), POSTECH, 2015

Bachelor of Commerce, Double Major in Marketing & International Business, University of Auckland, 2005

Professional Experience

Dr. choi has a diverse professional background, which spans across various industries and roles. She currently serves as a research professor and postdoctoral research fellow at POSTECH, a position she has held since 2022. Before this, Dr. choi held leadership roles in prominent South Korean companies. From 2012 to 2016, she was Principal Manager at Taekyung Heavy Industries Co., Ltd., where she played a key role in managing large-scale projects. Additionally, she has experience as a Principal Consultant with Korea PMI Consulting Group and as a Principal Researcher with Korea Marketing and Retailing Consulting. Early in her career, Dr. choi worked as an Assistant Manager at Paris Croissant Co., Ltd.

Research Interest

 

AI-driven project management and analysis of unstructured text data

Big data applications in EPC project management

Strategic and marketing planning within the engineering and technology sectors

Top Notable Publications

Auto-Routing Systems (ARSs) with 3D Piping for Sustainable Plant Projects Based on Artificial Intelligence (AI) and Digitalization of 2D Drawings and Specifications

Authors: To be determined

Journal: Sustainability

Date: 2024-03-27

DOI: 10.3390/su16072770

Development of Cycloid-Shaped Roll Charging Chute for Sintering Process for Energy Decarbonization and Productivity Improvement in Steel Plants

Authors: To be determined

Journal: Energies

Date: 2024-03-23

DOI: 10.3390/en17071536

Prediction Modeling of Flue Gas Control for Combustion Efficiency Optimization for Steel Mill Power Plant Boilers Based on Partial Least Squares Regression (PLSR)

Authors: To be determined

Journal: Energies

Date: 2023-09-30

DOI: 10.3390/en16196907

A Question-Answering Model Based on Knowledge Graphs for the General Provisions of Equipment Purchase Orders for Steel Plants Maintenance

Authors: To be determined

Journal: Electronics

Date: 2023-06-01

DOI: 10.3390/electronics12112504

Modeling of Predictive Maintenance Systems for Laser-Welders in Continuous Galvanizing Lines Based on Machine Learning with Welder Control Data

Authors: To be determined

Journal: Sustainability

Date: 2023-05-07

DOI: 10.3390/su15097676

A Prediction Model for Spot LNG Prices Based on Machine Learning Algorithms to Reduce Fluctuation Risks in Purchasing Prices

Authors: To be determined

Journal: Energies

Date: 2023-05

DOI: 10.3390/en16114271

Machine Learning-Based Tap Temperature Prediction and Control for Optimized Power Consumption in Stainless Electric Arc Furnaces (EAF) of Steel Plants

Authors: To be determined

Journal: Sustainability

Date: 2023-04-08

DOI: 10.3390/su15086393

Knowledge Retrieval Model Based on a Graph Database for Semantic Search in Equipment Purchase Order Specifications for Steel Plants

Authors: To be determined

Journal: Sustainability

Date: 2023-04-06

DOI: 10.3390/su15076319

An AI-Based Automatic Risks Detection Solution for Plant Owner’s Technical Requirements in Equipment Purchase Order

Authors: To be determined

Journal: Sustainability

Date: 2022-08-12

DOI: 10.3390/su141610010

Contractor’s Risk Analysis of Engineering Procurement and Construction (EPC) Contracts Using Ontological Semantic Model and Bi-Long Short-Term Memory (LSTM) Technology

Authors: To be determined

Journal: Sustainability

Date: 2022-06-06

DOI: 10.3390/su14116938

The Engineering Machine-Learning Automation Platform (EMAP): A Big-Data-Driven AI Tool for Contractors’ Sustainable Management Solutions for Plant Projects

Authors: To be determined

Journal: Sustainability

Date: 2021-09

DOI: 10.3390/su131810384

AI and Text-Mining Applications for Analyzing Contractor’s Risk in Invitation to Bid (ITB) and Contracts for Engineering Procurement and Construction (EPC) Projects

Authors: So Won Choi (and additional authors as listed in the article)

Journal: Energies

Date: 2021-07-30

DOI: 10.3390/en14154632

Conclusion

Dr. Sowon Choi’s extensive background in data analysis, project management, and strategic planning, combined with her advanced research in AI and EPC projects, makes her an exemplary candidate for the Best Researcher Award. Her innovative work aligns closely with the award criteria, addressing sustainability, efficiency, and technological advancement in project management. Given her diverse experience and strong academic foundation, she demonstrates a well-rounded expertise that positions her as a compelling candidate for this honor.

 

 

 

Masahiro Nishida | Impact Engineering | Best Researcher Award

Dr. Masahiro Nishida | Impact Engineering | Best Researcher Award

Orcid Profile

Educational Details

B.E. in Mechanical Engineering (1991): Tokyo Institute of Technology.

M.E. in Mechanical Engineering (1993): Tokyo Institute of Technology.

Ph.D. in Mechanical Engineering (1996): Tokyo Institute of Technology, under the supervision of Professor H. Matsumoto. His thesis was titled “Evaluation Method of Mechanical Properties for Material by Phase-Sensitive Acoustic Microscope”.

 

Professional Experience

Prof. Nishida began his career as a Research Associate in the Department of Mechanical Science at Tokyo Institute of Technology from 1996 to 1997. He then joined Nagoya Institute of Technology as a Research Associate in 1997, working under Professor K. Tanaka. He progressed to Lecturer (2001-2004), Associate Professor (2004-2018), and has been a full Professor since 2018. In addition to his academic roles, he has served as the General Manager of the Quality Innovation Techno-Center at Nagoya Institute of Technology since 2022. He has also been a visiting researcher at Luleå University of Technology, Sweden, in 2009.

Research Interest

Prof. Masahiro Nishida’s research focuses on the dynamic behavior of materials under extreme conditions, with particular emphasis on hypervelocity impacts and advanced material properties. His work on hypervelocity impact explores the performance of materials like metals and plastics used in space debris bumpers, carbon fiber-reinforced plastics, and components produced through additive manufacturing. In the field of dynamic strength of advanced materials, he investigates the mechanical properties of recycled aluminum alloys, additive manufacturing materials, and biodegradable plastics using the split Hopkinson pressure bar (SHPB) technique, which allows for high-strain-rate testing. Additionally, his research into the dynamics of heterogeneous materials involves studying the behavior of aggregated soft particles and understanding how contact forces propagate within these assemblies. This combination of experimental and computational approaches provides valuable insights into the resilience and performance of materials in extreme environments.

Top Notable Publications

Effects of electron beam irradiation on hypervelocity impact behavior of carbon fiber reinforced plastic plates
Journal: Journal of Composite Materials
Published: December 2021
DOI: 10.1177/00219983211037049
Citations: Data not provided through Scopus.

Effects of the shapes and addition amounts of crosslinking reagents on the properties of poly‐3‐hydroxybutyrate/poly(caprolactone) blends
Journal: Journal of Applied Polymer Science
Published: June 2021
DOI: 10.1002/app.51210
Citations: Data not provided through Scopus.

Effect of chain extender on morphology and tensile properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blends
Journal: Materials Today Communications
Published: March 2021
DOI: 10.1016/j.mtcomm.2020.101852
Citations: Data not provided through Scopus.

Correlative analysis between morphology and mechanical properties of poly-3-hydroxybutyrate (PHB) blended with polycaprolactone (PCL) using solid-state NMR
Journal: Polymer Testing
Published: November 2020
DOI: 10.1016/j.polymertesting.2020.106780
Citations: Data not provided through Scopus.

Correlative analysis between solid-state NMR and morphology for blends of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate)
Journal: Polymer
Published: 2020
DOI: 10.1016/j.polymer.2020.122591
Citations: Data not provided through Scopus.

Effects of deformation rate on tensile properties of ramie fiber/PLA/PBAT composites
Conference: ECCM 2018 – 18th European Conference on Composite Materials
Published: 2020
EID: 2-s2.0-85084162322
Citations: Data not provided through Scopus.

Effects of gamma ray irradiation on penetration hole in and fragment size from carbon fiber reinforced composite plates in hypervelocity impacts
Journal: Composites Part B: Engineering
Published: July 2019
DOI: 10.1016/j.compositesb.2019.04.007
Citations: Data not provided through Scopus.

Influence of impact angle on size distribution of fragments in hypervelocity impacts
Journal: International Journal of Impact Engineering
Published: June 2019
DOI: 10.1016/j.ijimpeng.2019.02.006
Citations: Data not provided through Scopus.

Conclusion

Prof. Masahiro Nishida is a highly qualified candidate for the Best Researcher Award. His strong educational background, extensive research experience, leadership roles, and cutting-edge research in dynamic material properties and hypervelocity impact make him a prominent figure in mechanical engineering. His research aligns well with current industrial needs, particularly in aerospace, sustainability, and material innovation, further enhancing his candidacy for such an award.