Weidong Zhao | Engineering | Best Researcher Award

Assist. Prof. Dr. Weidong Zhao | Engineering | Best Researcher Award  

Assist. Prof. Dr. Weidong Zhao, Taiyuan University of Technology, China

Dr. Weidong Zhao is a renowned materials scientist specializing in gradient nanostructures and surface engineering. His pioneering discovery of using gradient nanostructures to enhance wear and fatigue resistance in aviation metals has led to significant advancements in the field. His work addresses the longstanding challenge of balancing strength and fatigue resistance in difficult-to-process materials like ultra-high-strength steel and titanium alloys. He has published over 20 SCI papers in international journals and developed innovative surface strengthening systems recognized worldwide for their social and economic significance.

Dr. Zhao’s contributions are highly regarded in industries such as aviation, aerospace, and nuclear engineering, where his methods have practical applications in improving metal durability and serviceability.

PROFILE

Scopus  Profile

Educational Detail

Ph.D. in Materials Science and Engineering, Focus on Gradient Nanostructures.

Master’s Degree in Materials Engineering, Specialized in Metal Surface Strengthening Techniques.

Bachelor’s Degree in Mechanical Engineering, Emphasis on Material Fatigue and Wear Resistance.

Professional Experience

Dr. Zhao is an Assistant Professor at the Taiyuan University of Technology, where he leads groundbreaking research on material surface engineering and gradient nanostructures. He has hosted and contributed to multiple high-impact research projects, including the prestigious National Science Foundation CAREER program (Grant No. CMMI 1847247) and the National Natural Science Foundation of China (Grant No. 52405403). Dr. Zhao has trained a number of master’s students, equipping them with expertise in advanced material science techniques.

Research Interests

Dr. Zhao’s research focuses on:

Gradient nanostructures for improving wear and fatigue resistance in metals.

Surface strengthening methods using multi-energy fields, including electric pulse-assisted plastic deformation.

Application of innovative techniques for improving metal serviceability in aviation, aerospace, and nuclear industries.

 

Top Notable Publications

Improvement of Corrosion and Wear Resistances of 300M Ultra High Strength Steel by Low Temperature Cathode Assisted Plasma Nitriding

Authors: Zhao, W., Liu, D., Hao, Z., Liu, Q., Zhao, J.

Journal: Surface and Coatings Technology

Year: 2024

Volume: 479, Article ID: 130518

Citations: 3

Influence of Pre-corrosion and Pre-fatigue on Fretting Fatigue Behavior of 30CrMnSiA Bolt Steel

Authors: Yang, T., Luo, W., Feng, L., Deng, W., Zhang, C.

Journal: Cailiao Daobao/Materials Reports

Year: 2024

Volume: 38(23), Article ID: 24030063

Citations: 0

Rapid Formation of a Surface Ceramic Protective Film on Ti-6Al-4V Alloy Following Laser-Assisted Ultrasonic Nanocrystal Surface Modification

Authors: Zhao, W., Liu, D., Ye, Y., Dong, Y., Ye, C.

Journal: Journal of Alloys and Compounds

Year: 2023

Volume: 965, Article ID: 171298

Citations: 4

Effect of the Ultrasonic Surface Rolling Process and Plasma Electrolytic Oxidation on the Hot Salt Corrosion Fatigue Behavior of TC11 Alloy

Authors: Shi, H., Liu, D., Jia, T., Zhang, X., Zhao, W.

Journal: International Journal of Fatigue

Year: 2023

Volume: 168, Article ID: 107443

Citations: 16

Improving Peening Efficacy Through High-Amplitude Short Duration Pulsed Current

Authors: Zhao, W., Liu, D., Zhang, H., Ye, C., Ding, H.

Journal: Journal of Alloys and Compounds

Year: 2022

Volume: 926, Article ID: 166987

Citations: 13

Improving Fatigue Performance of TiZrN/TiZr-Coated Ti-6Al-4V Alloy by Inducing a Stable Compressive Residual Stress Field

Authors: Ma, A., Liu, D., Zhang, X., Wang, R., He, G.

Journal: Journal of Alloys and Compounds

Year: 2022

Volume: 925, Article ID: 166799

Citations: 13

Effect of Pre-Hot Salt Corrosion on Hot Salt Corrosion Fatigue Behavior of the TC11 Titanium Alloy at 500 °C

Authors: Shi, H., Liu, D., Zhang, X., Jia, T., Zhao, W.

Journal: International Journal of Fatigue

Year: 2022

Volume: 163, Article ID: 107055

Citations: 16

Improvement of Traction-Traction Fatigue Properties of A100 Steel Plate-Hole-Structure by Double Shot Peening

Authors: Zhi, Y., Zhang, X., Liu, D., Wang, J., Cheng, S.

Journal: International Journal of Fatigue

Year: 2022

Volume: 162, Article ID: 106925

Citations: 11

Effect of Plasma Electrolytic Oxidation on the Hot Salt Corrosion Fatigue Behavior of the TC17 Titanium Alloy

Authors: Shi, H., Liu, D., Zhang, X., Li, M., He, Y.

Journal: Materials and Corrosion

Year: 2022

Volume: 73(4), Pages: 558–572

Citations: 8

Fatigue Performance Improvement of 7075-T651 Aluminum Alloy by Ultrasonic Nanocrystal Surface Modification

Authors: Zhang, R., Chiang, R., Ren, Z., Dong, Y., Ye, C.

Journal: Journal of Materials Engineering and Performance

Year: 2022

Volume: 31(3), Pages: 2354–2363

Citations: 5

Conclusion

Dr. Zhao exemplifies innovation, excellence, and leadership in engineering research. His breakthroughs in gradient nanostructures and metal strengthening systems hold transformative potential across multiple industries, making him an ideal candidate for the Best Researcher Award. His dedication to advancing knowledge and his substantial impact on engineering and material sciences underscore his suitability for this recognition.

 

 

 

 

 

 

 

 

 

 

 

 

Charikleia Karakosta | Engineering | Best Researcher Award

Dr. Charikleia Karakosta | Engineering | Best Researcher Award

Dr Charikleia Karakosta, National Technical University of Athens, Greece

Dr. charikleia karakosta is a senior sustainable energy and climate change expert, currently affiliated with the Greek Public Employment Service at the Ministry of Labour and Social Security and ENVIROMETRICS S.A. She has extensive expertise in energy efficiency, green economic policies, and sustainable energy project management, further enriched by her teaching and research roles at various academic institutions.

PROFILE

Orcid Profile

Educational Details

B.Sc., M.Sc. in Chemical Engineering (Grade: 8.91/10), National Technical University of Athens (NTUA), Greece (1999-2004)

M.Sc. in Energy Production and Management (Grade: 8.67/10), NTUA (2004-2006)

Ph.D. in Electrical & Computer Engineering, NTUA (2005-2014)
PhD Thesis: “Integrated Methodology for the Decision Support of the Promotion of the Effective Technology Transfer within the frame of Climate Change” (Grade: 10/10)

Professional Experience

Dr. karakosta has served as a project coordinator and expert in energy efficiency and green economic policies at NTUA’s Decision Support Systems Lab (EPU-NTUA), where she collaborated with Prof. John Psarras. Since January 2024, she has worked as a senior sustainable energy expert and project manager at ENVIROMETRICS S.A. Her responsibilities include leading sustainable energy projects, overseeing environmental assessments, and developing climate-resilient energy strategies.

In academia, she is a postdoctoral researcher at the University of Macedonia, focusing on decision support systems for sustainable energy transitions. Dr. karakosta is also an adjunct lecturer, teaching courses in operations research, the Internet of Things, and sustainable energy at the University of West Attica and the Open University of Cyprus.

Research Interests

Dr. karakosta’s research spans energy management, climate change adaptation, decision support systems, and sustainable technology transfer. Her work integrates environmental policy with technical innovations for climate resilience and low-carbon transitions.

Awards and Scholarships

ECOPOLIS Science Award (2016) for her PhD research

Onassis Foundation Scholarships for Master’s and Doctoral studies (2005-2006, 2008-2010)

State Scholarship Foundation (IKY) for academic excellence (2002-2003)

D. Thomaidis Award for scientific publications (2004-2018)

 

Top Notable Publications

A Fuzzy PROMETHEE Method for Evaluating Strategies towards a Cross-Country Renewable Energy Cooperation: The Cases of Egypt and Morocco

Authors: charikleia karakosta et al.

Year: 2024

Journal: Energies

DOI: 10.3390/en17194904

Publisher: Multidisciplinary Digital Publishing Institute

Financing Sustainable Energy Efficiency Projects: The Triple-A Case

Authors: charikleia karakosta et al.

Year: 2021

Journal: Environmental Sciences Proceedings

DOI: 10.3390/environsciproc2021011022

Publisher: Multidisciplinary Digital Publishing Institute

An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation

Authors: charikleia karakosta et al.

Year: 2020

Journal: Sustainability

DOI: 10.3390/su12072886

Publisher: Multidisciplinary Digital Publishing Institute

Analysis of Policy Scenarios for Achieving Renewable Energy Sources Targets: A Fuzzy TOPSIS Approach

Authors: charikleia karakosta et al.

Year: 2017

Journal: Energy and Environment

DOI: 10.1177/0958305X16685474

Publisher: SAGE Publications (via Scopus – Elsevier)

Exploring Opportunities and Risks for RES-E Deployment under Cooperation Mechanisms between EU and Western Balkans: A Multi-Criteria Assessment

Authors: charikleia karakosta et al.

Year: 2017

Journal: Renewable and Sustainable Energy Reviews

DOI: 10.1016/j.rser.2017.05.190

Publisher: Elsevier (via Scopus – Elsevier)

Renewable Energy Policy Dialogue towards 2030 – Editorial of the Special Issue

Authors: charikleia karakosta

Year: 2017

Journal: Energy and Environment

DOI: 10.1177/0958305X16685455

Publisher: SAGE Publications (via Scopus – Elsevier)

Conclusion

Dr. charikleia karakosta exemplifies a strong candidate for the Best Researcher Award due to her outstanding qualifications, impactful research in renewable energy policy and decision support, international recognition, and academic influence. Her continuous contributions, leadership in project management, dedication to teaching, and research accolades make her a distinguished figure in sustainable energy research.

 

 

 

Renwei Liu | Engineering | Excellence in Innovation Award

Dr. Renwei Liu | Engineering | Excellence in Innovation Award

Dr Renwei Liu, Jiangsu University of Science and Technology, China

Dr. Renwei Liu is a lecturer at Jiangsu University of Science and Technology, China, specializing in polar ships, ship-ice interaction, and marine engineering. His innovative research in peridynamics has made significant contributions to the understanding of ship-ice interactions, with numerous publications and patents. He is actively involved in both academic research and industry consultancy, working on cutting-edge projects related to Arctic operations and ice load modeling.

PROFILE

Google Scholar  Profile

Educational Details

Dr. Renwei Liu earned his Bachelor’s and Ph.D. degrees in Naval Architecture and Marine Engineering from Harbin Engineering University (2012-2021). His academic foundation laid the groundwork for his deep expertise in marine engineering, particularly in the field of polar ship design and the application of peridynamics in ship-ice interaction.

Professional Experience

Since 2021, Dr. Liu has been serving as a lecturer at the School of Naval Architecture and Marine Engineering, Jiangsu University of Science and Technology. His expertise spans various areas of naval architecture, with a particular focus on ship-ice interaction and polar ship technology. He has also contributed to consultancy and industry projects related to ice load prediction and anti-icing technologies for polar ships.

Research Interests

Dr. Liu’s primary research interests include the application of the peridynamics method in ship and marine structures, with a particular emphasis on polar ships, ice load prediction, and anti-icing technologies for Arctic operations. His work also extends to marine platform design and structural optimization for ice navigation.

Research and Innovations

Dr. Liu’s pioneering work includes introducing the peridynamics method for calculating ship ice loads, which led to the development of a numerical model for ship and ice interaction. This work resulted in the publication of the first paper in the field. His ongoing research projects include studies on the failure modes of sea ice and technologies for ice load modeling and anti-icing for Arctic operations. Notable ongoing projects include research funded by the National Natural Science Foundation of China and the Ministry of Science and Technology.

Collaborations

Dr. Liu has co-authored multiple papers with researchers from various institutions, exploring topics like sea ice structure interaction, ice load predictions, and thermomechanical removal of ice from frozen structures. Some of his prominent collaborations include publications in China Ocean Engineering and Ocean Engineering on topics like ice load prediction for ships and the dynamic response of offshore wind turbines under ice impact.

Patents

Dr. Liu holds several patents related to marine engineering, including inventions for ice recognition devices, adjustable towing systems for ice pools, and methods for measuring ice crack sizes using deep learning. His patent portfolio demonstrates his innovative approach to solving complex challenges in marine engineering and ice navigation.

Top Notable Publications

A review for numerical simulation methods of ship–ice interaction
Authors: Y. Xue, R. Liu, Z. Li, D. Han
Published in: Ocean Engineering
Year: 2020
Citations: 84
DOI: 10.1016/j.oceaneng.2020.107853

Simulation of ship navigation in ice rubble based on peridynamics
Authors: R. W. Liu, Y. Z. Xue, X. K. Lu, W. X. Cheng
Published in: Ocean Engineering
Year: 2018
Citations: 84
DOI: 10.1016/j.oceaneng.2017.11.055

Experimental and numerical investigation on self-propulsion performance of polar merchant ship in brash ice channel
Authors: C. Xie, L. Zhou, S. Ding, R. Liu, S. Zheng
Published in: Ocean Engineering
Year: 2023
Citations: 58
DOI: 10.1016/j.oceaneng.2022.113424

Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics
Authors: R. Liu, J. Yan, S. Li
Published in: Computational Particle Mechanics
Year: 2020
Citations: 49
DOI: 10.1007/s40571-020-00267-2

Peridynamic modeling and simulation of coupled thermomechanical removal of ice from frozen structures
Authors: Y. Song, R. Liu, S. Li, Z. Kang, F. Zhang
Published in: Meccanica
Year: 2020
Citations: 26
DOI: 10.1007/s11012-020-01068-2

Numerical simulations of the ice load of a ship navigating in level ice using peridynamics
Authors: Y. Xue, R. Liu, Y. Liu, L. Zeng, D. Han
Published in: Computer Modeling in Engineering & Sciences
Year: 2019
Citations: 21
DOI: 10.32604/cmes.2019.12258

Broken ice circumferential crack estimation via image techniques
Authors: J. Cai, S. Ding, Q. Zhang, R. Liu, D. Zeng, L. Zhou
Published in: Ocean Engineering
Year: 2022
Citations: 20
DOI: 10.1016/j.oceaneng.2022.111735

 

Conclusion

Dr. Renwei Liu exemplifies the qualities of an outstanding candidate for the Research for Excellence in Innovation Award. His innovative research on peridynamics, his leadership in polar ship research, and his contributions to industry applications make him a deserving nominee. His work continues to shape the future of marine engineering, polar exploration, and sustainable ice navigation technologies.

 

 

 

Morteza Khorami | Civil Engineering | Best Researcher Award

Dr. Morteza Khorami | Civil Engineering | Best Researcher Award

Orcid Profile

Educational Details

Dr. Morteza Khorami holds a Bachelor of Engineering (BEng) and Master of Engineering (MEng) in Civil Engineering, graduating with first-class honors in both degrees. He later earned his PhD in Cement Composites from Coventry University, where he received the first prize at the 2011 Postgraduate Research Symposium for his outstanding work.

Professional Experience

With over two decades of professional and academic experience, Dr. Khorami has held various roles across the UK, Oman, and Iran. His positions have included Senior Lecturer, Assistant Professor, Head of Research Department at the Building and Housing Research Centre, Deputy Head of Estates Development at a university, Course Director, Link Tutor, and Principal Investigator for research projects. As a Chartered Civil Engineer (CEng, MICE), he has made significant contributions to the construction industry, serving as a Principal Engineer, Structural Design Engineer, and Site Engineer/Inspector for building regulations. Dr. Khorami’s work encompasses a wide range of projects in commercial, residential, and educational sectors. He has also supervised six successful PhD students.

Research Interest

Dr. Khorami’s research primarily focuses on cement composites, sustainable construction materials, structural design, and low-carbon construction technologies. His notable projects include the development of a non-Portland cement blend, which reduces CO2 emissions and production costs, a groundbreaking innovation funded by the ICURe program. He has authored over 80 scientific publications, including peer-reviewed articles, books, patents, and research reports.

Top Notable Publications

Assessment of the Mechanical and Microstructural Performance of Waste Kraft Fibre Reinforced Cement Composite Incorporating Sustainable Eco-Friendly Additives

Journal: Buildings

Published: 2024-08-30

DOI: 10.3390/buildings14092725

Source: Crossref

Enhancing Sustainability in Construction: Investigating the Thermal Advantages of Fly Ash-Coated Expanded Polystyrene Lightweight Concrete

Journal: Journal of Composites Science

Published: 2024-04-21

DOI: 10.3390/jcs8040157

Source: Crossref

Influence of Calcining Temperature on the Mineralogical and Mechanical Performance of Calcined Impure Kaolinitic Clays in Portland Cement Mortars

Journal: Journal of Materials in Civil Engineering

Published: 2024-04

DOI: 10.1061/JMCEE7.MTENG-16128

Source: Crossref

Properties of Self-Compacting Concrete (SCC) Prepared with Binary and Ternary Blended Calcined Clay and Steel Slag

Journal: Infrastructures

Published: 2024-03-01

DOI: 10.3390/infrastructures9030046

Source: Crossref

Optimizing the Mechanical Properties of Cement Composite Boards Reinforced with Cellulose Pulp and Bamboo Fibers for Building Applications in Low-Cost Housing Estates

Journal: Materials

Published: 2024-01-29

DOI: 10.3390/ma17030646

Source: Crossref

Performance of a Single Source of Low-Grade Clay in a Limestone Calcined Clay Cement Mortar

Journal: Buildings

Published: 2023-12-29

DOI: 10.3390/buildings14010093

Source: Crossref

Hydration, Reactivity and Durability Performance of Low-Grade Calcined Clay-Silica Fume Hybrid Mortar

Journal: Applied Sciences

Published: 2023-10-31

DOI: 10.3390/app132111906

Source: Crossref

Optimizing Polymer-Stabilized Raw Earth Composites with Plant Fibers Reinforcement for Historic Building Rehabilitation

Journal: Buildings

Published: 2023-10-24

DOI: 10.3390/buildings13112681

Source: Crossref

Mechanical and Durability Performance of Ternary Blended Calcined Clay and Pulverized Granite Mortar Composites

Journal: Advances in Materials and Processing Technologies

Published: 2023-10-09

DOI: 10.1080/2374068X.2023.2264590

Source: Coventry University

Impact of Low-Reactivity Calcined Clay on the Performance of Fly Ash-Based Geopolymer Mortar

Journal: Sustainability

Published: 2023-09-11

DOI: 10.3390/su151813556

Source: Crossref

Expanded Polystyrene (EPS) in Concrete

Conference: AIP Conference Proceedings

Published: 2023-06-15

DOI: 10.1063/5.0117082

Source: Coventry University

Conclusion

Dr. Morteza Khorami’s comprehensive academic background, innovative research, significant industry contributions, and commitment to education make him a standout candidate for the Best Researcher Award. His work in reducing CO2 emissions through innovative cement blends and his leadership in mentoring future engineers align perfectly with the award’s focus on research excellence, innovation, and impact.

 

Slavko Đurić | Engineering | Best Researcher Award

Prof Dr. Slavko Đurić | Engineering | Best Researcher Award

 

Educational Details:

Prof. Dr. Slavko Đurić earned his Doctorate of Technical Sciences, specializing in applied mathematics, thermodynamics, and dynamic systems. His academic journey has been rooted in the exploration of partial differential equations and their applications, as well as calculus of variations in mechanics and thermodynamics. Prof. Đurić has cultivated a deep understanding of these technical sciences, which has shaped his academic and professional contributions.

Professional Experience

Prof. Dr. Slavko Đurić is a full professor with extensive teaching and research experience at the Faculty of Technical Sciences in Novi Sad, Republic of Serbia, and the Faculty of Traffic in Doboj, University of East Sarajevo, Bosnia and Herzegovina. His academic expertise spans across various disciplines, including propagation of disturbances, thermodynamics, heat and mass transfer, and applied mathematics. In his teaching roles, Prof. Đurić has delivered comprehensive lectures on these subjects, fostering the next generation of engineers and technical scientists. His professional dedication to teaching and research excellence earned him the Plaque of the Faculty of Transportation for outstanding contributions in these areas.

Research Interest

Prof. Đurić’s research is centered around partial differential equations and their applications in mechanics and thermodynamics. He is particularly interested in dynamic systems and the calculus of variations, which play critical roles in advancing theoretical and applied research in engineering and technical sciences. Prof. Đurić has authored over 50 scientific papers, with 21 published in Science Citation Index (SCI) journals, highlighting his contributions to the field and his influence on global scientific knowledge.

Top Notable Publications

 

Conclusion