Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia at University of Sistan and Baluchestan, Iran

Dr. Ehsan Adibnia ๐ŸŽ“ is a dedicated academic researcher in electrical engineering โšก, specializing in cutting-edge fields such as artificial intelligence ๐Ÿค–, machine learning ๐Ÿ“Š, deep learning ๐Ÿง , nanophotonics ๐Ÿ’ก, optics ๐Ÿ”ฌ, and plasmonics โœจ. He is proficient in Python ๐Ÿ, MATLAB ๐Ÿงฎ, and Visual Basic, and utilizes simulation tools like Lumerical ๐Ÿ“ˆ, COMSOL ๐Ÿงช, and RSoft ๐Ÿ”ง to drive innovative research. Fluent in English ๐Ÿ‡ฌ๐Ÿ‡ง and Persian ๐Ÿ‡ฎ๐Ÿ‡ท, Dr. Adibnia contributes to academic conferences and peer-reviewed journals ๐Ÿ“š. He is currently pursuing his Ph.D. and actively engaged in interdisciplinary scientific exploration ๐ŸŒ.

Professional Profile:

Orcid

Scopus

Google Scholar

๐Ÿ”น Education & Experienceย 

๐ŸŽ“ Ph.D. in Electrical Engineering โ€“ University of Sistan and Baluchestan, Zahedan, Iran (Expected 2025)
๐ŸŽ“ B.S. in Electrical Engineering โ€“ University of Sistan and Baluchestan, Zahedan, Iran (2014)
๐Ÿง‘โ€๐Ÿ’ผ Executive Committee Member โ€“ 27th Iranian Conference on Optics and Photonics & 13th Conference on Photonic Engineering and Technology
๐Ÿ–‹๏ธ Assistant Editor โ€“ International Journal (Name not specified)
๐Ÿ” Researcher โ€“ Actively engaged in interdisciplinary AI & photonics research projects

๐Ÿ”น Professional Developmentย 

Dr. Ehsan Adibnia continually enhances his professional growth through active participation in conferences ๐Ÿง‘โ€๐Ÿซ, committee leadership ๐Ÿ—‚๏ธ, and editorial work ๐Ÿ“‘. He develops algorithms and conducts simulations using advanced tools such as Lumerical ๐Ÿ”ฌ, COMSOL ๐Ÿงช, and RSoft ๐Ÿ’ป. His expertise in AI and photonics drives innovative research and collaboration ๐ŸŒ. He also hones his programming skills in MATLAB ๐Ÿงฎ, Python ๐Ÿ, and VBA ๐Ÿง , ensuring precision in modeling and data analysis. His hands-on knowledge in PLC systems ๐Ÿค– and industrial automation makes him versatile across both academic and applied research settings ๐Ÿญ.

๐Ÿ”น Research Focusย 

Dr. Adibniaโ€™s research focuses on the fusion of artificial intelligence ๐Ÿค– and photonics ๐Ÿ’ก. His work explores machine learning ๐Ÿ“Š, deep learning ๐Ÿง , nanophotonics ๐Ÿ”ฌ, plasmonics โœจ, optical switching ๐Ÿ”, and slow light ๐Ÿข technologies. He is particularly interested in leveraging these technologies in biosensors ๐Ÿงซ, metamaterials ๐Ÿ”ท, and quantum optics โš›๏ธ. Through simulation and algorithm development, he aims to optimize performance in optoelectronic and photonic systems ๐Ÿ”. His interdisciplinary research bridges electrical engineering with physics and AI, creating advanced systems for diagnostics, sensing, and smart environments ๐ŸŒ.

๐Ÿ”น Awards & Honorsย 

๐Ÿ… Executive Committee Role โ€“ 27th Iranian Conference on Optics and Photonics
๐Ÿ… Executive Committee Role โ€“ 13th Iranian Conference on Photonic Engineering and Technology
๐Ÿ“œ Assistant Editor โ€“ International scientific journal (name not specified)
๐Ÿง  Scopus-indexed Researcher โ€“ Scopus ID: 58485414000

Publication Top Notes

๐Ÿ”น High-performance and compact photonic crystal channel drop filter using P-shaped ring resonator

  • Journal: Results in Optics

  • Date: Dec 2025

  • DOI: 10.1016/j.rio.2025.100817

  • Summary: Proposes a novel P-shaped ring resonator design for channel drop filters in photonic crystal structures. Focuses on achieving high performance in terms of compactness and spectral selectivity for integrated optical circuits.

๐Ÿ”น Optimizing Few-Mode Erbium-Doped Fiber Amplifiers for high-capacity optical networks using a multi-objective optimization algorithm

  • Journal: Optical Fiber Technology

  • Date: Sep 2025

  • DOI: 10.1016/j.yofte.2025.104186

  • Summary: Introduces a multi-objective optimization approach for designing few-mode EDFAs, targeting performance improvements in next-gen high-capacity optical networks.

๐Ÿ”น Inverse design of octagonal plasmonic structure for switching using deep learning

  • Journal: Results in Physics

  • Date: Apr 2025

  • DOI: 10.1016/j.rinp.2025.108197

  • Summary: Utilizes deep learning for the inverse design of an octagonal plasmonic structure used in optical switching, demonstrating enhanced precision and compact design capability.

๐Ÿ”น Chirped apodized fiber Bragg gratings inverse design via deep learning

  • Journal: Optics & Laser Technology

  • Date: 2025

  • DOI: 10.1016/J.OPTLASTEC.2024.111766

  • WOS UID: WOS:001311493000001

  • Summary: Applies deep learning to the inverse design of chirped apodized fiber Bragg gratings, optimizing the spectral characteristics for filtering and sensing applications.

๐Ÿ”น Inverse Design of FBG-Based Optical Filters Using Deep Learning: A Hybrid CNN-MLP Approach

  • Journal: Journal of Lightwave Technology

  • Date: 2025

  • DOI: 10.1109/JLT.2025.3534275

  • Summary: Proposes a hybrid CNN-MLP architecture to design fiber Bragg grating (FBG) optical filters, improving accuracy and speed in the inverse design process using deep learning techniques.

Conclusion

Dr. Adibnia is still in the process of completing his Ph.D., his broad technical expertise, multidisciplinary research focus, early academic leadership roles, and active participation in both national and international platforms make him a highly promising candidate for the Best Academic Researcher Award in the early-career researcher or emerging researcher category.

Yun Zhao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Yun Zhao | Engineering | Best Researcher Award

Yun Zhao at Northwest Normal University, China

Dr. Yun Zhao ๐ŸŽ“ is an Associate Professor at the College of Physics and Electronic Engineering, Northwest Normal University ๐Ÿซ, since 2020. He earned his Ph.D. in Materials Science and Engineering ๐Ÿงช from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences ๐Ÿ‡จ๐Ÿ‡ณ, in 2020. Shortly after, he joined the Ningbo Institute of Materials Technology and Engineering ๐Ÿ”ฌ as a postdoctoral researcher. His work focuses on thin film photodetectors ๐Ÿ“ธ and semiconductor devices ๐Ÿ’ก. Dr. Zhao is passionate about next-gen optoelectronics and is actively contributing to innovation in functional materials and device engineering ๐Ÿš€.

Professional Profile:

Orcid

Scopus

๐ŸŽ“ Education & Experienceย 

  • ๐Ÿ“š Ph.D. in Materials Science and Engineering, Lanzhou Institute of Chemical Physics, CAS โ€“ 2020

  • ๐Ÿง‘โ€๐Ÿซ Postdoctoral Researcher, Ningbo Institute of Materials Technology and Engineering, CAS

  • ๐Ÿ‘จโ€๐Ÿซ Associate Professor, College of Physics and Electronic Engineering, Northwest Normal University โ€“ Since 2020

๐Ÿ“ˆ Professional Developmentย 

Dr. Yun Zhao continuously engages in academic and research development through national and institutional collaborations ๐Ÿค. His postdoctoral work at the prestigious Ningbo Institute of CAS sharpened his experimental techniques and deepened his expertise in advanced semiconductors โš™๏ธ. As an associate professor, he mentors young researchers ๐Ÿ‘จโ€๐Ÿ”ฌ and collaborates on interdisciplinary projects across optics, electronics, and nanotechnology ๐Ÿ”. He regularly attends academic conferences, publishes in reputed journals ๐Ÿ“„, and reviews scientific manuscripts. His dedication to professional growth ensures he stays at the forefront of innovation in functional materials and optoelectronic devices ๐ŸŒ.

๐Ÿ”ฌ Research Focusย 

Dr. Yun Zhaoโ€™s research primarily revolves around thin film photodetectors ๐Ÿ“ธ and semiconductor devices โšก. His focus lies in designing and fabricating new materials with enhanced sensitivity, stability, and performance for light-sensing technologies ๐ŸŒž. He explores emerging materials such as perovskites and nanostructures ๐ŸŒฑ for integration into flexible and wearable electronics ๐Ÿงค. His work bridges the gap between material science and applied electronics, aiming to revolutionize future optoelectronic systems ๐Ÿ”‹. The end goal of his research is to contribute to high-performance, low-cost, and energy-efficient devices for real-world applications ๐Ÿš—๐Ÿ“ฑ.

๐Ÿ† Awards and Honorsย 

  • ๐ŸŽ–๏ธ Ph.D. fellowship from the Chinese Academy of Sciences

  • ๐Ÿ… Postdoctoral appointment at Ningbo Institute of Materials Technology and Engineering (CAS)

  • ๐Ÿ† Recognized for outstanding research contributions in thin film photodetectors

  • ๐Ÿ“œ Multiple peer-reviewed publications in reputed international journals

Publication Top Notes

1. Understanding Proton Radiation-Induced Degradation Mechanisms in Cuโ‚‚ZnSn(S,Se)โ‚„ Kesterite Thin-Film Solar Cells

Journal: Solar Energy
Date: May 2025
DOI: 10.1016/j.solener.2025.113450
Summary:
This study investigates how proton radiation affects the stability and performance of Cuโ‚‚ZnSn(S,Se)โ‚„ (CZTSSe) thin-film solar cells. Proton radiation is relevant for space applications where solar cells are exposed to high-energy particles. The paper likely explores:

  • Changes in carrier lifetimes and defect states post-irradiation.

  • Structural or compositional changes in the absorber layer.

  • Strategies to mitigate degradation for improved radiation tolerance.

2. Multifunctional Artificial Electric Synapse of MoSeโ‚‚-Based Memristor toward Neuromorphic Application

Journal: The Journal of Physical Chemistry Letters
Date: February 6, 2025
DOI: 10.1021/acs.jpclett.4c03353
Summary:
This article presents a MoSeโ‚‚-based memristor designed to emulate biological synapses. The work focuses on neuromorphic computing, highlighting:

  • Synaptic plasticity behaviors (e.g., potentiation/depression).

  • Multifunctionality (possibly electrical + optical control).

  • Performance metrics like switching speed, retention, and endurance.

3. Exploring the Promoting Effect of Lanthanum Passivation on the Photovoltaic Performance of CZTSSe Solar Cells

Journal: The Journal of Chemical Physics
Date: December 21, 2024
DOI: 10.1063/5.0244645
Summary:
This paper studies how lanthanum (La) passivation enhances CZTSSe solar cell efficiency. Key aspects likely include:

  • Reduction in defect densities at grain boundaries or interfaces.

  • Improvements in open-circuit voltage and fill factor.

  • Insights into Laโ€™s role in modifying electronic structure or surface chemistry.

4. Electrical-Light Coordinately Modulated Synaptic Memristor Based on Tiโ‚ƒCโ‚‚ MXene for Near-Infrared Artificial Vision Applications

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c02281
Summary:
This research showcases a Tiโ‚ƒCโ‚‚ MXene-based memristor that responds to both electrical and light inputs, mimicking the retina for near-infrared vision. Highlights include:

  • Dual-mode modulation (electrical and optical).

  • Application in neuromorphic visual systems.

  • Spectral response analysis and synaptic behavior simulation.

5. Multicolor Fully Light-Modulated Artificial Synapse Based on P-MoSeโ‚‚/PxOy Heterostructured Memristor

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c01980
Summary:
This study introduces a heterostructured memristor combining P-doped MoSeโ‚‚ and PxOy, enabling light-tuned synaptic responses. Likely contributions:

  • Multicolor light sensitivity for multi-channel processing.

  • Photonic modulation of conductance states.

  • Integration prospects for optical neuromorphic systems.

Conclusion

Dr. Yun Zhao is highly suitable for the Best Researcher Award, particularly in categories related to emerging materials, device physics, or engineering sciences. His rapid academic progression, focused and relevant research in photodetectors and semiconductors, and training at top-tier institutions within the Chinese Academy of Sciences establish him as a promising and impactful researcher. Recognition through such an award would be both meritorious and motivating for his continued contributions to the field.

T Pramod | Engineering | Best Researcher Award

Mr. T Pramod | Engineering | Best Researcher Award

Research Scholar at Kalasalingam Academy of Research and Education, India

T. Pramod is a dedicated mechanical engineering professional with significant experience in research and development. He holds a Masterโ€™s degree in Engineering by Research from Visvesvaraya Technological University, specializing in mechanical systems. Pramod has worked with leading organizations like ISRO, TERI, CPRI, and CMTI, focusing on cutting-edge research in thermal spray coatings, polymer nano composites, and mechanical characterization. His passion for innovation and technical excellence is reflected in his contributions to scientific publications and technical committees. His experience spans metrology, optics inspection, and the development of fire retardant nano composites. ๐ŸŒŸ๐Ÿ”ฌ๐Ÿ“š

Professional Profile

Orcid

Education and Experience:

Education:

  • M.Sc. Engineering by Research (Mechanical), Visvesvaraya Technological University & Central Power Research Institute, Bangalore โ€“ 62.83% (2018) ๐ŸŽ“
  • B.E. (Mechanical), Visvesvaraya Technological University, M.V.J College of Engineering, Bangalore โ€“ 64.17% (2011) ๐ŸŽ“
  • PUC (PCMB), Pre University Board, Sree Cauvery College, Bangalore โ€“ 54.33% (2007) ๐ŸŽ“
  • SSLC (Science), Central Board, Kendriya Vidyalaya D.R.D.O Township, Bangalore โ€“ 58.60% (2005) ๐ŸŽ“

Experience:

  • Technical Assistant, Laboratory for Electro Optics Systems (LEOS-ISRO), Bangalore (Sept 2023 – Feb 2024) ๐Ÿ› ๏ธ
  • Research Consultant, The Energy and Resources Institute (TERI-SRC), Bangalore (Jan 2018 – Nov 2022) ๐Ÿ”ฌ
  • Research Fellow, Central Power Research Institute (CPRI), Bangalore (May 2013 – July 2016) ๐Ÿ”ฌ
  • Graduate Engineer, Central Manufacturing Technology Institute (CMTI), Bangalore (Sept 2011 – May 2013) โš™๏ธ

Professional Development:

Pramod has been actively involved in advancing his technical skills and knowledge. He has participated in numerous professional forums, including being a technical committee member at national conferences such as the Additive Manufacturing in Aerospace and Defense and Residual Stress Seminar. He serves as a review board member in Medicon Engineering Themes and as an associate editor for PriMera Scientific Publications. His contributions to various research areas are evident in the manuscripts he reviews, such as investigations into erosion damage and the conductivity of polymer composite electrolytes. ๐Ÿ“š๐ŸŒ๐Ÿ’ก

Research Focus:

Pramodโ€™s research primarily revolves around advanced materials and manufacturing processes, with a focus on thermal spray coatings, polymer nano composites, and erosion behavior in mechanical systems. He has worked on developing fire retardant materials, particularly for medium voltage cable sheathing applications. Additionally, his research includes cavitation effects on hydro turbine steels and coatings, showcasing his expertise in experimental and numerical methods for analyzing material behavior under harsh conditions. His work aims to innovate and enhance material properties for industrial applications. ๐Ÿ”ฌโš™๏ธ๐Ÿ’ก

Awards and Honors:

  • Review Board Member, Medicon Engineering Themes (ISSN2834-7218) ๐Ÿ“œ
  • Associate Editor, PriMera Scientific Publications ๐Ÿ“œ
  • United Group Research Award, for outstanding research (2019) ๐Ÿ†
  • Gold Medal, for securing 1st class in B.Sc. (Hons.) Physics ๐Ÿฅ‡

Publication Top Notes

  • Title: Mechanical and flame retardant characteristics of PC/ABS composites: effect of loading co-microencapsulated flame retardant additive along with silane treated nanoclay and functionalized MWCNT as fillers
    Authors: T. Pramod
    Journal: Advanced Composite Materials
    Year: 2025
    DOI: 10.1080/09243046.2025.2475600
    If you’re looking for the full text, you can usually access the publication through academic databases or the journalโ€™s website using the DOI link provided. Alternatively, if you donโ€™t have access, you might consider requesting it through your institutionโ€™s library or reaching out directly to the author for a copy.