Yun Zhao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Yun Zhao | Engineering | Best Researcher Award

Yun Zhao at Northwest Normal University, China

Dr. Yun Zhao 🎓 is an Associate Professor at the College of Physics and Electronic Engineering, Northwest Normal University 🏫, since 2020. He earned his Ph.D. in Materials Science and Engineering 🧪 from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences 🇨🇳, in 2020. Shortly after, he joined the Ningbo Institute of Materials Technology and Engineering 🔬 as a postdoctoral researcher. His work focuses on thin film photodetectors 📸 and semiconductor devices 💡. Dr. Zhao is passionate about next-gen optoelectronics and is actively contributing to innovation in functional materials and device engineering 🚀.

Professional Profile:

Orcid

Scopus

🎓 Education & Experience 

  • 📚 Ph.D. in Materials Science and Engineering, Lanzhou Institute of Chemical Physics, CAS – 2020

  • 🧑‍🏫 Postdoctoral Researcher, Ningbo Institute of Materials Technology and Engineering, CAS

  • 👨‍🏫 Associate Professor, College of Physics and Electronic Engineering, Northwest Normal University – Since 2020

📈 Professional Development 

Dr. Yun Zhao continuously engages in academic and research development through national and institutional collaborations 🤝. His postdoctoral work at the prestigious Ningbo Institute of CAS sharpened his experimental techniques and deepened his expertise in advanced semiconductors ⚙️. As an associate professor, he mentors young researchers 👨‍🔬 and collaborates on interdisciplinary projects across optics, electronics, and nanotechnology 🔍. He regularly attends academic conferences, publishes in reputed journals 📄, and reviews scientific manuscripts. His dedication to professional growth ensures he stays at the forefront of innovation in functional materials and optoelectronic devices 🌐.

🔬 Research Focus 

Dr. Yun Zhao’s research primarily revolves around thin film photodetectors 📸 and semiconductor devices ⚡. His focus lies in designing and fabricating new materials with enhanced sensitivity, stability, and performance for light-sensing technologies 🌞. He explores emerging materials such as perovskites and nanostructures 🌱 for integration into flexible and wearable electronics 🧤. His work bridges the gap between material science and applied electronics, aiming to revolutionize future optoelectronic systems 🔋. The end goal of his research is to contribute to high-performance, low-cost, and energy-efficient devices for real-world applications 🚗📱.

🏆 Awards and Honors 

  • 🎖️ Ph.D. fellowship from the Chinese Academy of Sciences

  • 🏅 Postdoctoral appointment at Ningbo Institute of Materials Technology and Engineering (CAS)

  • 🏆 Recognized for outstanding research contributions in thin film photodetectors

  • 📜 Multiple peer-reviewed publications in reputed international journals

Publication Top Notes

1. Understanding Proton Radiation-Induced Degradation Mechanisms in Cu₂ZnSn(S,Se)₄ Kesterite Thin-Film Solar Cells

Journal: Solar Energy
Date: May 2025
DOI: 10.1016/j.solener.2025.113450
Summary:
This study investigates how proton radiation affects the stability and performance of Cu₂ZnSn(S,Se)₄ (CZTSSe) thin-film solar cells. Proton radiation is relevant for space applications where solar cells are exposed to high-energy particles. The paper likely explores:

  • Changes in carrier lifetimes and defect states post-irradiation.

  • Structural or compositional changes in the absorber layer.

  • Strategies to mitigate degradation for improved radiation tolerance.

2. Multifunctional Artificial Electric Synapse of MoSe₂-Based Memristor toward Neuromorphic Application

Journal: The Journal of Physical Chemistry Letters
Date: February 6, 2025
DOI: 10.1021/acs.jpclett.4c03353
Summary:
This article presents a MoSe₂-based memristor designed to emulate biological synapses. The work focuses on neuromorphic computing, highlighting:

  • Synaptic plasticity behaviors (e.g., potentiation/depression).

  • Multifunctionality (possibly electrical + optical control).

  • Performance metrics like switching speed, retention, and endurance.

3. Exploring the Promoting Effect of Lanthanum Passivation on the Photovoltaic Performance of CZTSSe Solar Cells

Journal: The Journal of Chemical Physics
Date: December 21, 2024
DOI: 10.1063/5.0244645
Summary:
This paper studies how lanthanum (La) passivation enhances CZTSSe solar cell efficiency. Key aspects likely include:

  • Reduction in defect densities at grain boundaries or interfaces.

  • Improvements in open-circuit voltage and fill factor.

  • Insights into La’s role in modifying electronic structure or surface chemistry.

4. Electrical-Light Coordinately Modulated Synaptic Memristor Based on Ti₃C₂ MXene for Near-Infrared Artificial Vision Applications

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c02281
Summary:
This research showcases a Ti₃C₂ MXene-based memristor that responds to both electrical and light inputs, mimicking the retina for near-infrared vision. Highlights include:

  • Dual-mode modulation (electrical and optical).

  • Application in neuromorphic visual systems.

  • Spectral response analysis and synaptic behavior simulation.

5. Multicolor Fully Light-Modulated Artificial Synapse Based on P-MoSe₂/PxOy Heterostructured Memristor

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c01980
Summary:
This study introduces a heterostructured memristor combining P-doped MoSe₂ and PxOy, enabling light-tuned synaptic responses. Likely contributions:

  • Multicolor light sensitivity for multi-channel processing.

  • Photonic modulation of conductance states.

  • Integration prospects for optical neuromorphic systems.

Conclusion

Dr. Yun Zhao is highly suitable for the Best Researcher Award, particularly in categories related to emerging materials, device physics, or engineering sciences. His rapid academic progression, focused and relevant research in photodetectors and semiconductors, and training at top-tier institutions within the Chinese Academy of Sciences establish him as a promising and impactful researcher. Recognition through such an award would be both meritorious and motivating for his continued contributions to the field.

Svetislav Savovic | Engineering | Best Researcher Award

Prof. Dr. Svetislav Savovic | Engineering | Best Researcher Award

prof. Dr. Svetislav Savovic, University of Kragujevac, Serbia

prof. dr svetislav savovic is a distinguished physicist and professor at the university of kragujevac, serbia. With extensive expertise in optics, computational physics, and nuclear physics, he has contributed significantly to research in photonics, material science, and radiation measurements. He has collaborated with leading international institutions and is actively involved in advancing optical fiber technologies and experimental nuclear physics.

PROFILE

Scopus Profile

Educational Detail

PhD in Physics, university of kragujevac, serbia

MSc in Physics, university of belgrade, serbia

BSc in Physics, university of kragujevac, serbia

Professional Experience

Professor, university of kragujevac, faculty of science, serbia
December 2009 – present

Associate Professor, university of kragujevac, faculty of science, serbia
February 2004 – December 2009

Assistant Professor, university of kragujevac, faculty of science, serbia
September 1997 – February 2004

Visiting Professor/Researcher Positions:

Sapienza University of Rome, Italy (December 2019)

University of Applied Sciences, Leipzig, Germany (June 2018)

Polytechnic University of Hong Kong, Hong Kong (2015-2017, multiple terms)

City University of Hong Kong, Hong Kong (Senior Research Fellow, 3 years, 2000-2019)

Centre Recherche Nucleaires (CRN), Strasbourg, France (May-June 1991)

Aristotle University, Thessaloniki, Greece (Multiple terms, 1990-2009)

International Centre for Theoretical Physics, Trieste, Italy (1988-1990)

University of Poznan and University of Krakow, Poland (September-October 1990)

Teaching Experience

prof. savovic has extensive teaching expertise in the following areas:

Photonics

Metrology

Experimental techniques in physics

Numerical methods and simulations in physics

Informatics and computer programming

Laboratory of modern physics

Biophysics

Atomic physics

Monte-Carlo methods

Nuclear physics

Computational biophysics

Research Interests

Optics and photonics

Computational physics

Monte-Carlo methods

Partial differential equations

Experimental nuclear physics

Radiation measurements

Material science

Research Projects

Computer modeling of deflection-curvature sensors (1999-2000, Hong Kong)

Modal curvature gauge development (2000-2003, Hong Kong)

Mode coupling and power transfer in polymer optical fibers (2005-2009, Hong Kong)

Effects of gamma radiation on step-index plastic optical fibers (2011-2012, Hong Kong)

Advancements in W-type and graded-index plastic optical fibers (2013-2019, Hong Kong)

Characterization and design of photonic crystal fibers (2021-2025, Serbia, Hong Kong, UAE)

Nuclear Physics:

High-energy experimental nuclear physics (1997-2000, Serbia)

Standard Model parameter measurements and new particle searches (2006-2010, CERN, Geneva)

Member of the ATLAS collaboration at CERN (2006-2010)

Mathematics:

Numerical solutions for Stefan problems with accuracy and efficiency emphasis (2002-2003, Hong Kong)

Key Achievements

Long-term international collaborations across Europe and Asia.

Published groundbreaking research in optics and nuclear physics.

Developed innovative optical fiber technologies for sensing and data transmission.

Contributed to the ATLAS experiment at CERN, advancing particle physics research.

Top Notable Publications

Interference mitigation using optimised angle diversity receiver in LiFi cellular network
Zeng, Z., Chen, C., Wu, X., Safari, M., Haas, H.
Optics Communications, 2025, 574, 131125.
Citations: 0

Theoretical investigation of the space division multiplexing capacity of multimode step-index plastic optical fibers
Savović, S., Aidinis, K., Chen, C., Min, R.
Optik, 2024, 311, 171945.
Citations: 0

Influence of launch light beam conditions on the bandwidth in multimode graded-index microstructured POFs
Simović, A., Savović, S., Drljača, B., Chen, C., Min, R.
Applied Optics, 2024, 63(22), pp. 5926–5930.
Citations: 0

Enhancing OFDM with index modulation using heuristic geometric constellation shaping and generalized interleaving for underwater VLC
Zhao, Y., Chen, C., Zhong, X., Lin, B., Savović, S.
Optics Express, 2024, 32(8), pp. 13720–13732.
Citations: 5

Application of the power flow equation in modeling bandwidth in polymer optical fibers: a review
Drljača, B., Savović, S., Simović, A., Aidinis, K., Min, R.
Optical and Quantum Electronics, 2024, 56(4), 547.
Citations: 2

0.5-bit/s/Hz fine-grained adaptive OFDM modulation for bandlimited underwater VLC
Nie, Y., Chen, C., Savović, S., Zeng, Z., Shen, G.
Optics Express, 2024, 82(3), pp. 4537–4552.
Citations: 4

New method for the investigation of mode coupling in graded-index polymer photonic crystal fibers using the Langevin stochastic differential equation
Savović, S., Djordjevich, A., Aidinis, K., Chen, C., Min, R.
Frontiers in Physics, 2024, 12, 1479206.
Citations: 0

Wavelength dependent transmission in multimode graded-index microstructured polymer optical fibers
Simović, A., Savović, S., Wang, Z., Aidinis, K., Chen, C.
Frontiers in Physics, 2024, 12, 1340505.
Citations: 1

Theoretical and experimental investigation of the steady-state power distribution in multimode step-index plastic optical fibers
Dai, W., Savović, S., Zhao, C., Shao, R., Min, R.
Optical Fiber Technology, 2023, 81, 103531.
Citations: 2

Investigation of mode coupling in strained and unstrained multimode step-index POFs using the Langevin equation
Savović, S., Aidinis, K., Djordjevich, A., Min, R.
Heliyon, 2023, 9(7), e18156.
Citations: 1

Conclusion

Considering Prof. Dr. Svetislav Savovic’s vast academic qualifications, prolific research contributions, and impactful teaching and international collaborations, he is highly suitable for the Research for Best Researcher Award. His career epitomizes the values of innovation, academic excellence, and societal impact that the award seeks to honor.