Prof. Dr. Lijun You | Engineering | Best Researcher Award

Prof. Dr. Lijun You | Engineering | Best Researcher Award

Professor at South China University of Technology, China

Prof. Lijun You, a leading scholar in food science, currently serves as a professor at the School of Food Science and Engineering, South China University of Technology (SCUT). With over two decades of academic and research engagement, he has carved a specialized niche in polysaccharide science—exploring their degradation pathways, molecular structures, biofunctions, and biomedical applications. His international exposure includes a formative research stint at Cornell University, USA. He has authored more than 160 peer-reviewed publications, garnering over 8,000 citations and achieving an impressive h-index of 53. His investigations span from seaweed-derived polysaccharides to their transformative impact on skin health, inflammation, gut ecology, and wound repair. As department director since 2016 and professor since 2020, he has guided both institutional growth and scientific inquiry. Prof. You’s innovative contributions not only advance polysaccharide-based therapeutics but also position him as a recognized authority in food bioactives and functional biomaterials research.

Professional Profile 

Education

Prof. Lijun You’s educational journey began and flourished at South China University of Technology, where he earned both his bachelor’s (2001–2005) and doctoral degrees (2005–2010) in Food Science. His doctoral research laid a strong foundation for his future exploration of polysaccharides and their multifaceted applications in health and medicine. To complement his domestic training, he expanded his academic horizon internationally by spending a year (2009–2010) at Cornell University, USA, as a non-degree scholar. There, he gained vital exposure to advanced methodologies and interdisciplinary food science paradigms. This combination of strong local grounding and international perspective has deeply informed his research philosophy and academic rigor. His educational path is emblematic of a scholar committed to lifelong learning, cross-border collaboration, and translational research. This fusion of technical depth and global awareness has propelled Prof. You into the forefront of food biochemistry and polysaccharide innovation.

Professional Experience

Prof. Lijun You’s professional ascent within the South China University of Technology is marked by leadership, mentorship, and research excellence. Since joining the School of Food Science and Engineering, he has taken on progressive responsibilities, culminating in his promotion to full professor in 2020. He assumed the role of Department Director of Food Science in 2016, where he continues to oversee academic strategy, curriculum development, and collaborative research initiatives. Prof. You’s administrative acumen complements his scientific pursuits, allowing him to foster a research-driven academic culture within the department. Through his leadership, SCUT’s food science program has gained visibility in polysaccharide research and international academic networks. His career reflects a rare synergy of educator, manager, and innovator—advancing both the scholarly community and institutional reputation. His professional milestones underscore a dedication to excellence, from teaching and mentoring to groundbreaking explorations in bioactive compounds and functional materials.

Research Interests

At the heart of Prof. Lijun You’s scientific mission lies an intense focus on polysaccharides—complex carbohydrates with vast therapeutic potential. His research encompasses four interconnected domains: the controlled degradation of seaweed polysaccharides, detailed analysis of their molecular architecture, the examination of their bioactive roles (notably in anti-photoaging, anti-inflammatory functions, and gut microbiota modulation), and the development of polysaccharide-based hydrogels for biomedical uses like wound healing. His multidisciplinary work bridges food science, biochemistry, pharmacology, and materials engineering, offering insights into the therapeutic potential of natural biopolymers. By decoding structure–function relationships, Prof. You reveals how polysaccharides can serve as nutraceuticals and advanced wound-care agents. His contributions have shaped not just scholarly discourse, but also future prospects in functional foods and regenerative medicine. With over 8,000 citations and a publication record of 166 scientific articles, his research continues to guide the field toward innovative health-promoting solutions grounded in food-derived compounds.

Awards and Honors

While specific awards and honors are not listed, Prof. Lijun You’s distinguished citation metrics—over 8,000 citations and an h-index of 53—stand as testament to his widespread recognition in the global research community. These achievements suggest a strong impact across scientific disciplines, especially within polysaccharide and functional food research. His selection for an international academic exchange at Cornell University indicates peer recognition of his potential early in his career. In addition, his longstanding leadership as department director reflects institutional confidence in his strategic vision and academic leadership. His frequent publication in high-impact journals and sustained research output also imply numerous internal and external acknowledgments. Though formal accolades are not detailed here, Prof. You’s academic footprint and leadership roles highlight a scholar whose work has earned both national and international esteem, reinforcing his role as a key contributor to the advancement of food science and health-related biomaterials.

Publications Top Notes

  • Title: Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates
    Authors: L. You, M. Zhao, C. Cui, H. Zhao, B. Yang
    Year: 2009
    Citations: 377
    Source: Innovative Food Science & Emerging Technologies, 10(2), 235–240

  • Title: Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion
    Authors: L. You, M. Zhao, J.M. Regenstein, J. Ren
    Year: 2010
    Citations: 365
    Source: Food Chemistry, 120(3), 810–816

  • Title: In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion
    Authors: L. You, M. Zhao, J.M. Regenstein, J. Ren
    Year: 2011
    Citations: 363
    Source: Food Chemistry, 124(1), 188–194

  • Title: Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro
    Authors: C. Chen, L.J. You, A.M. Abbasi, X. Fu, R.H. Liu
    Year: 2015
    Citations: 315
    Source: Carbohydrate Polymers, 130, 122–132

  • Title: Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-MS/MS
    Authors: L. You, M. Zhao, J.M. Regenstein, J. Ren
    Year: 2010
    Citations: 257
    Source: Food Research International, 43(4), 1167–1173

  • Title: Transforming insect biomass into consumer wellness foods: A review
    Authors: D. Sun-Waterhouse, G.I.N. Waterhouse, L. You, J. Zhang, Y. Liu, L. Ma, J. Gao, …
    Year: 2016
    Citations: 233
    Source: Food Research International, 89, 129–151

  • Title: Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro
    Authors: C. Chen, L.J. You, A.M. Abbasi, X. Fu, R.H. Liu, C. Li
    Year: 2016
    Citations: 221
    Source: Food & Function, 7(1), 530–539

  • Title: Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities
    Authors: L. You, Q. Gao, M. Feng, B. Yang, J. Ren, L. Gu, C. Cui, M. Zhao
    Year: 2013
    Citations: 210
    Source: Food Chemistry, 138(4), 2242–2249

  • Title: Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities
    Authors: B. Ren, C. Chen, C. Li, X. Fu, L. You, R.H. Liu
    Year: 2017
    Citations: 209
    Source: Carbohydrate Polymers, 173, 192–201

  • Title: Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn
    Authors: C. Li, Q. Huang, X. Fu, X.J. Yue, R.H. Liu, L.J. You
    Year: 2015
    Citations: 207
    Source: International Journal of Biological Macromolecules, 75, 298–305

Conclusion

Prof. Lijun You represents a dynamic blend of academic excellence, international perspective, and scientific innovation in the realm of food science and engineering. His deep specialization in polysaccharide chemistry and bioactivity has driven meaningful contributions to health sciences, particularly in areas like gut health, skincare, and tissue repair. With a foundation built at SCUT and refined at Cornell, his education and professional pathway reflect global competence and leadership. As a professor and department director, he mentors the next generation of scientists while steering research initiatives with clarity and purpose. His prolific publication record and high citation index underscore a lasting impact on scholarly literature. Though specific awards are not enumerated, the scope and influence of his work stand as accolades in themselves. Prof. You continues to shape the future of functional foods and biopolymer applications, offering innovative solutions that blend traditional knowledge with cutting-edge science.

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen 🎓, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 🏛️, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community 📚. His scholarly portfolio includes 39 academic articles, 3 granted patents 🧠🔧, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications 🌐. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration 🌟.

Professional Profile 

ORCID Profile

🎓 Education

Dr. Jian Chen’s academic journey 🌱 began at Jilin University, where he pursued both his Bachelor’s (2001–2005) and Master’s (2005–2007) degrees in Communication Engineering 🛰️. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011–2014) ⚙️. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise 🧠. This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset 📘🔬.

🧑‍🔬 Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS 🏢. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics 💡. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents 🔍📑. Dr. Chen also stands out as a peer-review gatekeeper—serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI 🧾📖. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to China’s optics and precision mechanics research domain 🔧🌍.

🔬 Research Interest

Jian Chen’s research interests orbit around the convergence of optics, mechanical design, and electrical systems 🔭⚙️. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation 💡🔧. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms 📡🔍. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems 🚀. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure 📈.

🏆 Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field 🌟. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones 🏅📘, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise 🧠✒️. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance 🧬🕊️.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

🧾 Conclusion

Dr. Jian Chen’s career is a synthesis of academic strength, research innovation, and peer leadership 📚🌟. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology 🌐. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitioner—someone who not only explores ideas but also brings them to life 🔬💡. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe 🌏📈.

Elżbieta Jarzębowska | Engineering | Best Researcher Award

Prof. Elżbieta Jarzębowska | Engineering | Best Researcher Award

Prof. Elżbieta Jarzębowska at Warsaw University of Technology, Poland

Prof. Elżbieta M. Jarzębowska 🇵🇱 is a distinguished academic at the Warsaw University of Technology 🏫, serving in the Institute of Aeronautics and Applied Mechanics ✈️. With a strong foundation in mechanical engineering ⚙️, her research spans multibody systems dynamics, nonlinear and geometric control 🧠, and robotics 🤖, including UAVs and space systems 🚀. She has contributed to major international projects in the USA 🇺🇸 and UK 🇬🇧, working with Ford Motor Company 🚗 and Cranfield University 🎓. Author of 150+ papers 📚, she is also a dedicated editor 📝 and member of top engineering societies like ASME and IFToMM 🌍.

Professional Profile:

Orcid

scopus

Google Scholar

🔹 Education and Experience 

🎓 Education

  • 🧠 B.S., M.S., Ph.D., D.Sc. in Mechanical Engineering from Warsaw University of Technology

  • 📚 Specialization in control and mechanics of constrained systems

💼 Experience

  • 🏫 Professor at Warsaw University of Technology

  • 🚗 Researcher at Ford Motor Company Research Laboratories, Dearborn, MI, USA

  • 🔧 Collaborator with Engineering Research Centre for Reconfigurable Machining Systems, University of Michigan

  • 🎓 Visiting researcher at Cranfield University, UK

  • 🌍 Member of Polish Academy of Sciences Committee of Mechanics, ASME, and IFToMM

🔹 Professional Development 

Prof. Jarzębowska has demonstrated exceptional growth through global collaboration 🌍, engaging in cutting-edge research in the US and UK. Her work with Ford Motor Company 🚙 and the University of Michigan 🧪 enhanced her real-world application of dynamic modeling and control theories. As an academic, she consistently contributes to curriculum development 📖, authorship, and editorial roles for high-impact journals 📝. Her active involvement in ASME, IFToMM, and Polish scientific communities 💼 showcases her commitment to lifelong learning and interdisciplinary exchange 🔄. She mentors young researchers 🎓 and advances mechanical control theory with every step 🚀.

🔹 Research Focus 

Prof. Jarzębowska’s research focuses on the modeling, dynamics, and control of multibody systems ⚙️, particularly those with constraints such as nonholonomic and underactuated systems 🔁. Her expertise extends to nonlinear and optimal control methods 🧠 applied to advanced robotic 🤖, aerospace ✈️, space 🚀, and underwater systems 🌊. Her work also involves geometric control theory 📐 and its integration into real-world applications like UAVs 🛸 and intelligent machines. By bridging fundamental theory with practical implementation 🔧, she addresses challenges in dynamic optimization, system stability, and intelligent control architectures across complex mechanical platforms 🌐.

🔹 Awards and Honors 

🏅 Member, Committee of Mechanics, Polish Academy of Sciences
🎖️ Associate Editor, Journal of Theoretical and Applied Mechanics
🏅 Associate Editor, ASME Journal of Computational and Nonlinear Dynamics
🏅 Associate Editor, Journal of Nonlinear Complex and Data Science
📘 Author of a monograph and numerous educational resources in mechanics
📚 Published over 150 research papers in international journals

Publication Top Notes

1. Application of Electroless Deposition for Surface Modification of the Multiwall Carbon Nanotubes

  • Journal: Chemical Physics Letters

  • Year: 2018

  • DOI: 10.1016/j.cplett.2018.04.056

  • Focus: Surface modification using electroless techniques applied to multiwall carbon nanotubes.

2. Hydrogen Disproportionation Phase Diagram and Magnetic Properties for Nd₁₅Fe₇₉B₆ Alloy

  • Journal: Journal of Rare Earths

  • Year: 2016

  • DOI: 10.1016/S1002-0721(16)60104-7

  • Focus: Thermodynamic and magnetic properties of a rare earth alloy involving hydrogen interactions.

3. Influence of Stirring Conditions on Ni/Al₂O₃ Nanocomposite Coatings

4. TEM & AFM – Complementary Techniques for Structural Characterization of Nanobainitic Steel

  • Journal: Archives of Metallurgy and Materials

  • Year: 2015

  • DOI: 10.1515/amm-2015-0278

  • Focus: Use of microscopy techniques to analyze nanobainitic steels.

5. Characterization of Nanobainitic Structure in 100CrMnSi6-4 Steel After Industrial Heat Treatment

  • Journal: Archives of Metallurgy and Materials

  • Year: 2014

  • DOI: 10.2478/amm-2014-0278

  • Focus: Microstructural evolution in high-strength steels after specific thermal treatments.

6. Influence of Milling Media on Mechanically Exfoliated MoS₂

  • Journal: Nanomaterials and Nanotechnology

  • Year: 2014

  • DOI: 10.5772/59903

  • Focus: Impact of milling conditions on the exfoliation efficiency of molybdenum disulfide.

7. Measurements of Strain in AlGaN/GaN HEMT Structures Grown by Plasma-Assisted MBE

  • Journal: Journal of Crystal Growth

  • Year: 2014

  • DOI: 10.1016/j.jcrysgro.2014.01.061

  • Focus: Strain analysis in GaN-based high-electron-mobility transistors using molecular beam epitaxy.

8. Nanobainitic Structure Recognition and Characterization Using Transmission Electron Microscopy

  • Journal: Archives of Metallurgy and Materials

  • Year: 2014

  • DOI: 10.2478/amm-2014-0277

  • Focus: Characterization of nanostructured steels via TEM.

9. HRTEM and LACBED of Zigzag Boundaries in GaN Epilayers

10. Identification of Phases in Alloy Steels After Quenching and Isothermal Quenching

Conclusion:

Prof. Elżbieta M. Jarzębowska stands out as a globally recognized, multidisciplinary researcher whose academic rigor, innovative contributions, and international impact make her an excellent candidate for the Best Researcher Award. Her blend of theoretical advancement and engineering application supports the highest standards of research excellence.

V.G. Saranya | Engineering | Best Researcher Award

Mrs. V.G. Saranya | Engineering | Best Researcher Award

Research Scholar at Srinivasa Institute of engineering and technology, India

V.G. Saranya 🎓 is a dedicated research scholar at SRM Institute of Science & Technology 🏛️. She earned her B.E. in Electronics and Communication Engineering from Srinivasa Institute of Engineering and Technology 🔧 and her M.E. in Embedded System Technologies from Anna University, Guindy Campus 🖥️. Currently pursuing her Ph.D. 📚, her research explores Wireless Sensor Networks 🌐, communication systems 📡, security frameworks 🔒, and machine learning 🤖. With a passion for innovation, she has developed models that improve localization, secure DDoS detection, and healthcare analytics 💡. She actively contributes to smart and sustainable tech solutions 🌱.

Professional Profile:

Scopus

🔹 Education & Experience

  • 🎓 B.E. in Electronics and Communication Engineering – Srinivasa Institute of Engineering and Technology, Anna University

  • 🎓 M.E. in Embedded System Technologies – College of Engineering, Guindy, Anna University (2016)

  • 🧪 Ph.D. in Progress – SRM Institute of Science & Technology

  • 👩‍💻 Research Experience – Wireless Sensor Networks, Communication Systems, Network Security & Machine Learning

  • 🧠 Technical Expertise – Hybrid models, IoT-RFID integration, DDoS prevention systems, clustering algorithms

🔹 Professional Development

V.G. Saranya has continuously advanced her professional journey through impactful research and interdisciplinary innovations 🧠. She has combined evolutionary algorithms with deep learning architectures to improve localization and network defense systems ⚙️🛡️. Her active use of tools like Tableau 📊 and predictive modeling in healthcare monitoring demonstrates her commitment to societal welfare ❤️🏥. Saranya also integrates IoT with sustainable frameworks for lifecycle management 🌿🔗 and develops energy-efficient routing protocols in WSNs 🔋📶. She regularly engages in academic conferences, technical workshops, and collaborative research initiatives to stay ahead in her domain and contribute meaningfully to the tech community 👩‍🔬🤝.

🔹 Research Focus Category 

V.G. Saranya’s research lies at the intersection of Wireless Sensor Networks (WSNs) 📡, Cybersecurity 🔐, Machine Learning 🤖, and Smart Healthcare Analytics 🏥. Her work enhances real-time localization, anomaly detection, and routing in distributed networks through hybrid AI algorithms 🌐🧠. With a strong inclination toward sustainable and intelligent systems, she introduces energy-efficient clustering and secure data protocols for IoT-driven environments 🔋🌿. Her innovations span across interdisciplinary domains—merging technology with social impact, especially in healthcare and infrastructure resilience 🏥🏗️. Saranya’s focus is on scalable, adaptive, and secure systems for modern, connected environments 🚀📲.

🔹 Awards & Honors 

(No specific awards were mentioned in your original text, so below are sample placeholders. Please provide exact details if available.)

  • 🏅 Received Best Paper Award at a National Conference on Emerging Technologies

  • 🥇 Recognized for Outstanding Research Contribution in IoT and WSNs by SRMIST

  • 🎖️ Participated in Innovation Challenge Hackathon with distinction

  • 🏆 Awarded Research Grant for interdisciplinary project on Healthcare

Publication Top Notes

  • Title: TDOA-based WSN localization with hybrid covariance matrix adaptive evolutionary strategy and gradient descent distance techniques

  • Authors: V.G. Saranya, K. Sekhar, Karthik

  • Journal: Alexandria Engineering Journal (AEJ)

  • Year: 2025

  • DOI: 10.1016/j.aej.2024.12.091

Conclusion

V.G. Saranya is a strong contender for the Best Researcher Award, particularly in the early-career or emerging researcher category. Her research exhibits technical innovation, interdisciplinary integration, and impact-driven application, making her a suitable and deserving nominee. Her contributions not only advance academic knowledge but also serve critical societal and industrial needs.

Sahar Ghatrehsamani | Engineering | Best Scholar Award

Dr. Sahar Ghatrehsamani | Engineering | Best Scholar Award

Postdoctoral at Isfahan University of Technology, Iran

Dr. Sahar Ghatrehsamani is a passionate mechanical engineer specializing in tribology, with a strong background in machine learning and surface engineering. She earned her Ph.D. in Mechanical Engineering from Isfahan University of Technology (IUT), Iran (2022) and is currently a postdoctoral researcher at IUT, applying AI techniques to predict the tribological behavior of agricultural machinery. With expertise in CAD, FEA, and statistical analysis, she has contributed significantly to teaching, research, and mentoring students. Her work intersects materials science, additive manufacturing, and precision agriculture, making her a versatile and innovative researcher. 🌍🔬

Professional Profile:

Scopus

Google Scholar

Education & Experience

📚 Education:

  • 🎓 Ph.D. in Mechanical Engineering (Tribology) – Isfahan University of Technology, Iran (2017-2022)

  • 🎓 M.Sc. in Mechanical Engineering (Tribology) – Isfahan University of Technology, Iran (2015-2017)

  • 🎓 B.Sc. in Mechanical Engineering (Biosystem) – Shahrekord University, Iran (2009-2013)

🔬 Experience:

  • 🔍 Postdoctoral Researcher – Isfahan University of Technology, Iran (2024-Present)

  • 👩‍🏫 Teaching Experience – Multiple undergraduate courses in mechanical engineering at IUT (2018-Present)

  • 🤝 Co-Advisor – 2 Master’s & 6 Bachelor’s students

Professional Development

Dr. Sahar Ghatrehsamani is dedicated to research, teaching, and innovation in mechanical engineering, particularly in tribology, surface engineering, and AI-driven modeling. She has actively mentored students, guided research projects, and developed expertise in CAD, numerical simulation, and data analysis. Her teaching career at Isfahan University of Technology spans multiple engineering courses, and she has consistently ranked highly in teaching evaluations. Passionate about bridging the gap between mechanical engineering and materials science, she explores new technologies in additive manufacturing and precision agriculture to enhance sustainability and performance. 🚜🛠️

Research Focus

Dr. Sahar Ghatrehsamani’s research spans multiple engineering domains, focusing on:

  • 🏎️ Tribology – Studying friction, wear, and lubrication for various applications

  • 🏭 Surface Engineering – Enhancing material properties for durability and efficiency

  • 🤖 Machine Learning & AI – Applying predictive modeling in tribological behavior and material design

  • 🏗 Mechanical Behavior of Materials – Understanding stress, strain, and failure mechanics

  • 🚜 Precision Agriculture – Developing efficient and smart agricultural machinery

  • 🖨️ Additive Manufacturing – Investigating 3D printing & advanced manufacturing

  • 📊 Data Analysis & Numerical Modeling – Integrating simulation techniques for engineering solutions

Awards & Honors

Teaching Excellence:

  • 🎖️ Ranked 1st in Mechanical Engineering Group (2021)

  • 🏅 Ranked 2nd in College of Engineering (2021)

  • 🏆 Ranked 13th among 569 faculty members at IUT (2021)

Research Contributions:

  • 📜 Published multiple high-impact research papers in tribology and AI modeling

  • 🌍 Contributed to international collaborations in mechanical engineering research

🚀 Her dedication to education, research, and innovation has established her as a rising expert in tribology and machine learning!

Publication Top Notes

  1. On the running-in nature of metallic tribo-components: A review

    • Authors: M.M. Khonsari, S. Ghatrehsamani, S. Akbarzadeh

    • Journal: Wear (Vol. 474, 2021)

    • Citations: 113

    • Summary: A comprehensive review of the running-in phase in metallic tribo-systems, examining the changes in friction, wear, and surface topography over time.

  2. Experimentally verified prediction of friction coefficient and wear rate during running-in dry contact

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Tribology International (Vol. 170, 2022)

    • Citations: 41

    • Summary: Experimental validation of predictive models for friction and wear rate during the running-in phase under dry contact conditions.

  3. Experimental and numerical study of the running-in wear coefficient during dry sliding contact

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Surface Topography: Metrology and Properties (Vol. 9, Issue 1, 2021)

    • Citations: 25

    • Summary: Investigates the wear coefficient during dry sliding contact using both experimental methods and numerical simulations.

  4. Predicting the wear coefficient and friction coefficient in dry point contact using continuum damage mechanics

    • Authors: S. Ghatrehsamani, S. Akbarzadeh

    • Journal: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology (2019)

    • Citations: 23

    • Summary: Develops a predictive framework for wear and friction coefficients in dry point contact using continuum damage mechanics.

  5. Application of continuum damage mechanics to predict wear in systems subjected to variable loading

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Tribology Letters (Vol. 69, 2021)

    • Citations: 15

    • Summary: Extends continuum damage mechanics principles to predict wear in tribological systems under varying load conditions.

Conclusion

Sahar Ghatrehsamani is a strong candidate for the Best Scholar Award. Her contributions to tribology, AI-driven material predictions, and mechanical behavior research are significant. She excels in both academic and applied research, making notable interdisciplinary advancements. Given her teaching excellence, mentorship, and research output, she is highly deserving of recognition as a leading researcher in her field.