Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen ๐ŸŽ“, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences ๐Ÿ›๏ธ, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community ๐Ÿ“š. His scholarly portfolio includes 39 academic articles, 3 granted patents ๐Ÿง ๐Ÿ”ง, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications ๐ŸŒ. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration ๐ŸŒŸ.

Professional Profileย 

ORCID Profile

๐ŸŽ“ Education

Dr. Jian Chen’s academic journey ๐ŸŒฑ began at Jilin University, where he pursued both his Bachelor’s (2001โ€“2005) and Master’s (2005โ€“2007) degrees in Communication Engineering ๐Ÿ›ฐ๏ธ. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011โ€“2014) โš™๏ธ. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise ๐Ÿง . This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset ๐Ÿ“˜๐Ÿ”ฌ.

๐Ÿง‘โ€๐Ÿ”ฌ Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS ๐Ÿข. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics ๐Ÿ’ก. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents ๐Ÿ”๐Ÿ“‘. Dr. Chen also stands out as a peer-review gatekeeperโ€”serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI ๐Ÿงพ๐Ÿ“–. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to Chinaโ€™s optics and precision mechanics research domain ๐Ÿ”ง๐ŸŒ.

๐Ÿ”ฌ Research Interest

Jian Chenโ€™s research interests orbit around the convergence of optics, mechanical design, and electrical systems ๐Ÿ”ญโš™๏ธ. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation ๐Ÿ’ก๐Ÿ”ง. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms ๐Ÿ“ก๐Ÿ”. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems ๐Ÿš€. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure ๐Ÿ“ˆ.

๐Ÿ† Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field ๐ŸŒŸ. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones ๐Ÿ…๐Ÿ“˜, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise ๐Ÿง โœ’๏ธ. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance ๐Ÿงฌ๐Ÿ•Š๏ธ.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

๐Ÿงพ Conclusion

Dr. Jian Chenโ€™s career is a synthesis of academic strength, research innovation, and peer leadership ๐Ÿ“š๐ŸŒŸ. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology ๐ŸŒ. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitionerโ€”someone who not only explores ideas but also brings them to life ๐Ÿ”ฌ๐Ÿ’ก. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe ๐ŸŒ๐Ÿ“ˆ.

Shirko Faroughi | Engineering | Best Researcher Award

Prof. Shirko Faroughi | Engineering | Best Researcher Award

Academic at Urmia University of Technoloy, Iran

Dr. Shirko Faroughi, an esteemed Professor of Mechanical Engineering at Urmia University of Technology, Iran, specializes in Computational Mechanics, Isogeometric Analysis, and Finite Element Methods. With a Ph.D. from Iran University of Science and Technology, he has held research positions at KTH University (Sweden), Swansea University (UK), and Bauhaus University Weimar (Germany). His work spans fracture mechanics, machine learning, and 3D printing simulations. As a CICOPS Scholar at the University of Pavia, Italy, Dr. Faroughi actively collaborates on international research projects, contributing significantly to advanced numerical methods. ๐Ÿ“š๐ŸŒ

Professional Profile:

Scopus

Google Scholar

Education & Experience ๐ŸŽ“๐Ÿ“œ

  • Ph.D. in Mechanical Engineering (2010) โ€“ Iran University of Science and Technology ๐Ÿ›๏ธ

  • M.S. in Mechanical Engineering (2005) โ€“ Iran University of Science and Technology ๐Ÿ—๏ธ

  • B.S. in Mechanical Engineering (2003) โ€“ Tabriz University ๐Ÿš—

๐Ÿ”น Academic Roles

  • Professor (2020 โ€“ Present) โ€“ Urmia University of Technology ๐Ÿ‘จโ€๐Ÿซ

  • Associate Professor (2015 โ€“ 2020) โ€“ Urmia University of Technology ๐Ÿ”ฌ

  • Assistant Professor (2011 โ€“ 2015) โ€“ Urmia University of Technology ๐Ÿ“–

  • Visiting Researcher (2008 โ€“ 2009) โ€“ KTH University, Sweden ๐Ÿ‡ธ๐Ÿ‡ช

๐Ÿ”น Administrative & International Positions

  • Dean of Mechanical Engineering Department (2022 โ€“ Present) ๐Ÿข

  • CICOPS Scholar โ€“ University of Pavia, Italy (2022) ๐Ÿ‡ฎ๐Ÿ‡น

  • Research Collaborator โ€“ Swansea University, UK (2015 โ€“ Present) ๐Ÿ‡ฌ๐Ÿ‡ง

  • Research Collaborator โ€“ New Mexico State University, USA (2016 โ€“ Present) ๐Ÿ‡บ๐Ÿ‡ธ

  • Research Collaborator โ€“ Bauhaus University Weimar, Germany (2017 โ€“ Present) ๐Ÿ‡ฉ๐Ÿ‡ช

Professional Development ๐ŸŒ๐Ÿ“š

Dr. Shirko Faroughi has made remarkable contributions to mechanical engineering through computational mechanics, finite element analysis, and machine learning. His research advances superconvergent mass and stiffness matrices, isogeometric methods, phase-field methods, and energy harvesting. He also integrates AI-driven techniques to enhance engineering simulations. His collaborations span Europe and the U.S., working with top researchers on thin structures, 3D printing, and structural dynamics. As a department dean and international collaborator, he plays a pivotal role in engineering education and research innovations, fostering global academic partnerships. ๐ŸŒŽ๐Ÿ’ก

Research Focus ๐Ÿ”๐Ÿง 

Dr. Faroughi’s research primarily revolves around Computational Mechanics and Advanced Numerical Methods, integrating Artificial Intelligence and Machine Learning for engineering applications. His work focuses on:

  • Superconvergent mass and stiffness matrices ๐Ÿ“๐Ÿ”ฌ

  • Isogeometric and finite element methods ๐Ÿ—๏ธ๐Ÿ“Š

  • Fracture mechanics and phase-field modeling ๐Ÿš๏ธ๐Ÿ’ฅ

  • Tensegrity structures and energy harvesting โšก๐Ÿ”ฉ

  • Machine learning and transfer learning in mechanical simulations ๐Ÿค–๐Ÿ“ˆ

  • 3D printing simulations and advanced material modeling ๐Ÿ–จ๏ธ๐Ÿงฉ

His research bridges traditional mechanical engineering with AI and computational techniques, pushing engineering boundaries through innovative numerical simulations. ๐Ÿš€๐Ÿ”ข

Awards & Honors ๐Ÿ†๐ŸŽ–๏ธ

  • CICOPS Scholarship โ€“ University of Pavia, Italy (2022) ๐Ÿ‡ฎ๐Ÿ‡น

  • Visiting Researcher โ€“ KTH University, Sweden (2008-2009) ๐Ÿ‡ธ๐Ÿ‡ช

  • Research Collaborator โ€“ Swansea University, UK (2015-Present) ๐Ÿ‡ฌ๐Ÿ‡ง

  • Research Collaborator โ€“ Bauhaus University Weimar, Germany (2017-Present) ๐Ÿ‡ฉ๐Ÿ‡ช

  • Research Collaborator โ€“ New Mexico State University, USA (2016-Present) ๐Ÿ‡บ๐Ÿ‡ธ

  • Dean of Mechanical Engineering Department โ€“ Urmia University of Technology (2022-Present) ๐Ÿ›๏ธ

  • Multiple Grants for Advanced Computational Mechanics Research ๐ŸŽ“๐Ÿ”

Publication Top Notes

  1. Wave Propagation in 2D Functionally Graded Porous Rotating Nano-Beams

    • Authors: S. Faroughi, A. Rahmani, M.I. Friswell

    • Published in Applied Mathematical Modelling (2020)

    • Citations: 71

    • Focus: Investigates wave propagation in porous nano-beams using a general nonlocal higher-order beam theory, considering functionally graded materials and rotation effects.

  2. Vibration of 2D Imperfect Functionally Graded Porous Rotating Nanobeams

    • Authors: A. Rahmani, S. Faroughi, M.I. Friswell

    • Published in Mechanical Systems and Signal Processing (2020)

    • Citations: 54

    • Focus: Examines vibration behavior of imperfect functionally graded porous rotating nanobeams based on a generalized nonlocal theory.

  3. Non-linear Dynamic Analysis of Tensegrity Structures Using a Co-Rotational Method

    • Authors: S. Faroughi, H.H. Khodaparast, M.I. Friswell

    • Published in International Journal of Non-Linear Mechanics (2015)

    • Citations: 47

    • Focus: Develops a co-rotational method for analyzing nonlinear dynamics of tensegrity structures.

  4. Physics-Informed Neural Networks for Solute Transport in Heterogeneous Porous Media

    • Authors: S.A. Faroughi, R. Soltanmohammadi, P. Datta, S.K. Mahjour, S. Faroughi

    • Published in Mathematics (2023)

    • Citations: 40

    • Focus: Uses physics-informed neural networks (PINNs) with periodic activation functions to model solute transport in heterogeneous porous media.

  5. Nonlinear Transient Vibration of Viscoelastic Plates Using a NURBS-Based Isogeometric HSDT Approach

    • Authors: E. Shafei, S. Faroughi, T. Rabczuk

    • Published in Computers & Mathematics with Applications (2021)

    • Citations: 30

    • Focus: Investigates nonlinear transient vibrations of viscoelastic plates using an isogeometric high-order shear deformation theory (HSDT) approach.