Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam at The Hong Kong Polytechnic University , Hong Kong

Prof. Hwa Yaw TAM πŸŽ“πŸ”¬, IEEE Life Fellow and OPTICA Fellow, is a visionary in photonics and optical fibre sensing. Currently Chair Professor of Photonics at The Hong Kong Polytechnic University πŸ‡­πŸ‡°, he has spearheaded groundbreaking innovations in fibre-optic sensor systems for transportation πŸš„, energy ⚑, and medical πŸ‘‚ applications. With over 800 publications πŸ“š and 20 patents πŸ”–, he stands as the second most cited expert in fibre-optic sensing, boasting an H-index of 73. His trailblazing contributions span continents, from Hong Kong’s MTR to the Netherlands and Australia 🌍. A laureate of the Berthold Leibinger Innovationspreis πŸ† and multiple Geneva Invention awards, Prof. Tam’s legacy bridges academia, industry, and public safety. His work has also spun off seven photonics companies πŸš€. With unwavering passion and pioneering spirit, Prof. Tam continues to illuminate the future of smart sensing and laser technologies πŸ”­.

Professional ProfileΒ 

πŸŽ“ Education

Prof. Hwa Yaw TAM embarked on his academic voyage at The University of Manchester, UK πŸ‡¬πŸ‡§, earning both his B.Eng in 1985 and Ph.D. in 1989 πŸŽ“. His early educational foundations laid the groundwork for a lifelong commitment to photonics and optical engineering. Specializing in electrical and electronic engineering, his doctoral studies fused rigorous theory with hands-on research in laser systems and fibre technologies πŸ”. This dual emphasis cultivated a mindset driven by innovation and precision. The UK academic environment, rich in historical scientific achievement, greatly influenced his research ethos 🌐. Prof. Tam’s education not only equipped him with cutting-edge technical knowledge but also instilled in him a vision to translate science into impactful, real-world applications. Today, that foundation continues to echo through his advanced fibre-optic sensor innovations πŸ”¬, standing as a beacon for future generations of engineers and scientists πŸ“˜πŸ’‘.

πŸ›οΈ Professional Experience

Prof. Tam’s professional journey spans academia and industry in equal brilliance 🌠. He began his research career at GEC-Marconi Ltd. (London) between 1989–1993, delving into erbium-doped fibre amplifiers and laser systems πŸ’‘. He then joined The Hong Kong Polytechnic University in 1993, rising through the ranks from Lecturer to Chair Professor of Photonics. He also served as Head of the Electrical Engineering Department and was the Founding Director of the Photonics Research Centre (2000–2022) 🏫. Presently, he is Associate Director at PolyU’s Photonics Research Institute, spearheading interdisciplinary innovations. Prof. Tam’s work transcends traditional academiaβ€”his team has launched seven start-ups, catalyzing photonics-based solutions globally πŸš€. His leadership has shaped fibre-optic sensing systems for cities and industries across Asia, Europe, and Australia, turning theoretical breakthroughs into operational systems in railways πŸš‰, energy grids πŸ”‹, and hospitals πŸ₯, positioning him as a pivotal force in global smart sensing networks 🌐.

πŸ”¬ Research Interest

Prof. Tam’s research orbits around specialty optical fibres tailored for real-world sensor applications πŸ”. His core interests span the design and fabrication of advanced fibre-optic systems that serve as digital sentinels in complex infrastructures 🧠. From structural health monitoring (SHM) to real-time railway diagnostics, his innovations help prevent failures before they occur ⚠️. His pioneering optical fibre networks have monitored everything from high-speed trains πŸš† to smart escalators and even cochlear implants for medical precision πŸ‘‚. By embedding fibre Bragg gratings (FBGs) into intelligent sensing webs, he’s revolutionized predictive maintenance across industries. His group’s work is particularly transformative in railway monitoring, with deployment success stories in Hong Kong, Singapore, and the Netherlands 🌍. Always ahead of the curve, Prof. Tam’s research fuses AI πŸ€–, photonic engineering, and real-time analytics to create a safer, more connected world through light 🌈 and precision sensing technologies πŸ“ˆ.

πŸ… Awards and Honors

Prof. Tam’s achievements are globally celebrated πŸ†. In 2025, he won the Special Prize and Gold Medal at Geneva’s Invention Expo for a smart cochlear implant πŸ‘‚πŸŒŸ. In 2024, he secured another Gold Medal for lithium-ion battery health monitoring via FBG sensors πŸ”‹. Earlier, in 2022, his intelligent escalator monitoring system earned him yet another Geneva Gold Award πŸ₯‡. The Berthold Leibinger Innovationspreis in 2014, among the world’s highest laser tech honors, recognized his work in wavelength-tunable laser sensing for railways πŸš„. His team also received the President’s Award for Knowledge Transfer in 2022 at PolyU for creating AI-enhanced optical fibre networks 🌐. Further accolades include a Best Paper finalist at IEEE SENSORS 2016 πŸ“ƒ. Each honor underscores Prof. Tam’s deep impact on laser technology, smart sensing, and translational engineering. His consistent award-winning contributions reflect a perfect blend of scientific creativity, societal value, and engineering excellence πŸ’ΌπŸ”¬.

πŸ“š Publications Top NoteΒ 

  1. Title: Enhanced Quasi-Distributed Accelerometer Array Based on Ο•-OTDR and Ultraweak Fiber Bragg Grating
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: IEEE Sensors Journal
    Summary: Proposes an enhanced accelerometer array using phase-sensitive optical time-domain reflectometry (Ο•-OTDR) and ultraweak fiber Bragg gratings for distributed vibration sensing, suitable for applications like structural health monitoring.


  1. Title: Label-Free DNA Detection Using Etched Tilted Bragg Fiber Grating-Based Biosensor
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: Sensors
    Summary: Describes a label-free biosensor using etched tilted fiber Bragg gratings to detect DNA without the need for fluorescent labels, enhancing sensitivity and simplicity in genetic diagnostics.


  1. Title: Recovery of a Highly Reflective Bragg Grating in DPDS-Doped Polymer Optical Fiber by Thermal Annealing
    Authors: , , , …
    Year: 2023
    Citations: 2
    Source: Optics Letters
    Summary: Demonstrates the recovery of degraded Bragg gratings in doped polymer optical fibers using thermal annealing, showing potential for longer lifespan and reusability in fiber-optic sensors.


  1. Title: Accident Risk Tensor-Specific Covariant Model for Railway Accident Risk Assessment and Prediction
    Authors: , , , …
    Year: 2023
    Citations: 8
    Source: Reliability Engineering and System Safety
    Summary: Introduces a tensor-based statistical model for accurately assessing and predicting accident risks in railway systems by incorporating covariant risk factors.


  1. Title: Polymeric Fiber Sensors for Insertion Forces and Trajectory Determination of Cochlear Implants in Hearing Preservation
    Authors: , , , …
    Year: 2023
    Citations: 10
    Source: Biosensors and Bioelectronics
    Summary: Presents polymeric fiber-optic sensors designed to measure insertion force and trajectory during cochlear implant surgeries, helping to preserve hearing by reducing inner ear trauma.


  1. Title: Miniature Two-Axis Accelerometer Based on Multicore Fiber for Pantograph-Catenary System
    Authors: , , , ,
    Year: 2023
    Citations: 8
    Source: IEEE Transactions on Instrumentation and Measurement
    Summary: Develops a compact fiber-based accelerometer capable of sensing in two axes, tailored for monitoring the dynamics of pantograph-catenary interactions in electric rail systems.


  1. Title: Ultraminiature Optical Fiber-Tip Directly-Printed Plasmonic Biosensors for Label-Free Biodetection
    Authors: , , , …
    Year: 2022
    Citations: 19
    Source: Biosensors and Bioelectronics
    Summary: Describes a highly miniaturized fiber-tip plasmonic biosensor fabricated via direct printing, enabling sensitive and label-free detection of biomolecules at the microscale.


  1. Title: Accelerated Pyro-Catalytic Hydrogen Production Enabled by Plasmonic Local Heating of Au on Pyroelectric BaTiO3 Nanoparticles
    Authors: , , , …
    Year: 2022
    Citations: 83
    Source: Nature Communications
    Summary: Reports a novel hydrogen production method using gold-decorated BaTiO₃ nanoparticles, where plasmonic heating enhances pyro-catalytic activity under mild conditions.


  1. Title: Biomechanical Assessment and Quantification of Femur Healing Process Using Fibre Bragg Grating Strain Sensors
    Authors: , , , …
    Year: 2022
    Citations: 5
    Source: Sensors and Actuators A: Physical
    Summary: Uses fiber Bragg grating strain sensors to monitor and quantify mechanical changes in the femur during bone healing, supporting better postoperative assessment.


  1. Title: Mach-Zehnder Interferometer Based Fiber-Optic Nitrate Sensor
    Authors: , , , ,
    Year: 2022
    Citations: Not listed
    Source: Optics Express
    Summary: Presents a Mach-Zehnder interferometer design using optical fiber for detecting nitrate concentrations in water, aiming at applications in environmental monitoring

πŸ”š ConclusionΒ 

Prof. Hwa Yaw TAM is more than a scholarβ€”he is a trailblazer in light-based sensing technologies 🌟. His career weaves together pioneering science, practical engineering, and impactful entrepreneurship 🌐. Through over 800 papers, 20 patents, and numerous awards, he has reshaped how the world monitors structural, environmental, and human conditions using optical fibres πŸ’‘. His real-world implementationsβ€”from monitoring city-wide railways to enabling hearing restorationβ€”demonstrate how research can elevate safety, precision, and quality of life for millions 🌍. He continues to mentor future innovators and drive collaborative photonic research through his leadership roles at PolyU and the Photonics Research Institute. With vision, dedication, and humility, Prof. Tam stands as a guiding light for the global photonics community 🌠. His journey exemplifies how science, when paired with compassion and creativity, becomes a force for building a smarter, safer, and more sustainable world πŸ”—πŸŒΏ.

Guanwei Jia | Engineering | Best Researcher Award

Dr. Guanwei Jia | Engineering | Best Researcher Award

Associate Professor at Henan University, China

Guanwei jia (born in 1982) is an associate professor at the School of Physics and Electronics, Henan University, China. He holds a BSc in Electronic Information Engineering (2006), an MSc in Mechanical Engineering (2012), and a Ph.D. in Mechanical Engineering from Beihang University (2018). His research focuses on hydrogen-blended natural gas pipeline transportation and energy storage. By Spring 2025, he has 38 publications indexed in Web of Science. His contributions aim to enhance energy efficiency and sustainable energy solutions, making him a key figure in the field of energy engineering. πŸ”¬βš‘

Professional Profile:

Orcid

Education & Experience πŸŽ“πŸ“œ

  • BSc in Electronic Information Engineering – 2006 πŸŽ“πŸ“‘

  • MSc in Mechanical Engineering – 2012 πŸ› οΈπŸ“Š

  • Ph.D. in Mechanical Engineering (Beihang University) – 2018 πŸŽ“βš™οΈ

  • Associate Professor, Henan University – Present πŸŽ“πŸ›οΈ

Professional Development πŸš€πŸ”

Guanwei jia has significantly contributed to energy research, particularly in hydrogen-blended natural gas pipeline transportation and energy storage. His work integrates advanced mechanical engineering techniques with sustainable energy solutions. With 38 Web of Science-indexed publications, his research provides insights into energy optimization and pipeline safety. He collaborates with industry and academia to advance clean energy technologies. As an associate professor, he mentors students and leads research projects, fostering innovation in energy sustainability. His efforts in alternative energy solutions contribute to global efforts for a cleaner and more efficient energy future. πŸ”¬βš‘πŸŒ

Research Focus πŸ”¬βš‘

Guanwei jia specializes in hydrogen-blended natural gas transportation and energy storage, addressing key challenges in pipeline safety, efficiency, and sustainability. His research explores how hydrogen integration in natural gas pipelines enhances energy efficiency while reducing carbon emissions. By leveraging mechanical engineering principles, he aims to develop secure and cost-effective storage solutions. His studies help advance the transition toward renewable energy, making natural gas pipelines adaptable for future hydrogen-based energy systems. His findings are valuable for energy infrastructure development, ensuring a safer, cleaner, and more efficient energy network for the future. βš™οΈπŸŒβš‘

Awards & Honors πŸ†πŸŽ–οΈ

  • 38 Web of Science-indexed publications πŸ“‘πŸ”

  • Recognized for contributions to hydrogen-blended gas research βš‘πŸ”¬

  • Active mentor and researcher in energy storage solutions πŸŽ“πŸ“š

  • Key collaborator in sustainable energy initiatives πŸŒπŸ”‹

Publication Top Notes

  1. “Water Vapour Condensation Behaviour within Hydrogen-Blended Natural Gas in Laval Nozzles”

    • Authors: Not specified in the provided information.

    • Journal: Case Studies in Thermal Engineering

    • Publication Date: March 2025

    • DOI: 10.1016/j.csite.2025.106064

    • Summary: This study investigates how water vapor condenses in hydrogen-blended natural gas as it flows through Laval nozzles. Understanding this behavior is crucial for optimizing nozzle design and ensuring efficient operation in systems utilizing hydrogen-enriched natural gas.​

  2. “Simulation Study on Hydrogen Concentration Distribution in Hydrogen Blended Natural Gas Transportation Pipeline”

    • Authors: Not specified in the provided information.

    • Journal: PLOS ONE

    • Publication Date: December 3, 2024

    • DOI: 10.1371/journal.pone.0314453

    • Summary: This research employs simulations to analyze how hydrogen distributes within natural gas pipelines when blended. The findings provide insights into maintaining consistent hydrogen concentrations, which is vital for pipeline safety and efficiency.​

  3. “Numerical Simulation of the Transport and Thermodynamic Properties of Imported Natural Gas Injected with Hydrogen in the Manifold”

    • Authors: Not specified in the provided information.

    • Journal: International Journal of Hydrogen Energy

    • Publication Date: February 2024

    • DOI: 10.1016/j.ijhydene.2023.11.178

    • Summary: This paper presents numerical simulations examining how injecting hydrogen into imported natural gas affects its transport and thermodynamic properties within a manifold. The study aims to inform strategies for integrating hydrogen into existing natural gas infrastructures.​

  4. “Performance Analysis of Multiple Structural Parameters of Injectors for Hydrogen-Mixed Natural Gas Using Orthogonal Experimental Methods”

    • Authors: Not specified in the provided information.

    • Journal: Physics of Fluids

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0175018

    • Summary: This study evaluates how various structural parameters of injectors influence the performance of hydrogen-mixed natural gas systems. Using orthogonal experimental methods, the research identifies optimal injector designs to enhance efficiency and reliability.​

  5. “Ultrasonic Gas Flow Metering in Hydrogen-Mixed Natural Gas Using Lamb Waves”

    • Authors: Not specified in the provided information.

    • Journal: AIP Advances

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0172477

    • Summary: This paper explores the application of Lamb waves in ultrasonic gas flow metering for hydrogen-mixed natural gas. The research demonstrates the effectiveness of this non-contact method in accurately measuring gas flow, which is essential for monitoring and controlling gas distribution systems.

Conclusion

While Guanwei Jia has made valuable contributions to the field of hydrogen energy and pipeline transportation, his suitability for a Best Researcher Award would depend on additional factors such as citations, research impact, industry collaborations, patents, and leadership in major projects. If he has demonstrated exceptional influence beyond publicationsβ€”such as shaping energy policies, leading significant projects, or achieving high citation impactβ€”he would be a strong candidate for the award.