Lei Liu | Engineering | Best Researcher Award

Prof. Lei Liu | Engineering | Best Researcher Award

Professor at Zhejiang University, China

Prof. Liu Lei is a Young Profenications, information theory, and signal processing. Liu received his Ph.D. in Communication and Information Systems from Xidian University and enriched his academic foundation as a visiting scholar at NTU Singapore. His postdoctoral and research appointments span SUTD, CityU Hong Kong, and JAIST Japan. Honored under ZJUโ€™s Hundred Talents Program, he actively leads in editorial and conference roles. With a track record of cutting-edge research, Prof. Liu has authored 39+ high-impact journal articles and continues to influence future innovations in modern channel coding and massive MIMO. ๐Ÿง ๐Ÿ“ก

Professional Profileย 

๐ŸŽ“ Education

Prof. Liu Lei began his academic journey in 2011 at Xidian University, earning his Ph.D. in Communication and Information System in March 2017. During his doctoral studies, he broadened his expertise with a prestigious exchange opportunity at Nanyang Technological University (NTU), Singapore (2014โ€“2016), where he engaged with globally renowned researchers in the field of Electrical and Electronic Engineering. This international exposure shaped his foundational understanding of statistical signal processing and message-passing algorithms. His academic pursuits combined rigorous theoretical knowledge with practical algorithmic development, laying the groundwork for his future innovations in wireless communication systems and information theory. ๐Ÿ“˜๐ŸŒ๐ŸŽ“

๐Ÿ’ผExperienceย 

Prof. Liu Lei has cultivated a rich academic career across leading global institutions. He began as a Postdoctoral Research Fellow at SUTD, Singapore (2016โ€“2017), followed by a Research Fellow role at City University of Hong Kong (2017โ€“2019). He then served as Assistant Professor at JAIST, Japan (2019โ€“2023), achieving top research rankings among faculty. Since 2023, he has been a Tenure-Track Young Professor and Doctoral Supervisor at Zhejiang University. His expertise spans message passing, compressed sensing, and channel coding. Prof. Liu has been active in IEEE conferences, serving in key editorial and chairing roles, and is a notable reviewer for top-tier journals. ๐ŸŒ๐Ÿ“š๐Ÿซ

๐Ÿ† Awards & Honors

Prof. Liu Lei has received several prestigious accolades for his research excellence. In 2023, he was honored with the Young Star Award and the Best Poster Award at the 30th Chinese Institute of Electronics Conference on Information Theory (CIEIT), recognizing his impactful contributions to information theory. His dedication to academic rigor earned him the Exemplary Reviewer Award from IEEE Transactions on Communications in 2020, an honor bestowed on less than 2% of reviewers. These distinctions underscore his leadership in developing cutting-edge algorithms and his commitment to advancing wireless communication systems. ๐Ÿฅ‡๐ŸŽ–๏ธ๐Ÿ…

๐Ÿ”ฌ Research Focusย 

Prof. Liuโ€™s research focuses on the development of high-performance algorithms and theoretical frameworks in wireless communications. His interests include Message Passing Theory, Statistical Signal Processing, Compressed Sensing, Modern Channel Coding, and Information Theory. He is especially noted for innovations in Approximate Message Passing (AMP) and Orthogonal AMP (OAMP) algorithms. His work aims to optimize capacity and performance in massive MIMO, NOMA, and RIS-aided systems. Prof. Liu’s vision integrates theoretical depth with engineering applications, contributing to next-generation communication systems with greater efficiency, robustness, and scalability. ๐Ÿ“ก๐Ÿ“Š๐Ÿ”

๐Ÿ› ๏ธ Skillsย 

Prof. Liu Lei has extensive expertise in ๐Ÿ“ถ wireless communication, particularly in emerging technologies such as massive MIMO, NOMA, mmWave, and Integrated Sensing and Communication (ISAC) systems. His work contributes to optimizing spectral efficiency and network reliability in next-generation wireless networks.

In the field of ๐Ÿ“ signal processing, he is highly skilled in compressed sensing and advanced channel estimation techniques, which enhance data recovery and transmission accuracy in complex environments.

His foundation in ๐Ÿ“Š information theory is robust, focusing on coding theory, achievable rates, and capacity optimization, all critical to efficient communication system design.

Prof. Liu is also a specialist in ๐Ÿงฎ message passing algorithms, including AMP, OAMP, GAMP, and GVAMP, which he applies to both theoretical models and practical systems.

He leverages ๐Ÿ”— machine learning tools such as neural networks and variational inference to improve signal decoding.

In addition, he is experienced in ๐Ÿ“š academic publishing and ๐Ÿง‘โ€๐Ÿซ teaching, mentoring students in both foundational and advanced courses.

๐Ÿ“š Publications Top Noteย 

  1. Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen, S. Sun

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 161

    • ๐Ÿ“… Year: 2018

  2. Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Chi, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 151

    • ๐Ÿ“… Year: 2019

  3. User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled IoT

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Z. Zhang, Y. Li, C. Huang, Q. Guo, L. Liu, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Internet of Things Journal

    • ๐Ÿ”ข Citations: 149

    • ๐Ÿ“… Year: 2020

  4. Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, C. Huang

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 140

    • ๐Ÿ“… Year: 2019

  5. Convergence Analysis and Assurance for Gaussian Message Passing in Massive MU-MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, Y. Su

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 108

    • ๐Ÿ“… Year: 2016

  6. Practical MIMO-NOMA: Low Complexity and Capacity-Approaching Solution

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Chi, L. Liu, G. Song, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 84

    • ๐Ÿ“… Year: 2018

  7. Memory AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, S. Huang, B.M. Kurkoski

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 83

    • ๐Ÿ“… Year: 2022

  8. Orthogonal AMP for Massive Access in Channels with Spatial and Temporal Correlations

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Cheng, L. Liu, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Journal on Selected Areas in Communications

    • ๐Ÿ”ข Citations: 68

    • ๐Ÿ“… Year: 2021

  9. Capacity Optimality of AMP in Coded Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Liang, J. Ma, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 53

    • ๐Ÿ“… Year: 2021

  10. On Orthogonal AMP in Coded Linear Vector Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: J. Ma, L. Liu, X. Yuan, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 39

    • ๐Ÿ“… Year: 2019

  11. A New Insight into GAMP and AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Li, C. Huang, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2019

  12. Over-the-Air Implementation of Uplink NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: S. Abeywickrama, L. Liu, Y.C. Yuhao, Chi

    • ๐Ÿ“ฐ Conference: IEEE Globecom

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2018

  13. Asymptotically Optimal Estimation for Sparse Signal with Arbitrary Distributions

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 28

    • ๐Ÿ“… Year: 2018

๐Ÿ Conclusion

Dr. Lei Liu exemplifies the qualities of a Best Researcher Award recipient: depth in theoretical research, breadth in global experience, and excellence in teaching and mentorship. His leadership roles, prolific output, and rising trajectory within academic and engineering communities make him a model scholar in the communications field. While areas like applied innovation and interdisciplinary expansion offer room for growth, his current achievements already place him at the forefront of his domain.

Guanqun Li | Engineering | Best Researcher Award

Dr. Guanqun Li | Engineering | Best Researcher Award

Associate Researcher at Shengli oilfield, SINOPEC, China

Guanqun Li (ๆŽๅ† ็พค), born in May 1994 in Shandong, China ๐Ÿ‡จ๐Ÿ‡ณ, is an Associate Researcher at Shengli Oilfield Company, SINOPEC ๐Ÿ›ข๏ธ. He earned his PhD in Oil and Gas Field Development Engineering from China University of Petroleum (East China) ๐ŸŽ“. His work focuses on the microscopic characterization of shale reservoirs and fluid dynamics in oil and gas systems ๐Ÿ”ฌ๐Ÿ’ง. With numerous publications in top journals like Fuel and Physics of Fluids ๐Ÿ“š, he brings innovation to shale oil recovery technologies. Passionate about fractal modeling and fluid imbibition research, Guanqun Li is contributing significantly to modern energy development โš™๏ธ๐ŸŒ.

Professional Profile:

Scopus

๐Ÿ”น Education and Experienceย 

  • ๐ŸŽ“ Sep. 2016 โ€“ June 2019: Masterโ€™s in Oil and Gas Field Development Engineering, Yangtze University

  • ๐Ÿ“š Sep. 2019 โ€“ June 2023: PhD in Oil and Gas Field Development Engineering, China University of Petroleum (East China)

  • ๐Ÿข July 2023 โ€“ Present: Associate Researcher, Shengli Oilfield Company, SINOPEC

๐Ÿ”น Professional Developmentย 

Dr. Guanqun Li ๐Ÿ“˜ has shown consistent professional growth, moving from academic research to applied industry innovation. His academic journey through Yangtze University and the China University of Petroleum provided a solid foundation in oilfield development โš’๏ธ. At SINOPEC, he applies his expertise in reservoir simulation, fracturing mechanics, and fluid flow modeling ๐Ÿ”ฌ. He actively contributes to peer-reviewed journals and international conferences ๐ŸŒ. Guanqun continuously develops novel analytical and fractal models for imbibition in shale formations ๐ŸŒ€. His cross-disciplinary collaboration and technical excellence are hallmarks of his evolving career in the energy sector ๐Ÿš€.

๐Ÿ”น Research Focus Categoryย 

Guanqun Liโ€™s research centers on unconventional oil and gas recovery, specifically shale oil reservoir characterization and fluid imbibition mechanisms ๐Ÿ›ข๏ธ๐Ÿ’ง. His work explores microscale fluid motion, fractal modeling, and productivity analysis in hydraulically fractured formations ๐Ÿ”๐Ÿ“ˆ. He is especially interested in the spontaneous and forced imbibition processes in complex porous media under various boundary conditions ๐Ÿงช. His models help optimize horizontal well performance and support enhanced oil recovery (EOR) strategies ๐Ÿง โš™๏ธ. With a clear focus on improving efficiency in volume fracturing and fluid migration mechanisms, his research is highly impactful in modern petroleum engineering ๐Ÿšง.

๐Ÿ”น Awards and Honorsย 

  • ๐Ÿ… Interpore Conference Presentation (2020) โ€“ Recognized for outstanding research on production enhancement in fractured wells

  • ๐Ÿ“– Multiple First-Author Publications โ€“ Published in top journals like Fuel, Physics of Fluids, and Energy & Fuels

  • ๐Ÿง  Acknowledged for Innovative Fractal Modeling โ€“ In spontaneous/forced imbibition in shale formations

  • ๐Ÿฅ‡ Highly Cited Review Paper โ€“ On EOR techniques in shale oil (Geofluids, 2021)

Publication Top Notes

  • Title: Quantifying lithofacies-dependent imbibition behavior in continental shale oil by fractal modeling: A case study of the gentle slope fault zone, Jiyang DepressionAuthors: Li Guanqun, Peng Yanxia, Yang Yong, Cao Xiaopeng, Su YuliangJournal: Fuel

    Year: 2025

Conclusion

Dr. Guanqun Li stands out as an emerging leader in petroleum reservoir engineering with clear scientific originality, engineering relevance, and a solid record of first-author publications in high-impact journals. His work has contributed meaningfully to advancing the understanding of shale oil imbibition mechanisms and their application in field operations.

Shakil Ahmed | Engineering | Best Researcher Award

Prof. Shakil Ahmed | Engineering | Best Researcher Award

Assistant Processor, Term at Iowa State University, United States

Shakil Ahmed is an Assistant Teaching Professor in Computer Engineering at Iowa State University (ISU), specializing in AI/ML, cybersecurity, IoT, cloud computing, and advanced networking. With a Ph.D. in Computer Engineering from ISU (2023) and over 2,000 citations across 35+ publications, he leads cutting-edge research on AI-driven solutions, digital twins, and quantum networks. As a principal investigator (PI), he mentors undergraduate, MS, and Ph.D. students while actively securing external grants. His expertise spans reinforcement learning, large language models, explainable AI, and meta-learning, contributing to pioneering advancements in next-gen networking and intelligent systems. ๐Ÿš€๐Ÿ”

Professional Profile

Education & Experience ๐Ÿ“š๐Ÿ‘จโ€๐Ÿซ

  • Ph.D. in Computer Engineering โ€“ Iowa State University (2023) ๐ŸŽ“
  • M.S. in Electrical Engineering โ€“ Utah State University (2019) โšก
  • B.S. in Electrical and Electronic Engineering โ€“ Khulna University of Engineering & Technology, Bangladesh (2014) ๐Ÿ…
  • Assistant Teaching Professor โ€“ Iowa State University (2024โ€“Present) ๐ŸŽ“
  • Researcher & PI โ€“ Leading projects on AI, 6G, cybersecurity, IoT, and digital twins ๐Ÿ”ฌ
  • Advisor & Mentor โ€“ Supervising undergraduate, MS, and Ph.D. students in advanced networking and AI ๐Ÿง‘โ€๐ŸŽ“

Professional Development ๐Ÿ“ˆ๐Ÿง 

Shakil Ahmed actively contributes to AI-driven networking, secure systems, and IoT advancements. He plays a vital role in research funding, securing grants exceeding millions of dollars. As a guest editor at MDPI and reviewer for 150+ articles, he ensures high research standards. His teaching experience spans multiple STEM courses, where he integrates hands-on learning tools like Zybooks and Canvas. He has delivered invited talks on next-gen wireless technologies and collaborates with multidisciplinary teams to shape the future of AI, cloud computing, and quantum networking. His work has significantly impacted academia, research, and industry. ๐Ÿš€๐Ÿ”ฌ๐Ÿ“ก

Research Focus ๐Ÿ†๐Ÿ”

Shakil Ahmedโ€™s research is at the intersection of AI, networking, and cybersecurity, with a focus on:

  • AI/ML & Deep Learning โ€“ Reinforcement Learning (RL), Large Language Models (LLM), Explainable AI (XAI) ๐Ÿค–
  • Cybersecurity & Quantum Networking โ€“ Secure network protocols, quantum neural networks (QNN) ๐Ÿ”’
  • IoT & Cloud Computing โ€“ System design for connected environments, mobile edge computing โ˜๏ธ
  • Digital Twin & 6G+ Networks โ€“ AI-driven tactile internet, smart infrastructure, and futuristic networking ๐ŸŒ๐Ÿ“ก
    His work integrates cutting-edge AI techniques, optimization frameworks, and network simulations to solve real-world challenges.

Awards & Honors ๐Ÿ…๐ŸŽ–๏ธ

  • Professional Development Fund โ€“ Iowa State University ($10,000) ๐Ÿ’ฐ
  • Presidential Fellowship โ€“ Utah State University ($90,000) ๐Ÿ†
  • Best Paper Award โ€“ IEEE International Conference on Informatics, Electronics, and Vision (2016) ๐Ÿฅ‡
  • Graduate & Professional Student Senate Research Award โ€“ ISU ($700) ๐Ÿ“œ
  • ECpE Department Support Grant โ€“ ISU ($600) ๐ŸŽ“
  • Professional Advancement Grant (PAG) โ€“ ISU ($400) ๐ŸŽ–๏ธ
  • Military Communications Conference Student Travel Grants โ€“ 2021 & 2022 ($1,000) โœˆ๏ธ
  • Graduate & Professional Student Council Grant โ€“ ISU ($750) ๐Ÿ…
  • ECE Department Support Grant โ€“ Utah State University ($1,000) ๐Ÿ†

Publication Top Notes

  1. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions

    • Authors: Mostafa Zaman Chowdhury, Md. Shahjalal, Shakil Ahmed, Yeong Min Jang
    • Journal: IEEE Open Journal of the Communications Society
    • Year: 2020
    • Citation: Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957โ€“975.
  2. Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Access
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks. IEEE Access, 8, 21215โ€“21225.
  3. Energy-Efficient UAV Relaying Communications to Serve Ground Nodes

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Communications Letters
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 24(4), 849โ€“852.
  4. Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT

    • Authors: Hao Sun, Qiang Wang, Shakil Ahmed, Rose Hu
    • Conference: IEEE Vehicular Technology Conference (VTC Spring)
    • Year: 2017
    • Citation: Sun, H., Wang, Q., Ahmed, S., & Hu, R. (2017). Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1โ€“5).
  5. A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology

    • Authors: Shakil Ahmed, Md Rashid, Farzana Alam, B. Fakhruddin
    • Conference: 2019 29th International Telecommunication Networks and Applications Conference (ITNAC)
    • Year: 2019
    • Citation: Ahmed, S., Rashid, M., Alam, F., & Fakhruddin, B. (2019). A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 20โ€“25).

 

Bernardine Chidozie | Engineering | Best Researcher Award

Mrs. Bernardine Chidozie | Engineering | Best Researcher Award

Mrs, Bernardine Chidozie, University of Aveiro, Portugal

Mrs. Bernardine Chidozie is a dedicated researcher and PhD student fellow at the University of Aveiro, Portugal, focusing on digital transformation, simulation modeling, and supply chain optimization, especially in the context of Industry 4.0 and 5.0. Her research employs simulation-based methods and digital tools to improve decision-making and operational performance in complex systems, such as healthcare and sustainable supply chains.

 

PROFILE

Orcid profile

Educational Details

With an academic foundation in engineering, Mrs. Chidozie has contributed significantly to projects like the “Sustainable Supply Chain Management Model for Residual Agroforestry Biomass,” utilizing a web platform to support her research, which began in 2022. Her publications explore the impact of digitalization on supply chains, including the optimization of biomass supply chains for sustainability. She has authored books like Simulation-Based Approaches to Enhance Operational Decision Support in Healthcare 5.0 and published articles in notable journals, such as Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix.

Professional Experience

Professionally, Mrs. Chidozie has been involved in various research and consultancy projects, including industry-relevant studies that analyze the role of simulation and digital transformation in optimizing supply chains. She is an active member of the Council for the Regulation of Engineering in Nigeria (COREN) and collaborates on initiatives that bridge research and real-world applications. Her primary goal is to create innovative, technology-driven strategies to enhance sustainability, efficiency, and resilience in industrial and healthcare sectors.

Research Interests

Digital transformation, simulation modeling, supply chain optimization, Industry 4.0 and 5.0 applications, sustainable biomass supply chains, healthcare systems improvement, and decision-support systems.

Top Notable Publications

Chidozie, B.C. (2024). Highlighting Sustainability Criteria in Residual Biomass Supply Chains: A Dynamic Simulation Approach. Sustainability, Published: 2024-11-07, DOI: 10.3390/su16229709, Source: Crossref.

Chidozie, B.C. (2024). Development of a Residual Biomass Supply Chain Simulation Model Using AnyLogistix: A Methodical Approach. Logistics, Published: 2024-10-18, DOI: 10.3390/logistics8040107, Source: Crossref.

Chidozie, B.C. (2024). The Importance of Digital Transformation (5.0) in Supply Chain Optimization: An Empirical Study. Production Engineering Archives, Published: 2024-03-01, DOI: 10.30657/pea.2024.30.12, Source: Crossref.

Chidozie, B.C. (2024). Analytical and Simulation Models as Decision Support Tools for Supply Chain Optimization – An Empirical Study. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54671-6_15, ISBN: 9783031546709, Source: Crossref.

Chidozie, B.C. (2024). Impacts of Simulation and Digital Tools on Supply Chain in Industry 4.0. The 17th International Conference Interdisciplinarity in Engineering (book chapter), DOI: 10.1007/978-3-031-54664-8_43, ISBN: 9783031546648, Source: Crossref.

Chidozie, B.C. (2024). Simulation-Based Approaches to Enhance Operational Decision-Support in Healthcare 5.0: A Systematic Literature Review. (book chapter), DOI: 10.1007/978-3-031-38165-2_78, Source: Crossref.

ย Conclusion

Mrs. Bernardine Chidozieโ€™s research achievements, particularly her focus on digital transformation and sustainable supply chains, make her a suitable candidate for the Best Researcher Award. Her work is relevant and impactful, addressing key challenges in Industry 4.0 and Healthcare 5.0. Her publications, ongoing projects, and industry involvement illustrate her dedication to advancing sustainability and efficiency across industries, marking her as a distinguished researcher in her field.

 

 

 

 

 

Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin | Engineering | Best Researcher Award

Assist. Prof. Dr. Dongmin Shin, Gyeongsang National University, South Korea

Dongmin Shin, Ph.D., is an Assistant Professor of Smart Energy and Mechanical Engineering at Gyeongsang National University, South Korea. His expertise encompasses mechanical system reliability and energy solutions, backed by extensive experience in research and academia at institutions like KIMM and KAIST.

PROFILE

Orcid profile

Educational Details

Dr. Shin holds a Ph.D. in Mechanical Engineering from the Korea Advanced Institute of Science and Technology (KAIST), completed in August 2019, where he also earned his M.S. in Ocean System Engineering in February 2015. His foundational studies began at Hanyang University, where he received a B.S. in Mechanical Engineering in 2013, with a break for military service from 2008 to 2010.

Professional Experience

Dr. Shin joined Gyeongsang National University as an Assistant Professor in September 2022. Prior to this, he was a Post-doctoral Researcher at the Korea Institute of Machinery & Materials (KIMM), focusing on reliability assessment in mechanical systems. His academic journey includes roles at KAIST, where he served as a Research Assistant Professor at the Institute for Security Convergence Research, and at Kunsan National University as a Research Professor within the Shipbuilding & Ocean Equipment Industry Empowerment Center. Additionally, he has experience as a Teaching and Research Management Assistant at KAIST, supporting courses in Fluid Mechanics, Numerical Analysis, and mechanical practice, and assisting with 2-D and 3-D wave tank research.

Research Interests

Dr. Shinโ€™s research interests lie in mechanical system reliability, smart energy systems, ocean engineering, and fluid mechanics, with applications in mechanical system safety and energy efficiency.

Top Notable Publications

“Design Analysis Using Evaluation of Surf-Riding and Broaching by the IMO Second Generation Intact Stability Criteria for a Small Fishing Boat”

Authors: Not provided

Year: 2024

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse12112066

“Numerical Study on Compact Design in Marine Urea-SCR Systems for Small Ship Applications”

Authors: Not provided

Year: 2023

Journal: Energies

DOI: 10.3390/en17010187

“Numerical analysis of thermal and hydrodynamic characteristics in aquaculture tanks with different tank structures”

Authors: Not provided

Year: 2023

Journal: Ocean Engineering

DOI: 10.1016/j.oceaneng.2023.115880

“Evaluation of Parametric Roll Mode Applying the IMO Second Generation Intact Stability Criteria for 13K Chemical Tanker”

Authors: Not provided

Year: 2023

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse11071462

“Wave-induced vibration of a fully submerged horizontal cylinder close to a free surface: a theory and experiment”

Authors: Not provided

Year: 2022

Journal: Ships and Offshore Structures

DOI: 10.1080/17445302.2021.1950344

“Assessment of Excessive Acceleration of the IMO Second Generation Intact Stability Criteria for the Tanker”

Authors: Not provided

Year: 2022

Journal: Journal of Marine Science and Engineering

DOI: 10.3390/jmse10020229

Conclusion

Assist. Prof. Dr. Dongmin Shinโ€™s strong educational background, extensive professional experience, innovative research contributions, commitment to teaching and mentoring, and effective research management make him a highly suitable candidate for the Best Researcher Award. His achievements across academia, applied research, and project management reflect the qualities recognized by this award, underscoring his potential to continue contributing meaningfully to engineering and research fields.

 

 

 

 

 

Renwei Liu | Engineering | Excellence in Innovation Award

Dr. Renwei Liu | Engineering | Excellence in Innovation Award

Dr Renwei Liu, Jiangsu University of Science and Technology, China

Dr. Renwei Liu is a lecturer at Jiangsu University of Science and Technology, China, specializing in polar ships, ship-ice interaction, and marine engineering. His innovative research in peridynamics has made significant contributions to the understanding of ship-ice interactions, with numerous publications and patents. He is actively involved in both academic research and industry consultancy, working on cutting-edge projects related to Arctic operations and ice load modeling.

PROFILE

Google Scholarย  Profile

Educational Details

Dr. Renwei Liu earned his Bachelor’s and Ph.D. degrees in Naval Architecture and Marine Engineering from Harbin Engineering University (2012-2021). His academic foundation laid the groundwork for his deep expertise in marine engineering, particularly in the field of polar ship design and the application of peridynamics in ship-ice interaction.

Professional Experience

Since 2021, Dr. Liu has been serving as a lecturer at the School of Naval Architecture and Marine Engineering, Jiangsu University of Science and Technology. His expertise spans various areas of naval architecture, with a particular focus on ship-ice interaction and polar ship technology. He has also contributed to consultancy and industry projects related to ice load prediction and anti-icing technologies for polar ships.

Research Interests

Dr. Liuโ€™s primary research interests include the application of the peridynamics method in ship and marine structures, with a particular emphasis on polar ships, ice load prediction, and anti-icing technologies for Arctic operations. His work also extends to marine platform design and structural optimization for ice navigation.

Research and Innovations

Dr. Liuโ€™s pioneering work includes introducing the peridynamics method for calculating ship ice loads, which led to the development of a numerical model for ship and ice interaction. This work resulted in the publication of the first paper in the field. His ongoing research projects include studies on the failure modes of sea ice and technologies for ice load modeling and anti-icing for Arctic operations. Notable ongoing projects include research funded by the National Natural Science Foundation of China and the Ministry of Science and Technology.

Collaborations

Dr. Liu has co-authored multiple papers with researchers from various institutions, exploring topics like sea ice structure interaction, ice load predictions, and thermomechanical removal of ice from frozen structures. Some of his prominent collaborations include publications in China Ocean Engineering and Ocean Engineering on topics like ice load prediction for ships and the dynamic response of offshore wind turbines under ice impact.

Patents

Dr. Liu holds several patents related to marine engineering, including inventions for ice recognition devices, adjustable towing systems for ice pools, and methods for measuring ice crack sizes using deep learning. His patent portfolio demonstrates his innovative approach to solving complex challenges in marine engineering and ice navigation.

Top Notable Publications

A review for numerical simulation methods of shipโ€“ice interaction
Authors: Y. Xue, R. Liu, Z. Li, D. Han
Published in: Ocean Engineering
Year: 2020
Citations: 84
DOI: 10.1016/j.oceaneng.2020.107853

Simulation of ship navigation in ice rubble based on peridynamics
Authors: R. W. Liu, Y. Z. Xue, X. K. Lu, W. X. Cheng
Published in: Ocean Engineering
Year: 2018
Citations: 84
DOI: 10.1016/j.oceaneng.2017.11.055

Experimental and numerical investigation on self-propulsion performance of polar merchant ship in brash ice channel
Authors: C. Xie, L. Zhou, S. Ding, R. Liu, S. Zheng
Published in: Ocean Engineering
Year: 2023
Citations: 58
DOI: 10.1016/j.oceaneng.2022.113424

Modeling and simulation of iceโ€“water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics
Authors: R. Liu, J. Yan, S. Li
Published in: Computational Particle Mechanics
Year: 2020
Citations: 49
DOI: 10.1007/s40571-020-00267-2

Peridynamic modeling and simulation of coupled thermomechanical removal of ice from frozen structures
Authors: Y. Song, R. Liu, S. Li, Z. Kang, F. Zhang
Published in: Meccanica
Year: 2020
Citations: 26
DOI: 10.1007/s11012-020-01068-2

Numerical simulations of the ice load of a ship navigating in level ice using peridynamics
Authors: Y. Xue, R. Liu, Y. Liu, L. Zeng, D. Han
Published in: Computer Modeling in Engineering & Sciences
Year: 2019
Citations: 21
DOI: 10.32604/cmes.2019.12258

Broken ice circumferential crack estimation via image techniques
Authors: J. Cai, S. Ding, Q. Zhang, R. Liu, D. Zeng, L. Zhou
Published in: Ocean Engineering
Year: 2022
Citations: 20
DOI: 10.1016/j.oceaneng.2022.111735

 

Conclusion

Dr. Renwei Liu exemplifies the qualities of an outstanding candidate for the Research for Excellence in Innovation Award. His innovative research on peridynamics, his leadership in polar ship research, and his contributions to industry applications make him a deserving nominee. His work continues to shape the future of marine engineering, polar exploration, and sustainable ice navigation technologies.