Lei Liu | Engineering | Best Researcher Award

Prof. Lei Liu | Engineering | Best Researcher Award

Professor at Zhejiang University, China

Prof. Liu Lei is a Young Profenications, information theory, and signal processing. Liu received his Ph.D. in Communication and Information Systems from Xidian University and enriched his academic foundation as a visiting scholar at NTU Singapore. His postdoctoral and research appointments span SUTD, CityU Hong Kong, and JAIST Japan. Honored under ZJUโ€™s Hundred Talents Program, he actively leads in editorial and conference roles. With a track record of cutting-edge research, Prof. Liu has authored 39+ high-impact journal articles and continues to influence future innovations in modern channel coding and massive MIMO. ๐Ÿง ๐Ÿ“ก

Professional Profileย 

๐ŸŽ“ Education

Prof. Liu Lei began his academic journey in 2011 at Xidian University, earning his Ph.D. in Communication and Information System in March 2017. During his doctoral studies, he broadened his expertise with a prestigious exchange opportunity at Nanyang Technological University (NTU), Singapore (2014โ€“2016), where he engaged with globally renowned researchers in the field of Electrical and Electronic Engineering. This international exposure shaped his foundational understanding of statistical signal processing and message-passing algorithms. His academic pursuits combined rigorous theoretical knowledge with practical algorithmic development, laying the groundwork for his future innovations in wireless communication systems and information theory. ๐Ÿ“˜๐ŸŒ๐ŸŽ“

๐Ÿ’ผExperienceย 

Prof. Liu Lei has cultivated a rich academic career across leading global institutions. He began as a Postdoctoral Research Fellow at SUTD, Singapore (2016โ€“2017), followed by a Research Fellow role at City University of Hong Kong (2017โ€“2019). He then served as Assistant Professor at JAIST, Japan (2019โ€“2023), achieving top research rankings among faculty. Since 2023, he has been a Tenure-Track Young Professor and Doctoral Supervisor at Zhejiang University. His expertise spans message passing, compressed sensing, and channel coding. Prof. Liu has been active in IEEE conferences, serving in key editorial and chairing roles, and is a notable reviewer for top-tier journals. ๐ŸŒ๐Ÿ“š๐Ÿซ

๐Ÿ† Awards & Honors

Prof. Liu Lei has received several prestigious accolades for his research excellence. In 2023, he was honored with the Young Star Award and the Best Poster Award at the 30th Chinese Institute of Electronics Conference on Information Theory (CIEIT), recognizing his impactful contributions to information theory. His dedication to academic rigor earned him the Exemplary Reviewer Award from IEEE Transactions on Communications in 2020, an honor bestowed on less than 2% of reviewers. These distinctions underscore his leadership in developing cutting-edge algorithms and his commitment to advancing wireless communication systems. ๐Ÿฅ‡๐ŸŽ–๏ธ๐Ÿ…

๐Ÿ”ฌ Research Focusย 

Prof. Liuโ€™s research focuses on the development of high-performance algorithms and theoretical frameworks in wireless communications. His interests include Message Passing Theory, Statistical Signal Processing, Compressed Sensing, Modern Channel Coding, and Information Theory. He is especially noted for innovations in Approximate Message Passing (AMP) and Orthogonal AMP (OAMP) algorithms. His work aims to optimize capacity and performance in massive MIMO, NOMA, and RIS-aided systems. Prof. Liu’s vision integrates theoretical depth with engineering applications, contributing to next-generation communication systems with greater efficiency, robustness, and scalability. ๐Ÿ“ก๐Ÿ“Š๐Ÿ”

๐Ÿ› ๏ธ Skillsย 

Prof. Liu Lei has extensive expertise in ๐Ÿ“ถ wireless communication, particularly in emerging technologies such as massive MIMO, NOMA, mmWave, and Integrated Sensing and Communication (ISAC) systems. His work contributes to optimizing spectral efficiency and network reliability in next-generation wireless networks.

In the field of ๐Ÿ“ signal processing, he is highly skilled in compressed sensing and advanced channel estimation techniques, which enhance data recovery and transmission accuracy in complex environments.

His foundation in ๐Ÿ“Š information theory is robust, focusing on coding theory, achievable rates, and capacity optimization, all critical to efficient communication system design.

Prof. Liu is also a specialist in ๐Ÿงฎ message passing algorithms, including AMP, OAMP, GAMP, and GVAMP, which he applies to both theoretical models and practical systems.

He leverages ๐Ÿ”— machine learning tools such as neural networks and variational inference to improve signal decoding.

In addition, he is experienced in ๐Ÿ“š academic publishing and ๐Ÿง‘โ€๐Ÿซ teaching, mentoring students in both foundational and advanced courses.

๐Ÿ“š Publications Top Noteย 

  1. Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen, S. Sun

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 161

    • ๐Ÿ“… Year: 2018

  2. Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Chi, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 151

    • ๐Ÿ“… Year: 2019

  3. User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled IoT

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Z. Zhang, Y. Li, C. Huang, Q. Guo, L. Liu, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Internet of Things Journal

    • ๐Ÿ”ข Citations: 149

    • ๐Ÿ“… Year: 2020

  4. Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, C. Huang

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 140

    • ๐Ÿ“… Year: 2019

  5. Convergence Analysis and Assurance for Gaussian Message Passing in Massive MU-MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, Y. Su

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 108

    • ๐Ÿ“… Year: 2016

  6. Practical MIMO-NOMA: Low Complexity and Capacity-Approaching Solution

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Chi, L. Liu, G. Song, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 84

    • ๐Ÿ“… Year: 2018

  7. Memory AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, S. Huang, B.M. Kurkoski

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 83

    • ๐Ÿ“… Year: 2022

  8. Orthogonal AMP for Massive Access in Channels with Spatial and Temporal Correlations

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Cheng, L. Liu, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Journal on Selected Areas in Communications

    • ๐Ÿ”ข Citations: 68

    • ๐Ÿ“… Year: 2021

  9. Capacity Optimality of AMP in Coded Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Liang, J. Ma, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 53

    • ๐Ÿ“… Year: 2021

  10. On Orthogonal AMP in Coded Linear Vector Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: J. Ma, L. Liu, X. Yuan, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 39

    • ๐Ÿ“… Year: 2019

  11. A New Insight into GAMP and AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Li, C. Huang, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2019

  12. Over-the-Air Implementation of Uplink NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: S. Abeywickrama, L. Liu, Y.C. Yuhao, Chi

    • ๐Ÿ“ฐ Conference: IEEE Globecom

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2018

  13. Asymptotically Optimal Estimation for Sparse Signal with Arbitrary Distributions

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 28

    • ๐Ÿ“… Year: 2018

๐Ÿ Conclusion

Dr. Lei Liu exemplifies the qualities of a Best Researcher Award recipient: depth in theoretical research, breadth in global experience, and excellence in teaching and mentorship. His leadership roles, prolific output, and rising trajectory within academic and engineering communities make him a model scholar in the communications field. While areas like applied innovation and interdisciplinary expansion offer room for growth, his current achievements already place him at the forefront of his domain.

Chenxia Wang | Civil Engineering | Best Researcher Award

Prof. Chenxia Wang | Civil Engineering | Best Researcher Award

Professor (Doctoral Supervisor) at Inner Mongolia University of Science and Technology, China

Dr. Chenxia Wang (Ph.D.) is a highly accomplished professor of Civil Engineering at the Inner Mongolia University of Science and Technology ๐Ÿ‡จ๐Ÿ‡ณ. With a strong academic background and over two decades of teaching and research experience, Dr. Wang specializes in recycled concrete and concrete durability ๐Ÿงฑ๐Ÿ”ฌ. She earned her Ph.D. in Civil Engineering from Nanjing University of Aeronautics and Astronautics in 2015 ๐ŸŽ“, following earlier degrees from Inner Mongolia University of Science & Technology and Lanzhou University of Technology.

Throughout her academic career, Dr. Wang has steadily progressed through the academic ranksโ€”from Assistant Professor in 2002 to Full Professor in 2024 ๐Ÿ“ˆ. Her research is widely published in top-tier journals and focuses on the mechanical behavior and durability of recycled concrete under adverse conditions like freeze-thaw cycles and corrosion ๐ŸŒจ๏ธ๐Ÿ”ฉ.

She is a member of multiple prestigious committees and editorial boards and serves as an expert advisor in construction safety and waste management initiatives ๐Ÿ—๏ธโ™ป๏ธ. A two-time recipient of the First Prize for Outstanding Papers at the Inner Mongolia Natural Science Conference, she is known for her rigorous and applied research, significantly impacting green construction and sustainable civil engineering ๐ŸŒ๐Ÿงช.

Professional Profile:

Orcid

Scopus

๐Ÿ”น Education & Experienceย 

๐ŸŽ“ Education

  • ๐Ÿ“˜ Ph.D. in Civil Engineering โ€“ Nanjing University of Aeronautics and Astronautics, 2015

  • ๐Ÿ“— M.Sc. in Civil Engineering โ€“ Inner Mongolia University of Science & Technology, 2006

  • ๐Ÿ“™ B.Eng. in Civil Engineering โ€“ Lanzhou University of Technology, 2001

๐Ÿ’ผ Academic Experience

  • ๐Ÿ‘ฉโ€๐Ÿซ Professor, Civil Engineering, Inner Mongolia Univ. of Science & Technology (2024โ€“Present)

  • ๐Ÿง‘โ€๐Ÿซ Associate Professor (2013โ€“2023)

  • ๐Ÿง‘โ€๐Ÿซ Lecturer (2007โ€“2012)

  • ๐Ÿ‘จโ€๐Ÿ”ฌ Assistant Professor (2002โ€“2007)

๐Ÿ”น Professional Developmentย 

Dr. Chenxia Wang has consistently advanced her professional capabilities through active involvement in expert committees, editorial work, and project leadership ๐Ÿ“˜๐Ÿ’ผ. She is a recognized expert of the Inner Mongolia Autonomous Regionโ€™s Construction Industry Association and serves as a member of multiple national technical committees, including those on Rock and Concrete Fracture, Recycled Concrete, and Steel-Concrete Structures ๐Ÿงฑ๐Ÿ”—. Her professional development is evident in her role as an executive council member of the Solid Waste Subcommittee of the Chinese Ceramic Society, promoting sustainable construction materials and methods โ™ป๏ธ๐Ÿ—๏ธ.

In addition to technical memberships, she contributes to academic publishing as an editorial board member for the Journal of Applied Mechanics ๐Ÿ“š๐Ÿ–‹๏ธ. Dr. Wang is also a designated expert in construction safety for large projects in Baotou City, and is actively involved in regional standardization and energy conservation efforts ๐Ÿขโšก. Her numerous funded research projects from NSFC and regional foundations underscore her leadership in advancing recycled concrete technologies and durability solutions in civil engineering ๐Ÿงช๐Ÿ”.

Her commitment to both research and professional service places her at the intersection of science, engineering application, and policy development, making her a key figure in promoting environmentally responsible infrastructure in China ๐Ÿ‡จ๐Ÿ‡ณ๐ŸŒ.

๐Ÿ”น Research Focus Categoryย 

Dr. Chenxia Wangโ€™s research lies in the interdisciplinary field of Sustainable Civil Engineering, with a particular emphasis on Recycled Concrete and Concrete Durability ๐Ÿ—๏ธโ™ป๏ธ. Her work addresses pressing environmental and structural challenges by exploring the mechanical and bonding behavior of recycled aggregate concrete under extreme environmental conditions such as freeze-thaw cycles and chloride-induced corrosion โ„๏ธ๐Ÿ”ฉ.

A key focus area is the ontological relationship between recycled concrete and corroded reinforcement, including bond-slip behavior and microstructural evolution ๐Ÿ“‰๐Ÿ”. She also investigates self-repairing capabilities of cracked concrete through microbial techniques like MICP (Microbially Induced Calcite Precipitation) ๐Ÿงฌ๐Ÿงซ.

Dr. Wang has integrated materials science, structural engineering, and sustainability to offer innovative solutions to reduce construction waste and improve the lifespan of civil infrastructure ๐ŸŒฑ๐Ÿ›๏ธ. Her numerous experimental studies and modeling efforts have made significant contributions to the understanding and practical use of recycled materials in construction, advancing the goal of green and durable infrastructure development ๐Ÿ”ฌ๐Ÿงฑ.

This research aligns with global sustainability objectives and helps bridge the gap between traditional engineering practices and emerging green technologies ๐ŸŒ๐Ÿงช.

๐Ÿ”น Honors and Awardsย 

๐Ÿ† Honors & Awards

  • ๐Ÿฅ‡ First Prize โ€“ Outstanding Paper, Inner Mongolia Natural Science Annual Conference (2021, 2022)

  • ๐Ÿฅˆ Second Prize โ€“ 25th National Structure Engineering Conference Excellent Paper (2016)

  • ๐ŸŒ CNKI Overseas Impact โ€“ Recognized for Excellent Paper in International Focused Publications

Publication Top Notes

1. Effects of salt-freeze erosion on the bonding properties of stirrup-confined recycled concrete and steel bars

  • Journal: Journal of Building Structures

  • Date: 2023-11-05

  • DOI: 10.14006/j.jzjgxb.2023.S2.0044

  • Summary: Investigates how salt-freeze erosion affects bond strength between stirrup-confined recycled concrete and steel bars. Results show that erosion significantly reduces bonding capacity, and stirrup confinement helps mitigate damage.


2. Study on mechanical properties and durability of steel slag concrete under different replacement rates

  • Journal: Journal of Yangtze River Scientific Research Institute

  • Date: 2023-10-17

  • DOI: 10.11988/ckyyb.20221223

  • Summary: Examines mechanical strength and durability of concrete with varying steel slag replacement rates. Moderate replacement enhances strength and resistance, but excessive content negatively impacts performance.


3. Bond behavior between section steel and concrete in partially encased composite structural members

  • Journal: Construction and Building Materials

  • Date: 2023-10-12

  • DOI: 10.1016/j.conbuildmat.2023.132521

  • Summary: Analyzes the interface bonding performance in composite members with partial steel encasement. Findings support improved design strategies for better bond behavior and load transfer efficiency.


4. Effect of silica fume on salt-freeze resistance and microstructure of recycled concrete

  • Journal: Journal of Yangtze River Scientific Research Institute

  • Date: 2023-07-20

  • DOI: 10.11988/ckyyb.20230063

  • Summary: Evaluates the role of silica fume in improving salt-freeze resistance. Silica fume significantly refines the pore structure, reduces permeability, and enhances durability.


5. Experimental study on frost resistance of recycled aggregate concrete based on the concentration of composite salt solution

  • Journal: Journal of Yangtze River Scientific Research Institute

  • Date: 2023-05-30

  • DOI: 10.11988/ckyyb.20221709

  • Summary: Investigates how different salt solution concentrations influence frost resistance. Higher salt concentrations lead to greater damage, highlighting the need for optimized mix design in cold regions.


6. Bond Performance of Corroded Steel Reinforcement and Recycled Coarse Aggregate Concrete after Freeze-Thaw Cycles

  • Journal: Sustainability

  • Date: 2023-04-28

  • DOI: 10.3390/su15076122

  • Summary: Assesses the bond strength degradation of corroded steel embedded in recycled concrete after freeze-thaw cycles. Corrosion accelerates bond loss, but confinement and proper mix design reduce deterioration.


7. Microstructure and damage evolution model of steel slag fine aggregate concrete under freeze-thaw environment

  • Journal: Chinese Journal of Applied Mechanics

  • Date: 2023-04-03

  • DOI: 10.11776/j.issn.1000-4939.2024.03.011

  • Summary: Proposes a microstructure-based damage model for steel slag concrete under freeze-thaw. Simulation results align well with experimental data, aiding future durability predictions.


8. Uniaxial compressive stress-strain test of steel slag coarse aggregate concrete

  • Journal: Journal of Shenyang Jianzhu University

  • Date: 2022-11-15

  • DOI: 10.11717/j.issn:2095-1922.2022.06.17

  • Summary: Studies stress-strain behavior of steel slag aggregate concrete under uniaxial loading. Concrete shows good load-bearing capacity, and the stress-strain relationship provides basis for structural analysis.


9. Experimental study on stress-strain curve of recycled concrete after composite salt freezing

  • Journal: Journal of Building Structures

  • Date: 2022-11-05

  • DOI: 10.14006/j.jzjgxb.2022.S1.0039

  • Summary: Tests stress-strain curves of recycled concrete after exposure to composite salt freeze. Results show strength loss and ductility reduction, underlining the importance of salt-resistance improvements.


10. Stress-slip constitutive relationship of bond between steel bar and recycled concrete in salt-freezing environment

  • Journal: Journal of Building Structures

  • Date: 2022-11-05

  • DOI: 10.14006/j.jzjgxb.2022.S1.0040

  • Summary: Establishes a stress-slip model for steel bar-recycled concrete bond under salt-freeze conditions. Model accurately reflects degradation effects and helps predict performance in coastal and cold climates.

Conclusion:

Dr. chenxia wang exemplifies the qualities of a Best Researcher Award recipient through her sustained, impactful research on recycled concrete durability, a field critical to environmental sustainability in civil engineering. Her combination of scientific innovation, practical applications, professional leadership, and recognized excellence positions her as an outstanding candidate for such an award. Her work not only advances academic knowledge but also contributes significantly to improving sustainable construction practices in China and beyond.

Fubo Cao | Civil Engineering | Best Researcher Award

Prof. Fubo Cao | Civil Engineering | Best Researcher Award

Professor at Inner Mongolia University of Science and Technology, China

Dr. Fubo Cao ๐ŸŽ“ is a distinguished Professor of Civil Engineering at the Inner Mongolia University of Science & Technology in Baotou, China ๐Ÿ‡จ๐Ÿ‡ณ. With a strong academic foundation and decades of experience, he has carved a niche in the domain of structural engineering, especially in recycled concrete, PEC (Prefabricated Embedded Components), and structural reliability ๐Ÿ—๏ธ. His career began after earning a B.Eng. from Baotou University of Iron and Steel in 1998, followed by an M.Sc. from IMUST in 2003, and a Ph.D. from Nanjing University of Aeronautics and Astronautics in 2017. He further enriched his expertise with a VS Civil Engineering degree from The University of Alabama in 2020 ๐ŸŒ. Dr. Cao has held multiple academic ranks, from Assistant Professor to full Professor, and also serves as Vice Director of the Institute of Architectural Science ๐Ÿงฑ. His commitment to applied research is evident in his numerous funded projects and scholarly publications ๐Ÿ“š. A dedicated mentor and active member of various professional committees, Dr. Cao is a driving force in sustainable civil engineering practices โ™ป๏ธ. His work has been recognized with multiple prestigious awards for scientific and technological progress ๐Ÿ†.

Professional Profile:

Orcid

Scopus

๐Ÿ”น Education & Experienceย 

๐Ÿ“š Education:

  • ๐ŸŽ“ B.Eng. Civil Engineering โ€“ Baotou University of Iron and Steel (1998)

  • ๐ŸŽ“ M.Sc. Civil Engineering โ€“ Inner Mongolia University of Science & Technology (2003)

  • ๐ŸŽ“ Ph.D. Civil Engineering โ€“ Nanjing University of Aeronautics and Astronautics (2017)

  • ๐ŸŒ VS Civil Engineering โ€“ The University of Alabama (2020)

๐Ÿง‘โ€๐Ÿซ Academic Appointments:

  • ๐Ÿ‘จโ€๐Ÿซ Assistant Professor, IMUST โ€“ 2003โ€“2004

  • ๐Ÿ‘จโ€๐Ÿซ Lecturer, IMUST โ€“ 2004โ€“2009

  • ๐Ÿ‘จโ€๐Ÿซ Associate Professor, IMUST โ€“ 2010โ€“2017

  • ๐Ÿ‘จโ€๐Ÿซ Professor, IMUST โ€“ 2018โ€“Present

๐Ÿง‘โ€๐Ÿ’ผ Administrative Appointment:

  • ๐Ÿข Vice Director, Institute of Architectural Science, IMUST โ€“ 2016โ€“Present

๐Ÿ”น Professional Developmentย 

Dr. Fubo Cao has demonstrated consistent professional growth throughout his career in academia and engineering innovation ๐Ÿง—โ€โ™‚๏ธ. His leadership as Vice Director of the Institute of Architectural Science at IMUST shows his commitment to shaping civil engineering education and research ๐Ÿ›๏ธ. As an active member of several professional bodies, including the Inner Mongolia Energy Conservation Association and CSCS-ASCCS, Dr. Cao contributes to advancing industry standards and academic excellence ๐Ÿ”. He also serves as an Executive Council Member for two major committees: the Solid Waste Subcommittee of the Chinese Ceramic Society and the Steel Structure Quality Safety Testing and Appraisal Committee under the China Steel Structure Association ๐Ÿ—๏ธ. His professional journey is marked by interdisciplinary collaborations and funded projects that address real-world engineering challengesโ€”particularly in enhancing the performance of recycled concrete and corrosion-affected structures โ™ป๏ธ๐Ÿ”ง. His research achievements have been consistently shared through high-impact journal publications and national competitions ๐Ÿ“ฐ. Dr. Caoโ€™s mentoring of student teams in structural design contests has earned accolades, promoting hands-on learning and innovative thinking ๐ŸŽ“๐Ÿ‘ท. Through these diverse roles and efforts, he remains a pillar of civil engineering advancement both in China and internationally ๐ŸŒ.

๐Ÿ”น Research Focus Categoryย 

Dr. Fubo Caoโ€™s research falls under the category of Sustainable Structural Engineering ๐Ÿ—๏ธโ™ป๏ธ. His primary focus is on recycled concrete, exploring its mechanical properties, durability, and bond-slip behavior with steel reinforcementโ€”especially under freeze-thaw cycles and corrosion conditions โ„๏ธ๐Ÿ”ฉ. These studies are crucial in the development of eco-friendly construction materials that can withstand harsh environments. He also delves into PEC (Prefabricated Embedded Components) and their seismic performance, enhancing the resilience and efficiency of modular construction methods ๐ŸŒ๐Ÿงฑ. Another significant strand of his work involves structural reliability analysis, ensuring long-term safety and performance of civil structures ๐Ÿ“ˆ๐Ÿ . With a number of projects funded by national and regional science foundations, Dr. Cao combines experimental testing with theoretical modeling to create practical solutions for modern engineering challenges ๐Ÿ”ฌ๐Ÿ› ๏ธ. His contributions support Chinaโ€™s sustainable development goals by promoting the reuse of construction waste and improving infrastructure resilience. His research not only advances academic knowledge but also has tangible impacts on engineering practice and environmental conservation ๐ŸŒฑ๐Ÿ”ง.

๐Ÿ”น Awards and Honorsย 

๐Ÿ† Awards and Honors:

  • ๐Ÿฅ‡ First Prize, Excellent Paper โ€“ 16th Annual Conference of Natural Sciences, Inner Mongolia, 2021

  • ๐Ÿฅˆ Second Prize, Excellent Paper โ€“ 16th Annual Conference of Natural Sciences, Inner Mongolia, 2021

  • ๐Ÿฅ‡ First Prize โ€“ Baotou Science and Technology Progress Award, 2014

  • ๐Ÿ… Excellent Mentor โ€“ Inner Mongolia Student Structure Design Competition, 2012โ€“2017

  • ๐Ÿฅ‡ First Prize โ€“ National College Student Structure Design Competition, 2009, 2012

  • ๐Ÿฅˆ Second Prize โ€“ Inner Mongolia Science and Technology Progress Award, 2009

Publication Top Notes

1. Shrinkage and Mechanism Analysis of Fully Recycled Mortar

  • Journal: Architectural Structures

  • Date: 2024-11-05

  • DOI: 10.19701/j.jzjg.20220904

  • Citation: Fubo Cao (2024). Shrinkage and Mechanism Analysis of Fully Recycled Mortar. Architectural Structures.

  • Explanation: This paper investigates the shrinkage behavior of mortars made entirely from recycled materials, analyzing the internal mechanisms that cause shrinkage to help improve the durability and stability of sustainable construction materials.


2. Effect of Salt Freeze Erosion on Bond Performance Between Stirrup-Confined Recycled Concrete and Steel Reinforcement

  • Journal: Journal of Building Structuresย 

  • Date: 2023-11-05

  • DOI: 10.14006/j.jzjgxb.2023.S2.0044

  • Explanation: This study explores how salt-induced freezeโ€“thaw cycles affect the bonding between steel bars and recycled concrete, particularly in elements with stirrup confinementโ€”critical for structural safety in cold, saline environments.


3. Study on Mechanical Properties and Durability of Steel Slag Concrete under Different Substitution Rates

  • Journal: Journal of Yangtze River Scientific Research Institute

  • Date: 2023-10-17

  • DOI: 10.11988/ckyyb.20221223

  • Explanation: This paper evaluates how replacing natural aggregates with steel slag at various percentages influences the mechanical strength and long-term durability of concrete.


4. Bond Behavior Between Section Steel and Concrete in Partially Encased Composite Structural Members

  • Journal: Construction and Building Materials

  • Date: 2023-10-12

  • DOI: 10.1016/j.conbuildmat.2023.132521

  • Explanation: The study analyzes how well steel sections bond with surrounding concrete in composite structures, which is essential for ensuring load-bearing integrity in mixed-material buildings.


5. Effect of Silica Fume on Salt Freeze Resistance and Microstructure of Recycled Concrete

  • Journal: Journal of Yangtze River Scientific Research Institute

  • Date: 2023-07-20

  • DOI: 10.11988/ckyyb.20230063

  • Explanation: Silica fume is examined as an additive to enhance the freezeโ€“thaw resistance and modify the microstructure of recycled concrete, thus improving its environmental durability.


6. Experimental Study on Frost Resistance of Recycled Aggregate Concrete Based on Composite Salt Solution Concentration

  • Journal: Journal of Yangtze River Scientific Research Institute

  • Date: 2023-05-30

  • DOI: 10.11988/ckyyb.20221709

  • Explanation: Investigates how recycled aggregate concrete performs under freezeโ€“thaw cycles when exposed to different concentrations of salt solutions, mimicking real-world environmental conditions.


7. Bond Performance of Corroded Steel Reinforcement and Recycled Coarse Aggregate Concrete after Freeze-Thaw Cycles

  • Journal: Sustainability

  • Date: 2023-04-28

  • DOI: 10.3390/su15076122

  • Explanation: This study explores how corrosion and freezeโ€“thaw damage affect the bonding performance between steel bars and recycled aggregate concrete, contributing to structural lifespan prediction.


8. Microstructure and Damage Evolution Model of Steel Slag Fine Aggregate Concrete Under Freeze-Thaw Environment

  • Journal: Acta Mechanica Sinica

  • Date: 2023-04-03

  • DOI: 10.11776/j.issn.1000-4939.2024.03.011

  • Explanation: Focuses on how microstructural damage evolves in concrete containing steel slag fine aggregates under freezeโ€“thaw conditions, offering insights into modeling deterioration.


9. Uniaxial Compressive Stress-Strain Test of Steel Slag Coarse Aggregate Concrete

  • Journal: Journal of Shenyang Jianzhu University (Natural Science Edition)

  • Date: 2022-11-15

  • DOI: 10.11717/j.issn:2095-1922.2022.06.17

  • Explanation: Presents stressโ€“strain data under uniaxial compression for concrete incorporating steel slag coarse aggregates, essential for structural modeling.


10. Full Stress-Strain Curve Test of Recycled Concrete after Composite Salt Freezing

  • Journal: Journal of Building Structures

  • Date: 2022-11-05

  • DOI: 10.14006/j.jzjgxb.2022.S1.0039

  • Explanation: Reports on the full stressโ€“strain behavior of recycled concrete subjected to composite salt and freezeโ€“thaw, aiding in constitutive model development.


11. Bond Stressโ€“Slip Constitutive Relationship Between Steel Bar and Recycled Concrete in Salt-Freezing Environment

  • Journal: Journal of Building Structures

  • Date: 2022-11-05

  • DOI: 10.14006/j.jzjgxb.2022.S1.0040

  • Explanation: Models the bond-slip interaction between reinforcement and recycled concrete under salt freezing, essential for seismic and structural safety.


12. Study on Bond Performance Between Corroded Reinforcement and Recycled Concrete After Freezeโ€“Thaw

  • Journal: Journal of Building Structures

  • Date: 2022-11-05

  • DOI: 10.14006/j.jzjgxb.2022.S1.0041

  • Explanation: Focuses on how corrosion and environmental damage jointly influence reinforcement-concrete bond strength in recycled materials.


13. Bond-Slip Behavior of PEC Columns with Expansive Agent

  • Journal: Journal of Building Materials

  • Date: 2022-07-27

  • DOI: 10.3969/j.issn.1007-9629.2022.11.010

  • Explanation: Studies the bondโ€“slip properties of concrete columns with expansive agents to improve joint integrity in precast or repaired structures.


14. Mechanical Properties and Damage Model of Recycled Concrete After Freezeโ€“Thaw Cycles

  • Journal: Industrial Construction

  • Date: 2021-06-30

  • DOI: 10.13204/j.gyjzG20091704

  • Explanation: Provides a damage model for recycled concrete degraded by freezeโ€“thaw cycling, aiding in structural analysis and design.


15. Effect of Rice Husk Ash and Metakaolin on Properties of Recycled Concrete

  • Journal: Industrial Construction

  • Date: 2021-03-22

  • DOI: 10.13204/j.gyjzg20031602

  • Explanation: Investigates how using pozzolanic materials like rice husk ash and metakaolin can improve the mechanical and durability properties of recycled concrete.

Conclusion

Dr. Fubo Cao is a leading researcher in structural engineering with a specialized focus on sustainable and resilient construction materials, particularly recycled concrete. His scientific output, project leadership, and awards strongly support his candidacy for a Best Researcher Award. He embodies the qualities of innovation, impact, and sustained contribution to engineering science.

Mahmood Shakiba | Engineering | Best Researcher Award

Assist. Prof. Dr. Mahmood Shakiba | Engineering | Best Researcher Award

Faculty member at Ferdowsi University of Mashhad, Iran

Dr. mahmood shakiba ๐Ÿ‡ฎ๐Ÿ‡ท is an assistant professor at Ferdowsi University of Mashhad, specializing in petroleum engineering with expertise in hydrocarbon reservoirs and enhanced oil recovery (EOR) ๐Ÿ›ข๏ธ. He earned his Ph.D. from Amirkabir University of Technology (2020) ๐ŸŽ“, focusing on nano-assisted smart water for sand production control. With extensive experience in COโ‚‚ and Hโ‚‚ underground storage projects, reservoir characterization, and formation damage remediation, he has held key academic and industrial roles. As a researcher and educator, he has contributed significantly to petroleum engineering, guiding students and leading innovative studies in reservoir engineering and geomechanics ๐Ÿ”ฌ๐Ÿ“š.

Professional Profile

Scopus

Google Scholar

Education & Experience

Education ๐ŸŽ“

โœ… Ph.D. in Petroleum Engineering (Hydrocarbon Reservoirs), Amirkabir University of Technology (2016-2020)

  • Thesis: Nano-assisted smart water for sand production in unconsolidated sandstone reservoirs.

โœ… M.Sc. in Petroleum Engineering (Hydrocarbon Reservoirs), Shiraz University (2012-2014)

  • Thesis: Enhanced oil recovery & COโ‚‚ storage via carbonated water injection.

โœ… B.Sc. in Petroleum Engineering (Reservoir Engineering), Shiraz University (2008-2012)

  • Thesis: Simulation of solution gas drive in fractured reservoirs.

Work Experience ๐Ÿ› ๏ธ

๐Ÿ”น Assistant Professor โ€“ Ferdowsi University of Mashhad (2023-Present)
๐Ÿ”น Project Supervisor โ€“ Underground COโ‚‚ Storage (2023-Present)
๐Ÿ”น Researcher โ€“ Underground Hโ‚‚ Storage, RIPI (2023-Present)
๐Ÿ”น Technical Manager โ€“ Upstream Oil Research Center, Sharif University (2020-2022)
๐Ÿ”น Technical Supervisor โ€“ MAPSA Co., Tehran (2019-2020)
๐Ÿ”น Industrial Consultant โ€“ MAPSA Co., Tehran (2019-2020)
๐Ÿ”น Senior Lab Equipment Designer โ€“ MAPSA Co., Tehran (2018-2019)
๐Ÿ”น Researcher โ€“ Advanced EOR Research Center, Shiraz University (2011-2014)

Professional Development ๐ŸŒŸ

Dr. mahmood shakiba has significantly contributed to petroleum engineering through teaching, research, and industrial consulting ๐Ÿ“–๐Ÿ”ฌ. His expertise spans reservoir engineering, well testing, and gas reservoirs ๐Ÿš€. At Ferdowsi University, he educates students on reservoir management and maintenance, while leading projects on underground COโ‚‚ and Hโ‚‚ storage. His industry experience includes technical supervision, reservoir characterization, and EOR techniques ๐Ÿญ. Dr. shakiba has also played a key role in laboratory equipment design and geomechanical feasibility studies. His dedication to advancing sustainable energy storage and petroleum recovery has established him as a leader in the field ๐ŸŒ๐Ÿ’ก.

Research Focus ๐Ÿ”ฌ

Dr. shakibaโ€™s research primarily focuses on enhanced oil recovery (EOR), underground storage of COโ‚‚ and Hโ‚‚, and reservoir geomechanics ๐Ÿ—๏ธ. His experimental and simulation studies have explored innovative methods for improving oil recovery and mitigating environmental impact ๐ŸŒฑ. He has investigated nano-assisted smart water flooding, formation damage remediation, and COโ‚‚ sequestration to optimize hydrocarbon reservoir performance. His geological and geomechanical feasibility studies have contributed to safe underground hydrogen storage โšก. His work advances sustainable energy solutions while improving oil and gas recovery efficiency for the future ๐ŸŒ๐Ÿ”‹.

Awards & Honors ๐Ÿ†

๐Ÿ… Technical Leadership Award โ€“ Upstream Oil Research Center, Sharif University
๐Ÿ… Outstanding Research Contribution โ€“ Research Institute of Petroleum Industry (RIPI)
๐Ÿ… Best Thesis Award โ€“ Amirkabir University of Technology (2020)
๐Ÿ… Top Researcher Recognition โ€“ Shiraz University EOR Research Center
๐Ÿ… Best Instructor Award โ€“ Ferdowsi University of Mashhad (2023)

Publication Top Notes

  1. Investigation of oil recovery and COโ‚‚ storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    • Journal of Petroleum Science and Engineering (2016)
    • Citations: 79
    • Examines how carbonated water injection (CWI) enhances oil recovery and COโ‚‚ storage efficiency in carbonate reservoirs under secondary and tertiary injection scenarios.
  2. A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs

    • Journal of Molecular Liquids (2020)
    • Citations: 35
    • Investigates how smart water, combined with nanoparticles, helps mitigate sand production in weakly consolidated sandstone reservoirs while improving oil recovery.
  3. The impact of connate water saturation and salinity on oil recovery and COโ‚‚ storage capacity during carbonated water injection in carbonate rock

    • Chinese Journal of Chemical Engineering (2019)
    • Citations: 29
    • Analyzes how variations in connate water saturation and salinity influence oil displacement efficiency and COโ‚‚ trapping during CWI in carbonate formations.
  4. Effects of type and distribution of clay minerals on the physico-chemical and geomechanical properties of engineered porous rocks

    • Scientific Reports (2023)
    • Citations: 21* (recently published)
    • Studies how different clay minerals affect the structural integrity and chemical behavior of engineered porous rocks, impacting reservoir performance.
  5. An experimental insight into the influence of sand grain size distribution on the petrophysical and geomechanical properties of artificially made sandstones

    • Journal of Petroleum Science and Engineering (2022)
    • Citations: 15
    • Explores the role of sand grain size variations in determining the permeability, porosity, and mechanical strength of artificial sandstone samples.

Zhou Zhiwu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhou Zhiwu | Engineering | Best Researcher Award

School of Civil and Environmental Engineering at Hunan University of Science and Engineering, China

Zhou zhiwu, a senior engineer and registered tester, is an associate professor and masterโ€™s supervisor at hunan university of science and engineering. he earned his ph.d. in transportation infrastructure and territory from the polytechnic university of valencia (๐Ÿ‡ช๐Ÿ‡ธ) with top honors, including the UPV Outstanding Doctorate and the 2023 Spanish Outstanding Doctoral Award ๐Ÿ†. with 15 years in national engineering projects, he has led major constructions, published 28 research papers ๐Ÿ“„, and serves as a reviewer for 20 SCI journals. his expertise spans (ancient) bridge monitoring, high-speed railway track optimization, and sustainable structural design.

Professional Profile

Orcid

Scopus

Google Scholar

Education & Experience ๐ŸŽ“๐Ÿ‘ทโ€โ™‚๏ธ

๐Ÿ“š Education:

  • ๐ŸŽ“ Bachelorโ€™s in Architectural Engineering โ€“ Lanzhou Jiaotong University (2000-2004)
  • ๐ŸŽ“ Masterโ€™s in Transportation Engineering โ€“ Lanzhou Jiaotong University (2013-2016)
  • ๐ŸŽ“ Ph.D. in Transport Infrastructure & Territory โ€“ Polytechnic University of Valencia, Spain (2019-2023) ๐Ÿ…

๐Ÿ’ผ Work Experience:

  • ๐Ÿ— Project Manager โ€“ China Railway 15th Bureau Group (2002-2017)
  • ๐Ÿข Chief Engineer โ€“ Xinjiang Highway Science & Technology Research Institute (2017-2018)
  • ๐Ÿ“– Full-time Teacher & Leader โ€“ Chongqing Public Vocational Transport College (2018-2019)
  • ๐Ÿ”ฌ Doctor & Associate Researcher โ€“ Polytechnic University of Valencia, Spain (2019-2023)
  • ๐ŸŽ“ Associate Professor & Master Supervisor โ€“ Hunan University of Science and Engineering (2023-Present)

Professional Development ๐Ÿš€๐Ÿ”ฌ

Zhou zhiwu is a multidisciplinary researcher and engineer specializing in transportation infrastructure, structural health monitoring, and sustainable development. with over 15 years of experience in large-scale construction projects ๐Ÿ—, he has contributed to high-speed railways ๐Ÿš„, highways ๐Ÿ›ฃ, and industrial buildings ๐Ÿข. he has led and participated in 11 international and national research projects, collaborated with top institutions, and published extensively in SCI-indexed journals ๐Ÿ“š. in addition to research, he is a dedicated educator ๐Ÿ“– and serves as an editorial board member for the American Journal of Environmental Science and Engineering, actively reviewing 148+ research articles.

Research Focus ๐Ÿ”๐Ÿ—

Zhou zhiwuโ€™s research lies in transportation engineering, structural monitoring, and sustainable infrastructure:

  • ๐Ÿ› (Ancient) Bridge & Building Health Monitoring โ€“ Studying structural integrity & durability
  • ๐ŸŒฑ Sustainable Infrastructure โ€“ Coupling optimization for large-scale structures
  • ๐Ÿš„ High-Speed Railway Track Optimization โ€“ Preventing track diseases & enhancing efficiency
  • ๐Ÿ— Indeterminate Structural Design โ€“ Improving extra-large bridge sustainability
  • ๐Ÿ”ฌ Engineering Project Management โ€“ Enhancing efficiency in large-scale construction

his work integrates modern monitoring techniques ๐Ÿ“ก, advanced materials ๐Ÿ—, and sustainable engineering ๐ŸŒฑ to enhance long-term infrastructure performance.

Awards & Honors ๐Ÿ†๐ŸŽ–

  • ๐Ÿ… UPV Outstanding Doctorate Award โ€“ Polytechnic University of Valencia, Spain
  • ๐Ÿ† 2023 Spanish Outstanding Doctoral Award โ€“ Top honor for doctoral research
  • ๐Ÿ— National Engineering Construction Quality Management Award (First Class)
  • ๐Ÿ† First-Class Science & Technology Award โ€“ China Railway Construction Corporation
  • ๐Ÿ… Provincial & Ministerial-Level Awards โ€“ Henan Province (Two awards)
  • ๐Ÿ† China Civil Engineering Society “National Second Prize”
  • ๐ŸŽ– Reviewer for 20 SCI Journals โ€“ Reviewed 148+ articles

Publication Top Notes

  1. Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil

    • Journal of Building Engineering, 2025.
    • DOI: 10.1016/j.jobe.2024.111636
    • Citation (APA):
      Author(s). (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, XX, 111636.
  2. Three-dimensional finite element-coupled optimisation assessment of extra-large bridges

    • Structures, 2024.
    • DOI: 10.1016/j.istruc.2024.107743
    • Citation (APA):
      Author(s). (2024). Three-dimensional finite element-coupled optimisation assessment of extra-large bridges. Structures, XX, 107743.
  3. Research on coupling optimization of carbon emissions and carbon leakage in international construction projects

    • Scientific Reports, 2024.
    • DOI: 10.1038/s41598-024-59531-4
    • Citation (APA):
      Zhou, Z. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, XX, 59531. Building the future: Smart concrete as a key element in next-generation construction
    • Construction and Building Materials, 2024.
    • DOI: 10.1016/j.conbuildmat.2024.136364
    • Citation (APA):
      Zhou, Z. (2024). Building the future: Smart concrete as a key element in next-generation construction. Construction and Building Materials, XX, 136364.
  4. The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model

    • Sustainable Cities and Society, 2024.
    • DOI: 10.1016/j.scs.2024.105201
    • Citation (APA):
      Author(s). (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, XX, 105201.