Lei Liu | Engineering | Best Researcher Award

Prof. Lei Liu | Engineering | Best Researcher Award

Professor at Zhejiang University, China

Prof. Liu Lei is a Young Profenications, information theory, and signal processing. Liu received his Ph.D. in Communication and Information Systems from Xidian University and enriched his academic foundation as a visiting scholar at NTU Singapore. His postdoctoral and research appointments span SUTD, CityU Hong Kong, and JAIST Japan. Honored under ZJUโ€™s Hundred Talents Program, he actively leads in editorial and conference roles. With a track record of cutting-edge research, Prof. Liu has authored 39+ high-impact journal articles and continues to influence future innovations in modern channel coding and massive MIMO. ๐Ÿง ๐Ÿ“ก

Professional Profileย 

๐ŸŽ“ Education

Prof. Liu Lei began his academic journey in 2011 at Xidian University, earning his Ph.D. in Communication and Information System in March 2017. During his doctoral studies, he broadened his expertise with a prestigious exchange opportunity at Nanyang Technological University (NTU), Singapore (2014โ€“2016), where he engaged with globally renowned researchers in the field of Electrical and Electronic Engineering. This international exposure shaped his foundational understanding of statistical signal processing and message-passing algorithms. His academic pursuits combined rigorous theoretical knowledge with practical algorithmic development, laying the groundwork for his future innovations in wireless communication systems and information theory. ๐Ÿ“˜๐ŸŒ๐ŸŽ“

๐Ÿ’ผExperienceย 

Prof. Liu Lei has cultivated a rich academic career across leading global institutions. He began as a Postdoctoral Research Fellow at SUTD, Singapore (2016โ€“2017), followed by a Research Fellow role at City University of Hong Kong (2017โ€“2019). He then served as Assistant Professor at JAIST, Japan (2019โ€“2023), achieving top research rankings among faculty. Since 2023, he has been a Tenure-Track Young Professor and Doctoral Supervisor at Zhejiang University. His expertise spans message passing, compressed sensing, and channel coding. Prof. Liu has been active in IEEE conferences, serving in key editorial and chairing roles, and is a notable reviewer for top-tier journals. ๐ŸŒ๐Ÿ“š๐Ÿซ

๐Ÿ† Awards & Honors

Prof. Liu Lei has received several prestigious accolades for his research excellence. In 2023, he was honored with the Young Star Award and the Best Poster Award at the 30th Chinese Institute of Electronics Conference on Information Theory (CIEIT), recognizing his impactful contributions to information theory. His dedication to academic rigor earned him the Exemplary Reviewer Award from IEEE Transactions on Communications in 2020, an honor bestowed on less than 2% of reviewers. These distinctions underscore his leadership in developing cutting-edge algorithms and his commitment to advancing wireless communication systems. ๐Ÿฅ‡๐ŸŽ–๏ธ๐Ÿ…

๐Ÿ”ฌ Research Focusย 

Prof. Liuโ€™s research focuses on the development of high-performance algorithms and theoretical frameworks in wireless communications. His interests include Message Passing Theory, Statistical Signal Processing, Compressed Sensing, Modern Channel Coding, and Information Theory. He is especially noted for innovations in Approximate Message Passing (AMP) and Orthogonal AMP (OAMP) algorithms. His work aims to optimize capacity and performance in massive MIMO, NOMA, and RIS-aided systems. Prof. Liu’s vision integrates theoretical depth with engineering applications, contributing to next-generation communication systems with greater efficiency, robustness, and scalability. ๐Ÿ“ก๐Ÿ“Š๐Ÿ”

๐Ÿ› ๏ธ Skillsย 

Prof. Liu Lei has extensive expertise in ๐Ÿ“ถ wireless communication, particularly in emerging technologies such as massive MIMO, NOMA, mmWave, and Integrated Sensing and Communication (ISAC) systems. His work contributes to optimizing spectral efficiency and network reliability in next-generation wireless networks.

In the field of ๐Ÿ“ signal processing, he is highly skilled in compressed sensing and advanced channel estimation techniques, which enhance data recovery and transmission accuracy in complex environments.

His foundation in ๐Ÿ“Š information theory is robust, focusing on coding theory, achievable rates, and capacity optimization, all critical to efficient communication system design.

Prof. Liu is also a specialist in ๐Ÿงฎ message passing algorithms, including AMP, OAMP, GAMP, and GVAMP, which he applies to both theoretical models and practical systems.

He leverages ๐Ÿ”— machine learning tools such as neural networks and variational inference to improve signal decoding.

In addition, he is experienced in ๐Ÿ“š academic publishing and ๐Ÿง‘โ€๐Ÿซ teaching, mentoring students in both foundational and advanced courses.

๐Ÿ“š Publications Top Noteย 

  1. Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen, S. Sun

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 161

    • ๐Ÿ“… Year: 2018

  2. Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Chi, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 151

    • ๐Ÿ“… Year: 2019

  3. User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled IoT

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Z. Zhang, Y. Li, C. Huang, Q. Guo, L. Liu, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Internet of Things Journal

    • ๐Ÿ”ข Citations: 149

    • ๐Ÿ“… Year: 2020

  4. Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, C. Huang

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 140

    • ๐Ÿ“… Year: 2019

  5. Convergence Analysis and Assurance for Gaussian Message Passing in Massive MU-MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, Y. Su

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 108

    • ๐Ÿ“… Year: 2016

  6. Practical MIMO-NOMA: Low Complexity and Capacity-Approaching Solution

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Chi, L. Liu, G. Song, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 84

    • ๐Ÿ“… Year: 2018

  7. Memory AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, S. Huang, B.M. Kurkoski

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 83

    • ๐Ÿ“… Year: 2022

  8. Orthogonal AMP for Massive Access in Channels with Spatial and Temporal Correlations

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Cheng, L. Liu, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Journal on Selected Areas in Communications

    • ๐Ÿ”ข Citations: 68

    • ๐Ÿ“… Year: 2021

  9. Capacity Optimality of AMP in Coded Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Liang, J. Ma, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 53

    • ๐Ÿ“… Year: 2021

  10. On Orthogonal AMP in Coded Linear Vector Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: J. Ma, L. Liu, X. Yuan, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 39

    • ๐Ÿ“… Year: 2019

  11. A New Insight into GAMP and AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Li, C. Huang, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2019

  12. Over-the-Air Implementation of Uplink NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: S. Abeywickrama, L. Liu, Y.C. Yuhao, Chi

    • ๐Ÿ“ฐ Conference: IEEE Globecom

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2018

  13. Asymptotically Optimal Estimation for Sparse Signal with Arbitrary Distributions

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 28

    • ๐Ÿ“… Year: 2018

๐Ÿ Conclusion

Dr. Lei Liu exemplifies the qualities of a Best Researcher Award recipient: depth in theoretical research, breadth in global experience, and excellence in teaching and mentorship. His leadership roles, prolific output, and rising trajectory within academic and engineering communities make him a model scholar in the communications field. While areas like applied innovation and interdisciplinary expansion offer room for growth, his current achievements already place him at the forefront of his domain.

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Visiting faculty at Birla Institute of Technology and Science Pilai, India

Dr. K. Lakshmi Prasanna ๐ŸŽ“ is a passionate researcher and academician in the field of High Voltage Engineering, with a strong command over system modeling, fault diagnostics, and parameter estimation using MATLAB/Simulink ๐Ÿ› ๏ธ. She brings a unique blend of theoretical insight and hands-on expertise in simulation, optimization, control systems, and signal processing. Her innovative Ph.D. work at BITS Pilani, Hyderabad focused on transformer winding modeling and inter-turn fault diagnostics ๐Ÿ”, proposing novel, non-intrusive algorithms with real-world applicability. With a foundation in Power Electronics and Electrical Engineering โšก, she also has teaching experience at multiple esteemed engineering colleges, nurturing minds in core subjects. Driven by curiosity and adaptability, she actively embraces new software tools and collaborative environments ๐Ÿ’ก. Her professional trajectory reflects a consistent commitment to academic excellence, technical rigor, and transformative innovation in electrical engineering. ๐Ÿš€

Professional Profile

Orcid

Scopus

Google Scholar

๐Ÿ“š Education

Dr. Lakshmi Prasannaโ€™s educational journey ๐ŸŒฑ reflects a steady and impressive rise through the academic ranks of electrical engineering. Beginning with a remarkable 96.9% in her Higher Secondary ๐Ÿซ, she pursued her B.Tech in EEE and M.Tech in Power Electronics from JNTUA, scoring 85.1% and 85%, respectively ๐ŸŽฏ. Her academic excellence culminated in a Ph.D. in High Voltage Engineering at BITS Pilani, Hyderabad Campus, where she maintained an impressive 8.0 CGPA ๐Ÿ“ˆ. Her doctoral thesis delved into cutting-edge research on transformer fault diagnosis and system modeling, placing her at the forefront of innovation in condition monitoring and electrical diagnostics. Throughout her educational path, she has consistently demonstrated not just technical brilliance but also a hunger for knowledge and an ability to bridge theory and application seamlessly ๐Ÿ“˜โš™๏ธ.

๐Ÿ‘ฉโ€๐Ÿซ Professional Experienceย 

With over a decade of dedicated service in academia and research, Dr. Lakshmi Prasanna has built a versatile and impactful professional portfolio ๐Ÿง . Beginning her journey as an Assistant Professor at Rami Reddy Subbarami Reddy Engineering College (2012โ€“2017), she laid her pedagogical foundations teaching essential subjects like Electrical Machines, Circuits, and Power Electronics ๐Ÿ”Œ. Her journey continued at St. Martinโ€™s Engineering College (2017โ€“2019), where she continued imparting technical knowledge with enthusiasm and clarity. From 2018 to 2025, her role as a Research Assistant at BITS Hyderabad marked a turning point, as she immersed herself in advanced simulation and transformer fault diagnostics ๐Ÿ”ฌ. Beyond teaching, her experience also includes proposal writing, technical documentation using LaTeX, and collaborative interdisciplinary projects, marking her as a well-rounded professional ๐ŸŒ๐Ÿ“.

๐Ÿ” Research Interestsย 

Dr. Lakshmi Prasannaโ€™s research is deeply rooted in the intelligent modeling of electrical systems, with a spotlight on transformer winding diagnostics, state-space modeling, and parameter estimation using non-intrusive techniques ๐Ÿงฉ. Her innovative Ph.D. work proposed the integration of subspace identification and similarity transformations to estimate transformer parameters and detect inter-turn faults purely from terminal measurements โš™๏ธ๐Ÿ”. Her expertise in MATLAB M-script development, COMSOL Multiphysics simulations, and system optimization reflects a rare proficiency in both simulation and real-world application. Additionally, she is intrigued by control systems, fault-tolerant design, and signal processing, with a strong drive toward creating robust, adaptive models for condition monitoring ๐Ÿง ๐Ÿ“Š. Her work directly contributes to the reliability and safety of electrical infrastructure, making her research highly relevant to modern power systems and smart grid innovation ๐ŸŒโšก.

๐Ÿ… Awards and Honors

Dr. Lakshmi Prasannaโ€™s academic journey is marked by consistently high achievements and academic recognition ๐Ÿ†. From securing a 96.9% in her HSC to maintaining top scores through her undergraduate and postgraduate studies, her excellence has been evident from the outset ๐ŸŽ“. While formal awards during her doctoral years may not be listed, her selection and continuation at BITS Pilani, one of Indiaโ€™s premier institutions, is a distinction in itself ๐ŸŒŸ. Her progression into high-level research projects, including complex simulation and modeling of transformer systems, attests to her recognition within the academic and research community. Her teaching roles across reputed engineering colleges and involvement in technical proposal writing and collaborative research are testaments to her leadership and scholarly respect ๐Ÿฅ‡. She continues to be acknowledged for her dedication, depth of knowledge, and clarity in delivering technical content.

Publications Top Notesย 

1. Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100982

  • Source: e-Prime โ€“ Advances in Electrical Engineering, Electronics and Energy

  • Summary: This study introduces a non-invasive method for identifying and assessing the severity of inter-turn faults in transformer windings using only external terminal measurements. The approach enhances fault detection accuracy without requiring internal access to the transformer.


2. Radial deformation detection and localization in transformer windings: A terminal measured impedance approach

  • Authors: Lakshmi Prasanna Konjeti, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100945

  • Source: e-Prime โ€“ Advances in Electrical Engineering, Electronics and Energy

  • Summary: The paper presents a novel, non-invasive method for diagnosing radial deformation faults in transformer windings by analyzing terminal impedance measurements, enabling effective detection and severity assessment based on capacitance changes.


3. A non-iterative analytical approach for estimating series-capacitance in transformer windings solely from terminal measured frequency response data

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.epsr.2024.111086

  • Source: Electric Power Systems Research

  • Summary: This research proposes a non-iterative analytical method to estimate the series capacitance of transformer windings using only terminal frequency response data, simplifying the estimation process and improving accuracy.


4. Accurate Estimation of Transformer Winding Capacitances and Voltage Distribution Factor Using Driving Point Impedance Measurements

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2024

  • DOI: 10.1109/ACCESS.2024.3460968

  • Source: IEEE Access

  • Summary: The study introduces an innovative methodology for precisely estimating winding capacitances and the voltage distribution factor using driving point impedance measurements, enhancing transformer modeling and analysis.


5. A Symbolic Expression for Computing the Driving Point Impedance and Pole-Zero-Gain of a Transformer from its Winding Parameters

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1109/INDICON59947.2023.10440729

  • Source: 2023 IEEE 20th India Council International Conference (INDICON)

  • Summary: This paper presents a symbolic expression for computing the driving point impedance and pole-zero-gain of a transformer based on its winding parameters, facilitating efficient analysis of transformer behavior.


6. Analytical computation of driving point impedance in mutually coupled inhomogeneous ladder networks

  • Authors: K. Lakshmi Prasanna, Mithun Mondal

  • Year: 2023

  • DOI: 10.1002/cta.3839

  • Source: International Journal of Circuit Theory and Applications

  • Summary: The research introduces a new approach for computing the driving point impedance of inhomogeneous ladder networks with mutual coupling, enhancing the accuracy of electrical network modeling.


7. Analytical formulas for calculating the electrical characteristics of multiparameter arbitrary configurational homogenous ladder networks

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1002/cta.3547

  • Source: International Journal of Circuit Theory and Applications

  • Summary: This paper presents generalized analytical formulas for computing the electrical properties of multiparameter arbitrary configuration homogeneous ladder networks, aiding in the design and analysis of complex electrical circuits.


8. Terminal Measurements-Based Series Capacitance Estimation of Power Transformer Windings Using Frequency-Domain Subspace Identification

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2023

  • DOI: 10.1109/TIM.2023.3311074

  • Source: IEEE Transactions on Instrumentation and Measurement

  • Summary: The study proposes a method for estimating the series capacitance of power transformer windings using frequency-domain subspace identification based on terminal measurements, improving the accuracy of transformer diagnostics.


9. Elimination of Mutual Inductances from the State-Space Model of a Transformer Windingโ€™s Ladder Network Using Eigen Decomposition

  • Authors: K. Lakshmi Prasanna

  • Year: 2022

  • DOI: 10.1109/CATCON56237.2022.10077664

  • Source: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)

  • Summary: This paper presents a method to eliminate mutual inductances from the state-space model of a transformer winding’s ladder network using eigen decomposition, simplifying the analysis of transformer dynamics.

10. Internet Of Things (IOT) in Distribution grid using DSTATCOM

  • Authors: K. Lakshmi Prasanna

  • Year: 2019

  • DOI: 10.1109/RDCAPE47089.2019.8979044

  • Source: 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE)

  • Summary: The paper discusses the integration of Internet of Things (IoT) technology with DSTATCOM in distribution grids to improve power factor and enable real-time monitoring, enhancing the efficiency and reliability of power distribution systems.

โœ… Conclusionย 

In conclusion, Dr. K. Lakshmi Prasanna stands as a beacon of innovation, diligence, and academic integrity in the realm of electrical engineering and high voltage research ๐ŸŒŸ. Her journey from a stellar student to a dynamic researcher and dedicated educator is marked by technical excellence, innovative research, and a passion for teaching ๐ŸŽฏ. With deep expertise in MATLAB/Simulink, transformer modeling, and non-intrusive diagnostics, she contributes meaningfully to the future of smart and resilient power systems โšก๐Ÿ’ป. Her collaborative spirit, adaptability to emerging tools, and constant pursuit of knowledge ensure her continued relevance and impact in the scientific community ๐Ÿ“š๐Ÿš€. As she continues to explore new horizons in diagnostics and system modeling, her work promises to empower more efficient and intelligent energy systems of tomorrow ๐Ÿ”‹๐Ÿ”ฌ.

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen ๐ŸŽ“, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences ๐Ÿ›๏ธ, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community ๐Ÿ“š. His scholarly portfolio includes 39 academic articles, 3 granted patents ๐Ÿง ๐Ÿ”ง, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications ๐ŸŒ. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration ๐ŸŒŸ.

Professional Profileย 

ORCID Profile

๐ŸŽ“ Education

Dr. Jian Chen’s academic journey ๐ŸŒฑ began at Jilin University, where he pursued both his Bachelor’s (2001โ€“2005) and Master’s (2005โ€“2007) degrees in Communication Engineering ๐Ÿ›ฐ๏ธ. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011โ€“2014) โš™๏ธ. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise ๐Ÿง . This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset ๐Ÿ“˜๐Ÿ”ฌ.

๐Ÿง‘โ€๐Ÿ”ฌ Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS ๐Ÿข. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics ๐Ÿ’ก. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents ๐Ÿ”๐Ÿ“‘. Dr. Chen also stands out as a peer-review gatekeeperโ€”serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI ๐Ÿงพ๐Ÿ“–. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to Chinaโ€™s optics and precision mechanics research domain ๐Ÿ”ง๐ŸŒ.

๐Ÿ”ฌ Research Interest

Jian Chenโ€™s research interests orbit around the convergence of optics, mechanical design, and electrical systems ๐Ÿ”ญโš™๏ธ. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation ๐Ÿ’ก๐Ÿ”ง. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms ๐Ÿ“ก๐Ÿ”. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems ๐Ÿš€. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure ๐Ÿ“ˆ.

๐Ÿ† Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field ๐ŸŒŸ. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones ๐Ÿ…๐Ÿ“˜, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise ๐Ÿง โœ’๏ธ. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance ๐Ÿงฌ๐Ÿ•Š๏ธ.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

๐Ÿงพ Conclusion

Dr. Jian Chenโ€™s career is a synthesis of academic strength, research innovation, and peer leadership ๐Ÿ“š๐ŸŒŸ. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology ๐ŸŒ. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitionerโ€”someone who not only explores ideas but also brings them to life ๐Ÿ”ฌ๐Ÿ’ก. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe ๐ŸŒ๐Ÿ“ˆ.

Yun Zhao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Yun Zhao | Engineering | Best Researcher Award

Yun Zhao at Northwest Normal University, China

Dr. Yun Zhao ๐ŸŽ“ is an Associate Professor at the College of Physics and Electronic Engineering, Northwest Normal University ๐Ÿซ, since 2020. He earned his Ph.D. in Materials Science and Engineering ๐Ÿงช from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences ๐Ÿ‡จ๐Ÿ‡ณ, in 2020. Shortly after, he joined the Ningbo Institute of Materials Technology and Engineering ๐Ÿ”ฌ as a postdoctoral researcher. His work focuses on thin film photodetectors ๐Ÿ“ธ and semiconductor devices ๐Ÿ’ก. Dr. Zhao is passionate about next-gen optoelectronics and is actively contributing to innovation in functional materials and device engineering ๐Ÿš€.

Professional Profile:

Orcid

Scopus

๐ŸŽ“ Education & Experienceย 

  • ๐Ÿ“š Ph.D. in Materials Science and Engineering, Lanzhou Institute of Chemical Physics, CAS โ€“ 2020

  • ๐Ÿง‘โ€๐Ÿซ Postdoctoral Researcher, Ningbo Institute of Materials Technology and Engineering, CAS

  • ๐Ÿ‘จโ€๐Ÿซ Associate Professor, College of Physics and Electronic Engineering, Northwest Normal University โ€“ Since 2020

๐Ÿ“ˆ Professional Developmentย 

Dr. Yun Zhao continuously engages in academic and research development through national and institutional collaborations ๐Ÿค. His postdoctoral work at the prestigious Ningbo Institute of CAS sharpened his experimental techniques and deepened his expertise in advanced semiconductors โš™๏ธ. As an associate professor, he mentors young researchers ๐Ÿ‘จโ€๐Ÿ”ฌ and collaborates on interdisciplinary projects across optics, electronics, and nanotechnology ๐Ÿ”. He regularly attends academic conferences, publishes in reputed journals ๐Ÿ“„, and reviews scientific manuscripts. His dedication to professional growth ensures he stays at the forefront of innovation in functional materials and optoelectronic devices ๐ŸŒ.

๐Ÿ”ฌ Research Focusย 

Dr. Yun Zhaoโ€™s research primarily revolves around thin film photodetectors ๐Ÿ“ธ and semiconductor devices โšก. His focus lies in designing and fabricating new materials with enhanced sensitivity, stability, and performance for light-sensing technologies ๐ŸŒž. He explores emerging materials such as perovskites and nanostructures ๐ŸŒฑ for integration into flexible and wearable electronics ๐Ÿงค. His work bridges the gap between material science and applied electronics, aiming to revolutionize future optoelectronic systems ๐Ÿ”‹. The end goal of his research is to contribute to high-performance, low-cost, and energy-efficient devices for real-world applications ๐Ÿš—๐Ÿ“ฑ.

๐Ÿ† Awards and Honorsย 

  • ๐ŸŽ–๏ธ Ph.D. fellowship from the Chinese Academy of Sciences

  • ๐Ÿ… Postdoctoral appointment at Ningbo Institute of Materials Technology and Engineering (CAS)

  • ๐Ÿ† Recognized for outstanding research contributions in thin film photodetectors

  • ๐Ÿ“œ Multiple peer-reviewed publications in reputed international journals

Publication Top Notes

1. Understanding Proton Radiation-Induced Degradation Mechanisms in Cuโ‚‚ZnSn(S,Se)โ‚„ Kesterite Thin-Film Solar Cells

Journal: Solar Energy
Date: May 2025
DOI: 10.1016/j.solener.2025.113450
Summary:
This study investigates how proton radiation affects the stability and performance of Cuโ‚‚ZnSn(S,Se)โ‚„ (CZTSSe) thin-film solar cells. Proton radiation is relevant for space applications where solar cells are exposed to high-energy particles. The paper likely explores:

  • Changes in carrier lifetimes and defect states post-irradiation.

  • Structural or compositional changes in the absorber layer.

  • Strategies to mitigate degradation for improved radiation tolerance.

2. Multifunctional Artificial Electric Synapse of MoSeโ‚‚-Based Memristor toward Neuromorphic Application

Journal: The Journal of Physical Chemistry Letters
Date: February 6, 2025
DOI: 10.1021/acs.jpclett.4c03353
Summary:
This article presents a MoSeโ‚‚-based memristor designed to emulate biological synapses. The work focuses on neuromorphic computing, highlighting:

  • Synaptic plasticity behaviors (e.g., potentiation/depression).

  • Multifunctionality (possibly electrical + optical control).

  • Performance metrics like switching speed, retention, and endurance.

3. Exploring the Promoting Effect of Lanthanum Passivation on the Photovoltaic Performance of CZTSSe Solar Cells

Journal: The Journal of Chemical Physics
Date: December 21, 2024
DOI: 10.1063/5.0244645
Summary:
This paper studies how lanthanum (La) passivation enhances CZTSSe solar cell efficiency. Key aspects likely include:

  • Reduction in defect densities at grain boundaries or interfaces.

  • Improvements in open-circuit voltage and fill factor.

  • Insights into Laโ€™s role in modifying electronic structure or surface chemistry.

4. Electrical-Light Coordinately Modulated Synaptic Memristor Based on Tiโ‚ƒCโ‚‚ MXene for Near-Infrared Artificial Vision Applications

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c02281
Summary:
This research showcases a Tiโ‚ƒCโ‚‚ MXene-based memristor that responds to both electrical and light inputs, mimicking the retina for near-infrared vision. Highlights include:

  • Dual-mode modulation (electrical and optical).

  • Application in neuromorphic visual systems.

  • Spectral response analysis and synaptic behavior simulation.

5. Multicolor Fully Light-Modulated Artificial Synapse Based on P-MoSeโ‚‚/PxOy Heterostructured Memristor

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c01980
Summary:
This study introduces a heterostructured memristor combining P-doped MoSeโ‚‚ and PxOy, enabling light-tuned synaptic responses. Likely contributions:

  • Multicolor light sensitivity for multi-channel processing.

  • Photonic modulation of conductance states.

  • Integration prospects for optical neuromorphic systems.

Conclusion

Dr. Yun Zhao is highly suitable for the Best Researcher Award, particularly in categories related to emerging materials, device physics, or engineering sciences. His rapid academic progression, focused and relevant research in photodetectors and semiconductors, and training at top-tier institutions within the Chinese Academy of Sciences establish him as a promising and impactful researcher. Recognition through such an award would be both meritorious and motivating for his continued contributions to the field.