Lijun Chen | Engineering | Best Researcher Award

Prof. Lijun Chen | Engineering | Best Researcher Award

Professor at Northeast Electric Power University, China

Professor Lijun Chen is a seasoned academic and applied researcher at Northeast Electric Power University, bringing over three decades of expertise in automation, thermophysical measurement, and power plant monitoring systems. 🚀 With early technical training at Fuji Electric (Japan) and a strong industrial foundation at Dalian Huaying High-Tech Co., he seamlessly bridges theory with real-world application. His scholarly portfolio boasts 50+ journal publications 📚 (with 20+ indexed by EI and others in SCI), and six national invention patents that reflect his innovation-driven mindset. ⚙️ He has led multiple national and provincial projects, combining academic research with industrial consulting to optimize thermal power systems. A Senior Member of the China Metrology Society, his dedication is evident through a career filled with impactful collaborations, cutting-edge research, and enduring contributions to the energy sector. 🔧 His work continues to empower sustainable and efficient energy technologies across China and beyond. 🌏

Professional Profile 

Scopus

🎓 Education

Professor Lijun Chen’s educational journey is deeply rooted in engineering excellence. 🌱 He enhanced his technical knowledge through automation testing training at Fuji Electric, Japan (1991–1992), where he gained exposure to international standards and modern industrial practices. This early international training laid the groundwork for a future in advanced automation and instrumentation. He continued sharpening his skills with hands-on industry experience before entering academia. 📐 His educational pursuits were not just theoretical but focused on practical solutions for real-world problems in power systems. His academic foundation, supplemented by immersive industrial exposure, uniquely positions him as a knowledge leader in thermophysical measurement and energy systems. 🔋 The fusion of global learning and domestic execution in his educational journey symbolizes his balanced and forward-thinking approach to engineering education and research. 📊

👨‍💼 Professional Experience

Professor Chen’s professional voyage is an exemplar of bridging industry with academia. 🏭 From 1995 to 1997, he worked at Dalian Huaying High-Tech Co., developing automation solutions for complex power systems. Following this, from 1997 to 2001, he continued innovating at the Institute of Electronic Engineering Technology, sharpening his expertise in electronic control. Since 2001, he has been a cornerstone of the School of Automation Engineering at Northeast Electric Power University. 🧑‍🏫 There, he has led or collaborated on numerous high-impact projects, integrating research with engineering applications. His leadership in thermal power plant control systems has shaped provincial-level R&D initiatives and academic–industry partnerships. 🧠 His work with national and horizontal industry projects exemplifies how academic insight can directly solve operational challenges in the energy sector. 🔌

🔬 Research Interest

Lijun Chen’s research is centered on cutting-edge thermal measurement and automation in power engineering. 🌡️ His core interests span thermophysical parameter estimation, combustion optimization, and defect detection in high-frequency electromagnetic equipment. 🔎 These focus areas have significant industrial value, particularly in enhancing the efficiency, safety, and reliability of thermal power plants. His work addresses critical challenges in energy management and environmental control, making his innovations especially relevant in the current era of carbon reduction and sustainable engineering. 🌍 Professor Chen’s ability to combine hardware innovation with control algorithms demonstrates his multi-disciplinary reach across automation, electronics, and thermodynamics. His projects often involve both modeling and experimental validation, ensuring practical applicability. 📊 His collaborations with institutes and enterprises are further proof of his commitment to solving industry-grade problems with scientifically sound solutions. ⚛️

🏅 Award and Honor

Throughout his illustrious career, Professor Chen has been recognized with multiple provincial science and technology awards, a testament to the real-world impact of his work. 🏆 His patents—six granted at the national level—underscore his creative contributions to the field of power system automation and thermal engineering. 📜 His consistent participation in government-funded and industry-sponsored projects not only highlights his technical capability but also his leadership in driving research innovation. He is a Senior Member of the China Metrology Society and plays a notable role in the Jilin Province Electrical Engineering Society, reflecting his influence in professional circles. 🤝 His efforts have significantly elevated the performance of thermal power systems, earning him peer recognition and respect. His honors are not just awards—they are reflections of decades of dedicated research, innovation, and service to the field. 🔧💡

📚 Publications Top Note 

1. Title: The Feasibility Study on Pulverized Coal Mass Concentration Measurement in Primary Air of Plant Using Fin Resonant Cavity Sensor
Authors: Hao Xu, Yiguang Yang, Lijun Chen, Hongbin Yu, Junwei Cao
Year: 2024
Type: Conference Paper
Source: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
Citations: 0 (as of the latest data)
Summary:
This study explores the application of a fin resonant cavity sensor to measure the mass concentration of pulverized coal in the primary air system of power plants. The authors designed and experimentally validated a resonant cavity-based sensor for real-time and high-flow environment monitoring. Results indicate the method’s strong potential for improving combustion efficiency and operational safety in thermal power systems.


2. Title: Research on Finite-Time Consensus of Multi-Agent Systems
Authors: Lijun Chen, Yu Zhang, Yuping Li, Linlin Xia
Year: 2019
Type: Journal Article
Source: Journal of Information Processing Systems (JIPS)
DOI: 10.3745/JIPS.01.0039
Citations: 1 (confirmed from source journal; citation count may vary on other platforms)
Summary:
This paper proposes a novel consensus protocol that enables finite-time convergence in second-order multi-agent systems. By incorporating the gradient of a global cost function into the standard consensus model, the authors enhance coordination speed and robustness among agents. Theoretical analysis using Lyapunov functions, homogeneity theory, and graph theory supports the method’s effectiveness. Simulations demonstrate superior performance in leader–follower scenarios.

Conclusion 

In conclusion, Professor Lijun Chen exemplifies the model of a research-driven innovator and dedicated academic. 📘 With a career spanning research, teaching, consultancy, and invention, he has contributed immensely to the advancement of thermal power automation and measurement systems. His ability to transform theoretical concepts into tangible industrial solutions highlights his value as both a scholar and engineer. 🔬 His multi-patented technologies and SCI-indexed publications reflect a commitment to quality, while his work with industry partners showcases practical relevance. With unwavering focus and passion for thermodynamics, automation, and sustainability, Professor Chen continues to shape the future of smart thermal energy systems in China and beyond. 🌱 His legacy is one of bridging knowledge with innovation, inspiring a new generation of researchers and engineers. 🌟

Jian-Bo Qu | Chemical Engineering | Best Researcher Award

Prof. Jian-Bo Qu | Chemical Engineering | Best Researcher Award

Dean at China University of Petroleum (East China), China

Prof. Jian-Bo Qu 🎓 is a distinguished researcher and full professor at the China University of Petroleum (East China) 🏫. With a PhD from the Chinese Academy of Sciences (2009) 🧪, his expertise spans bioseparation media, drug delivery systems, and biomaterials 🧫💊. He has published over 50 peer-reviewed papers 📚, authored a book and book chapter 📖, and holds 15 patents 🛠️. As an active member of the Chinese Chemical Society 🧬 and reviewer for top-tier journals 🧾, Prof. Qu continues to contribute cutting-edge innovations in analytical chemistry and biomedical engineering 🧪🧠.

Professional Profile

Scopus

Suitability For Best Researcher Award -Prof. Jian-Bo Qu

Prof. Jian-Bo Qu is an established scholar in the field of chemical and biomedical engineering, with a strong interdisciplinary profile that bridges bioseparation, biomaterials, and drug delivery systems. His career demonstrates a blend of innovation, leadership, and international exposure. With over 50 publications, 15 patents, and leadership in 15+ funded projects (including national-level grants), he clearly meets and exceeds the standard criteria for a high-impact researcher.

Education & Experience

  • 🎓 PhD in Chemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (2009)

  • 🌍 Visiting Scholar, University of New South Wales, Australia (2015–2016) under Prof. Martina Stenzel

  • 🏫 Full Professor, College of Chemistry and Chemical Engineering, China University of Petroleum (East China)

  • 🧬 Reviewer for journals like Macromolecules, Chemical Engineering Journal, Analytical Chemistry, etc.

  • 🏅 Project Leader of 15+ funded research projects including 3 by the National Natural Science Foundation of China

Professional Development

Prof. Qu’s professional development reflects a trajectory of excellence and continuous growth 📊. His postdoctoral training and international exposure in Australia 🌏 enriched his research perspectives in polymer science and biomedical engineering 🧪. He actively participates in peer review for high-impact journals 🧾 and serves as an expert evaluator for national and provincial science foundations 🏛️. Beyond publishing and patents, Prof. Qu contributes to academic leadership through his society memberships and textbook authorship 📚. His multidisciplinary expertise and active engagement in research communities have made him a vital figure in modern chemical and materials science.

Research Focus Category 

Prof. Jian-Bo Qu’s research focuses on several key categories within chemical and biomedical engineering 🔬. His primary interest lies in bioseparation technology and separation process intensification 🧪, essential for efficient protein purification and enzyme immobilization 🧬. He also works on biomaterials, including drug delivery systems, hemostatic agents, and wound healing hydrogels 💊🩹. His recent studies have explored smart nanomaterials for targeted cancer therapy, contributing to advancements in personalized medicine 🧠🎯. Additionally, Prof. Qu’s work on functional polymers and composite materials plays a pivotal role in bridging materials science with biomedical applications.

Awards & Honors

  • 🏅 Principal Investigator of 15+ research projects, including 3 funded by the National Natural Science Foundation of China

  • 🎖️ Patent Holder of 15 innovative technologies in bioseparation and biomaterials

  • 📚 Book and Chapter Author in scientific publishing

  • 🧪 Peer Reviewer for top journals such as Analytical Chemistry, Chemical Engineering Journal, Macromolecules

  • 🧬 Member, Chinese Chemical Society

  • 🏛️ Evaluator, National and Provincial Natural Science Foundation committees.

Publication Top Notes

Hierarchically Three-Dimensional Bicontinuous Monoliths: Fabrication Strategies, Mechanisms, Functionalization, and Applications
  • Year: 2025

  • Summary: This review article explores the fabrication methods, mechanisms, functionalization strategies, and diverse applications of hierarchically three-dimensional bicontinuous monoliths. These materials are characterized by interconnected porous structures, offering enhanced surface areas and tunable properties suitable for applications in catalysis, separation processes, and biomedical fields.

Two Antihypertensive and Antioxidant Peptides Derived from Alaska Pollack (Theragra chalcograma) Skin: In Silico, In Vitro, and In Vivo Investigation
  • Year: 2025

  • Summary: This study identifies two novel peptides from Alaska pollack skin with dual antihypertensive and antioxidant activities. Through in silico, in vitro, and in vivo analyses, the peptides demonstrated significant angiotensin-converting enzyme (ACE) inhibitory effects and antioxidant properties, suggesting their potential as functional ingredients in nutraceuticals and functional foods.

Biotin@DpaZn Molecules Enabled Efficient Enrichment of N-Phosphopeptides under Neutral Conditions
  • Year: 2025

  • Summary: This article presents the development of Biotin@DpaZn molecules for the efficient enrichment of N-phosphopeptides under neutral conditions. The method enhances the identification of N-phosphorylation sites, facilitating the exploration of protein functions and signaling pathways in various biological systems.

Hydrophilic Interaction Liquid Chromatography-Based Enrichment Method for Deciphering the N-Phosphorylated Proteome Landscape
  • Year: 2025

  • Summary: This research introduces a hydrophilic interaction liquid chromatography (HILIC)-based strategy for enriching N-phosphopeptides under neutral conditions. The method significantly increases the identification of N-phosphorylation sites, providing insights into the N-phosphoproteome landscape across different biological samples, including Escherichia coli and HeLa cells.

Dual-mode and Multiplex Lateral Flow Immunoassay: A Powerful Technique for Simultaneous Screening of Respiratory Viruses
  • Year: 2025

  • Summary: This study develops a dual-mode and multiplex lateral flow immunoassay for the simultaneous detection of multiple respiratory viruses. The assay combines colorimetric and fluorescence signals, offering a rapid, cost-effective, and user-friendly platform for point-of-care diagnostics.

Conclusion

Prof. Jian-Bo Qu exemplifies the qualities of a top-tier researcher: impactful innovation, academic leadership, international collaboration, and dedication to scientific advancement. His extensive contributions to chemical engineering and biomedical applications make him a highly suitable recipient of the Best Researcher Award. His profile not only reflects past achievements but ongoing potential to shape the future of interdisciplinary scientific research.

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen 🎓, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 🏛️, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community 📚. His scholarly portfolio includes 39 academic articles, 3 granted patents 🧠🔧, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications 🌐. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration 🌟.

Professional Profile 

ORCID Profile

🎓 Education

Dr. Jian Chen’s academic journey 🌱 began at Jilin University, where he pursued both his Bachelor’s (2001–2005) and Master’s (2005–2007) degrees in Communication Engineering 🛰️. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011–2014) ⚙️. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise 🧠. This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset 📘🔬.

🧑‍🔬 Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS 🏢. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics 💡. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents 🔍📑. Dr. Chen also stands out as a peer-review gatekeeper—serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI 🧾📖. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to China’s optics and precision mechanics research domain 🔧🌍.

🔬 Research Interest

Jian Chen’s research interests orbit around the convergence of optics, mechanical design, and electrical systems 🔭⚙️. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation 💡🔧. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms 📡🔍. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems 🚀. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure 📈.

🏆 Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field 🌟. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones 🏅📘, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise 🧠✒️. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance 🧬🕊️.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

🧾 Conclusion

Dr. Jian Chen’s career is a synthesis of academic strength, research innovation, and peer leadership 📚🌟. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology 🌐. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitioner—someone who not only explores ideas but also brings them to life 🔬💡. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe 🌏📈.

Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Assoc. Prof. Dr. Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Dr. Darvish Falehi at Islamic Azad University, Iran

Ali Darvish Falehi is a distinguished academic and professional in the field of Electrical Power Engineering. With a Ph.D. and Post-Ph.D. from Shahid Beheshti University, he ranks among the world’s top 2% scientists as listed by Stanford University in 2020. He is currently an Assistant Professor at Iran Islamic Azad University, a technical expert at Iran North Drilling Company, and the Chairman of the R&D Board at HICOBI Company. He has delivered keynote speeches at several international conferences and holds numerous patents. His contributions extend to supervising over 50 theses and reviewing for prestigious journals. 🌟🔬📚

Professional Profile:

Google Scholar

Education and Experience:

  • Post-Ph.D. & Ph.D. in Electrical Power Engineering, Shahid Beheshti University (First Class Honors) 🎓

  • Ranked among the world’s top 2% scientists by Stanford University in 2020 🌍

  • Chairman of R&D Board at HICOBI Company 🏢

  • Assistant Professor at Iran Islamic Azad University 👨‍🏫

  • Technical Expert at Iran North Drilling Company ⚙️

  • Main Speaker at national and international conferences 🎤

  • Reviewer for prestigious journals (IEEE, Elsevier, Springer) 📖

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT score: 630 (Writing Score: 6) 🏆

  • Patents and medals at invention festivals in Iran, South Korea, and Romania 🏅

Professional Development: 

Ali Darvish Falehi has continuously developed his professional expertise by participating in global conferences and providing thought leadership as a main speaker and reviewer for high-impact journals such as IEEE and Elsevier. His dedication to research has led him to supervise over 50 graduate and doctoral theses, contributing to the academic growth of the next generation of engineers. He is also deeply involved in the industrial sector, where he serves as a technical expert for Iran North Drilling Company and leads the R&D board at HICOBI Company, driving innovation and technology forward. His work bridges academia and industry, enhancing both fields. 🔧🌐📊

Research Focus:

Ali Darvish Falehi’s research is centered around Electrical Power Engineering, with particular attention to energy systems, power distribution, and renewable energy solutions. His work aims to optimize power engineering technologies, focusing on improving energy efficiency and sustainability. He is known for his contributions to the development of advanced electrical systems and has been actively involved in creating patented innovations. His expertise in power engineering is complemented by his role as a technical expert, where he advises on industrial applications of electrical power systems. His research seeks to solve complex energy challenges, aligning with global sustainability goals. ⚡🌱🔋

Awards and Honors:

  • Ranked among the world’s top 2% scientists by Stanford University (2020) 🌍

  • Chairman of the R&D Board at HICOBI Company 🏢

  • Main Speaker at several international conferences 🎤

  • Reviewer for leading ISI journals like IEEE, Elsevier, Springer 📚

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT Score: 630 🏆

  • Patents and medals from invention festivals in Iran, South Korea, and Romania 🏅

Publication Top Notes

  1. “An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities” (2020)

    • Authors: A.D. Falehi

    • Journal: Chaos, Solitons & Fractals

    • Summary: This paper proposes an innovative control strategy using a multi-objective Grasshopper Optimization Algorithm (GOA) to enhance the MPPT and Fault Ride Through (FRT) capabilities of DFIG-based wind turbines. The use of Fractional-Order Sliding Mode Control (FOSMC) is central to this work.

  2. “Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbines” (2021)

    • Authors: A.D. Falehi, H. Torkaman

    • Journal: Journal of Energy Storage

    • Summary: This paper focuses on enhancing the FRT and Power Quality (PQ) capabilities of DFIG-based wind turbines. The authors propose a robust fractional-order control scheme for supercapacitors integrated with a Dynamic Voltage Restorer (DVR).

  3. “LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ-AMLI based DVR” (2018)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Sustainable Energy, Grids and Networks

    • Summary: This work aims to enhance the Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) capabilities of DFIG wind turbines by optimizing the design and control of a novel DVR based on a PIλDμ-AMLI (Proportional-Integral-Derivative) controller.

  4. “Enhancement of DFIG-wind turbine’s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter” (2017)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Engineering Science and Technology, an International Journal

    • Summary: This paper explores improving the LVRT capability of DFIG wind turbines by integrating a novel Dynamic Voltage Restorer (DVR) system with an odd-nary cascaded asymmetric multi-level inverter.

  5. “Neoteric HANFISC–SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems” (2016)

    • Authors: A.D. Falehi, A. Mosallanejad

    • Journal: IET Generation, Transmission & Distribution

    • Summary: This paper addresses the oscillation suppression in interconnected multi-source power systems using a Hybrid Active Networked Flexible Integrated Supply Chain (HANFISC)-Static Synchronous Series Compensator (SSSC) controlled by the Multi-Objective Particle Swarm Optimization (MOPSO) technique.

Conclusion:

Ali Darvish Falehi is undoubtedly a deserving candidate for the Excellence in Researcher Award. His combination of academic excellence, significant contributions to electrical power engineering, leadership in both academia and industry, and his global recognition positions him as a standout figure in his field. His ability to balance research with innovation, along with his dedication to mentoring future researchers, makes him an exemplary choice for this prestigious award.

Sahar Ghatrehsamani | Engineering | Best Scholar Award

Dr. Sahar Ghatrehsamani | Engineering | Best Scholar Award

Postdoctoral at Isfahan University of Technology, Iran

Dr. Sahar Ghatrehsamani is a passionate mechanical engineer specializing in tribology, with a strong background in machine learning and surface engineering. She earned her Ph.D. in Mechanical Engineering from Isfahan University of Technology (IUT), Iran (2022) and is currently a postdoctoral researcher at IUT, applying AI techniques to predict the tribological behavior of agricultural machinery. With expertise in CAD, FEA, and statistical analysis, she has contributed significantly to teaching, research, and mentoring students. Her work intersects materials science, additive manufacturing, and precision agriculture, making her a versatile and innovative researcher. 🌍🔬

Professional Profile:

Scopus

Google Scholar

Education & Experience

📚 Education:

  • 🎓 Ph.D. in Mechanical Engineering (Tribology) – Isfahan University of Technology, Iran (2017-2022)

  • 🎓 M.Sc. in Mechanical Engineering (Tribology) – Isfahan University of Technology, Iran (2015-2017)

  • 🎓 B.Sc. in Mechanical Engineering (Biosystem) – Shahrekord University, Iran (2009-2013)

🔬 Experience:

  • 🔍 Postdoctoral Researcher – Isfahan University of Technology, Iran (2024-Present)

  • 👩‍🏫 Teaching Experience – Multiple undergraduate courses in mechanical engineering at IUT (2018-Present)

  • 🤝 Co-Advisor – 2 Master’s & 6 Bachelor’s students

Professional Development

Dr. Sahar Ghatrehsamani is dedicated to research, teaching, and innovation in mechanical engineering, particularly in tribology, surface engineering, and AI-driven modeling. She has actively mentored students, guided research projects, and developed expertise in CAD, numerical simulation, and data analysis. Her teaching career at Isfahan University of Technology spans multiple engineering courses, and she has consistently ranked highly in teaching evaluations. Passionate about bridging the gap between mechanical engineering and materials science, she explores new technologies in additive manufacturing and precision agriculture to enhance sustainability and performance. 🚜🛠️

Research Focus

Dr. Sahar Ghatrehsamani’s research spans multiple engineering domains, focusing on:

  • 🏎️ Tribology – Studying friction, wear, and lubrication for various applications

  • 🏭 Surface Engineering – Enhancing material properties for durability and efficiency

  • 🤖 Machine Learning & AI – Applying predictive modeling in tribological behavior and material design

  • 🏗 Mechanical Behavior of Materials – Understanding stress, strain, and failure mechanics

  • 🚜 Precision Agriculture – Developing efficient and smart agricultural machinery

  • 🖨️ Additive Manufacturing – Investigating 3D printing & advanced manufacturing

  • 📊 Data Analysis & Numerical Modeling – Integrating simulation techniques for engineering solutions

Awards & Honors

Teaching Excellence:

  • 🎖️ Ranked 1st in Mechanical Engineering Group (2021)

  • 🏅 Ranked 2nd in College of Engineering (2021)

  • 🏆 Ranked 13th among 569 faculty members at IUT (2021)

Research Contributions:

  • 📜 Published multiple high-impact research papers in tribology and AI modeling

  • 🌍 Contributed to international collaborations in mechanical engineering research

🚀 Her dedication to education, research, and innovation has established her as a rising expert in tribology and machine learning!

Publication Top Notes

  1. On the running-in nature of metallic tribo-components: A review

    • Authors: M.M. Khonsari, S. Ghatrehsamani, S. Akbarzadeh

    • Journal: Wear (Vol. 474, 2021)

    • Citations: 113

    • Summary: A comprehensive review of the running-in phase in metallic tribo-systems, examining the changes in friction, wear, and surface topography over time.

  2. Experimentally verified prediction of friction coefficient and wear rate during running-in dry contact

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Tribology International (Vol. 170, 2022)

    • Citations: 41

    • Summary: Experimental validation of predictive models for friction and wear rate during the running-in phase under dry contact conditions.

  3. Experimental and numerical study of the running-in wear coefficient during dry sliding contact

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Surface Topography: Metrology and Properties (Vol. 9, Issue 1, 2021)

    • Citations: 25

    • Summary: Investigates the wear coefficient during dry sliding contact using both experimental methods and numerical simulations.

  4. Predicting the wear coefficient and friction coefficient in dry point contact using continuum damage mechanics

    • Authors: S. Ghatrehsamani, S. Akbarzadeh

    • Journal: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology (2019)

    • Citations: 23

    • Summary: Develops a predictive framework for wear and friction coefficients in dry point contact using continuum damage mechanics.

  5. Application of continuum damage mechanics to predict wear in systems subjected to variable loading

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Tribology Letters (Vol. 69, 2021)

    • Citations: 15

    • Summary: Extends continuum damage mechanics principles to predict wear in tribological systems under varying load conditions.

Conclusion

Sahar Ghatrehsamani is a strong candidate for the Best Scholar Award. Her contributions to tribology, AI-driven material predictions, and mechanical behavior research are significant. She excels in both academic and applied research, making notable interdisciplinary advancements. Given her teaching excellence, mentorship, and research output, she is highly deserving of recognition as a leading researcher in her field.

Mahmood Shakiba | Engineering | Best Researcher Award

Assist. Prof. Dr. Mahmood Shakiba | Engineering | Best Researcher Award

Faculty member at Ferdowsi University of Mashhad, Iran

Dr. mahmood shakiba 🇮🇷 is an assistant professor at Ferdowsi University of Mashhad, specializing in petroleum engineering with expertise in hydrocarbon reservoirs and enhanced oil recovery (EOR) 🛢️. He earned his Ph.D. from Amirkabir University of Technology (2020) 🎓, focusing on nano-assisted smart water for sand production control. With extensive experience in CO₂ and H₂ underground storage projects, reservoir characterization, and formation damage remediation, he has held key academic and industrial roles. As a researcher and educator, he has contributed significantly to petroleum engineering, guiding students and leading innovative studies in reservoir engineering and geomechanics 🔬📚.

Professional Profile

Scopus

Google Scholar

Education & Experience

Education 🎓

Ph.D. in Petroleum Engineering (Hydrocarbon Reservoirs), Amirkabir University of Technology (2016-2020)

  • Thesis: Nano-assisted smart water for sand production in unconsolidated sandstone reservoirs.

M.Sc. in Petroleum Engineering (Hydrocarbon Reservoirs), Shiraz University (2012-2014)

  • Thesis: Enhanced oil recovery & CO₂ storage via carbonated water injection.

B.Sc. in Petroleum Engineering (Reservoir Engineering), Shiraz University (2008-2012)

  • Thesis: Simulation of solution gas drive in fractured reservoirs.

Work Experience 🛠️

🔹 Assistant Professor – Ferdowsi University of Mashhad (2023-Present)
🔹 Project Supervisor – Underground CO₂ Storage (2023-Present)
🔹 Researcher – Underground H₂ Storage, RIPI (2023-Present)
🔹 Technical Manager – Upstream Oil Research Center, Sharif University (2020-2022)
🔹 Technical Supervisor – MAPSA Co., Tehran (2019-2020)
🔹 Industrial Consultant – MAPSA Co., Tehran (2019-2020)
🔹 Senior Lab Equipment Designer – MAPSA Co., Tehran (2018-2019)
🔹 Researcher – Advanced EOR Research Center, Shiraz University (2011-2014)

Professional Development 🌟

Dr. mahmood shakiba has significantly contributed to petroleum engineering through teaching, research, and industrial consulting 📖🔬. His expertise spans reservoir engineering, well testing, and gas reservoirs 🚀. At Ferdowsi University, he educates students on reservoir management and maintenance, while leading projects on underground CO₂ and H₂ storage. His industry experience includes technical supervision, reservoir characterization, and EOR techniques 🏭. Dr. shakiba has also played a key role in laboratory equipment design and geomechanical feasibility studies. His dedication to advancing sustainable energy storage and petroleum recovery has established him as a leader in the field 🌍💡.

Research Focus 🔬

Dr. shakiba’s research primarily focuses on enhanced oil recovery (EOR), underground storage of CO₂ and H₂, and reservoir geomechanics 🏗️. His experimental and simulation studies have explored innovative methods for improving oil recovery and mitigating environmental impact 🌱. He has investigated nano-assisted smart water flooding, formation damage remediation, and CO₂ sequestration to optimize hydrocarbon reservoir performance. His geological and geomechanical feasibility studies have contributed to safe underground hydrogen storage ⚡. His work advances sustainable energy solutions while improving oil and gas recovery efficiency for the future 🌍🔋.

Awards & Honors 🏆

🏅 Technical Leadership Award – Upstream Oil Research Center, Sharif University
🏅 Outstanding Research Contribution – Research Institute of Petroleum Industry (RIPI)
🏅 Best Thesis Award – Amirkabir University of Technology (2020)
🏅 Top Researcher Recognition – Shiraz University EOR Research Center
🏅 Best Instructor Award – Ferdowsi University of Mashhad (2023)

Publication Top Notes

  1. Investigation of oil recovery and CO₂ storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    • Journal of Petroleum Science and Engineering (2016)
    • Citations: 79
    • Examines how carbonated water injection (CWI) enhances oil recovery and CO₂ storage efficiency in carbonate reservoirs under secondary and tertiary injection scenarios.
  2. A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs

    • Journal of Molecular Liquids (2020)
    • Citations: 35
    • Investigates how smart water, combined with nanoparticles, helps mitigate sand production in weakly consolidated sandstone reservoirs while improving oil recovery.
  3. The impact of connate water saturation and salinity on oil recovery and CO₂ storage capacity during carbonated water injection in carbonate rock

    • Chinese Journal of Chemical Engineering (2019)
    • Citations: 29
    • Analyzes how variations in connate water saturation and salinity influence oil displacement efficiency and CO₂ trapping during CWI in carbonate formations.
  4. Effects of type and distribution of clay minerals on the physico-chemical and geomechanical properties of engineered porous rocks

    • Scientific Reports (2023)
    • Citations: 21* (recently published)
    • Studies how different clay minerals affect the structural integrity and chemical behavior of engineered porous rocks, impacting reservoir performance.
  5. An experimental insight into the influence of sand grain size distribution on the petrophysical and geomechanical properties of artificially made sandstones

    • Journal of Petroleum Science and Engineering (2022)
    • Citations: 15
    • Explores the role of sand grain size variations in determining the permeability, porosity, and mechanical strength of artificial sandstone samples.

Zhou Zhiwu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhou Zhiwu | Engineering | Best Researcher Award

School of Civil and Environmental Engineering at Hunan University of Science and Engineering, China

Zhou zhiwu, a senior engineer and registered tester, is an associate professor and master’s supervisor at hunan university of science and engineering. he earned his ph.d. in transportation infrastructure and territory from the polytechnic university of valencia (🇪🇸) with top honors, including the UPV Outstanding Doctorate and the 2023 Spanish Outstanding Doctoral Award 🏆. with 15 years in national engineering projects, he has led major constructions, published 28 research papers 📄, and serves as a reviewer for 20 SCI journals. his expertise spans (ancient) bridge monitoring, high-speed railway track optimization, and sustainable structural design.

Professional Profile

Orcid

Scopus

Google Scholar

Education & Experience 🎓👷‍♂️

📚 Education:

  • 🎓 Bachelor’s in Architectural Engineering – Lanzhou Jiaotong University (2000-2004)
  • 🎓 Master’s in Transportation Engineering – Lanzhou Jiaotong University (2013-2016)
  • 🎓 Ph.D. in Transport Infrastructure & Territory – Polytechnic University of Valencia, Spain (2019-2023) 🏅

💼 Work Experience:

  • 🏗 Project Manager – China Railway 15th Bureau Group (2002-2017)
  • 🏢 Chief Engineer – Xinjiang Highway Science & Technology Research Institute (2017-2018)
  • 📖 Full-time Teacher & Leader – Chongqing Public Vocational Transport College (2018-2019)
  • 🔬 Doctor & Associate Researcher – Polytechnic University of Valencia, Spain (2019-2023)
  • 🎓 Associate Professor & Master Supervisor – Hunan University of Science and Engineering (2023-Present)

Professional Development 🚀🔬

Zhou zhiwu is a multidisciplinary researcher and engineer specializing in transportation infrastructure, structural health monitoring, and sustainable development. with over 15 years of experience in large-scale construction projects 🏗, he has contributed to high-speed railways 🚄, highways 🛣, and industrial buildings 🏢. he has led and participated in 11 international and national research projects, collaborated with top institutions, and published extensively in SCI-indexed journals 📚. in addition to research, he is a dedicated educator 📖 and serves as an editorial board member for the American Journal of Environmental Science and Engineering, actively reviewing 148+ research articles.

Research Focus 🔍🏗

Zhou zhiwu’s research lies in transportation engineering, structural monitoring, and sustainable infrastructure:

  • 🏛 (Ancient) Bridge & Building Health Monitoring – Studying structural integrity & durability
  • 🌱 Sustainable Infrastructure – Coupling optimization for large-scale structures
  • 🚄 High-Speed Railway Track Optimization – Preventing track diseases & enhancing efficiency
  • 🏗 Indeterminate Structural Design – Improving extra-large bridge sustainability
  • 🔬 Engineering Project Management – Enhancing efficiency in large-scale construction

his work integrates modern monitoring techniques 📡, advanced materials 🏗, and sustainable engineering 🌱 to enhance long-term infrastructure performance.

Awards & Honors 🏆🎖

  • 🏅 UPV Outstanding Doctorate Award – Polytechnic University of Valencia, Spain
  • 🏆 2023 Spanish Outstanding Doctoral Award – Top honor for doctoral research
  • 🏗 National Engineering Construction Quality Management Award (First Class)
  • 🏆 First-Class Science & Technology Award – China Railway Construction Corporation
  • 🏅 Provincial & Ministerial-Level Awards – Henan Province (Two awards)
  • 🏆 China Civil Engineering Society “National Second Prize”
  • 🎖 Reviewer for 20 SCI Journals – Reviewed 148+ articles

Publication Top Notes

  1. Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil

    • Journal of Building Engineering, 2025.
    • DOI: 10.1016/j.jobe.2024.111636
    • Citation (APA):
      Author(s). (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, XX, 111636.
  2. Three-dimensional finite element-coupled optimisation assessment of extra-large bridges

    • Structures, 2024.
    • DOI: 10.1016/j.istruc.2024.107743
    • Citation (APA):
      Author(s). (2024). Three-dimensional finite element-coupled optimisation assessment of extra-large bridges. Structures, XX, 107743.
  3. Research on coupling optimization of carbon emissions and carbon leakage in international construction projects

    • Scientific Reports, 2024.
    • DOI: 10.1038/s41598-024-59531-4
    • Citation (APA):
      Zhou, Z. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, XX, 59531. Building the future: Smart concrete as a key element in next-generation construction
    • Construction and Building Materials, 2024.
    • DOI: 10.1016/j.conbuildmat.2024.136364
    • Citation (APA):
      Zhou, Z. (2024). Building the future: Smart concrete as a key element in next-generation construction. Construction and Building Materials, XX, 136364.
  4. The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model

    • Sustainable Cities and Society, 2024.
    • DOI: 10.1016/j.scs.2024.105201
    • Citation (APA):
      Author(s). (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, XX, 105201.

Lakshakoti Bochu | Engineering | Best Researcher Award

Lakshakoti Bochu | Engineering | Best Researcher Award

Orcid Profile

Educational Details:

Mr. Lakshakoti Bochu is currently pursuing a Ph.D. in Electronics and Communication Engineering (ECE) at the National Institute of Technology, Warangal, since 2022. He holds an M.Tech in VLSI and Embedded Systems from Kakatiya Institute of Technology & Sciences, where he graduated with 62.70% in 2014. Lakshakoti completed his B.Tech in ECE at SR Engineering College, achieving 66.24% in 2012. His foundational education includes an Intermediate degree in Mathematics, Physics, and Chemistry from A.P.S.W.R.S/Jr. College, Jakaram, with a notable score of 86.8% in 2008, and an SSC from A.P.S.W.R.S School, Jakaram, where he scored 83.3% in 2006. His strong academic background underpins his research pursuits in engineering.

Technical Skills 

Mr. Lakshakoti Bochu possesses a strong technical skill set that complements his academic and research endeavors. He is proficient in programming with the C language and is experienced with a variety of tools, including Arduino IDE, Xilinx 9.2i, Vivado, and COMSOL, as well as design and simulation platforms like TinkerCAD, Multisim, and Microwind. His expertise extends to data analysis and networking tools such as MATLAB, NS2, and Wireshark. Additionally, he is skilled in using software packages like Mendeley and Origin, and is familiar with both Linux and Windows operating systems, including computer hardware setups. With a typing speed of 32 words per minute, Lakshakoti efficiently manages technical documentation and communication in his work.

Work Experience

Mr. Lakshakoti Bochu is currently a Junior Research Fellow at the National Institute of Technology, Warangal, where he has been conducting research since August 2022. His work focuses on energy harvesting and storage, flexible electronics, and biomedical sensors, including the development of innovative flexible and wearable triboelectric nanogenerators. Prior to this position, he served as an Assistant Professor at Balaji Institute of Technology and Science, Warangal, from September 2021 to August 2022. He also held a similar role at Talla Padmavathi College of Engineering, Kazipet, from March 2016 to September 2021. During his tenure in academia, Lakshakoti managed various subjects and labs, teaching courses such as VLSI Design, Digital Signal Processing (DSP), and Digital Image Processing (DIP), while also coordinating departmental activities and student engagement. His extensive teaching and research experience reflects his dedication to advancing knowledge in engineering and technology.

Top Notable Publications

Lakshakoti, B. (2024). Innovative triboelectric nanogenerator (TENG) design utilizing a stress ball. Engineering Research Express, 6(1). https://doi.org/10.1088/2631-8695/ad2245

Lakshakoti, B. (2024). Innovative integration of triboelectric nanogenerators into signature stamps. Engineering, 2024. https://doi.org/10.3390/eng5020052

Lakshakoti, B. (2023). Facile direct growth of ZIF-67 metal-organic framework. ACS Sustainable Chemistry & Engineering, 11(47). https://doi.org/10.1021/acssuschemeng.3c05198

Lakshakoti, B. (2023). Enhancing triboelectric nanogenerator performance with metal-organic-framework-modified ZnO nanosheets. ACS Applied Nano Materials, 6(24). https://doi.org/10.1021/acsanm.3c03430

Lakshakoti, B. (2023). Transforming medical plastic waste into high-performance triboelectric nanogenerators. ACS Sustainable Chemistry & Engineering, 11(32). https://doi.org/10.1021/acssuschemeng.3c03136

Lakshakoti, B. (2023). Surface-engineered high-performance triboelectric nanogenerator. ACS Applied Engineering Materials, 1(10). https://doi.org/10.1021/acsaenm.3c00416

Lakshakoti, B. (2022). IoT surveillance robot using ESP-32 Wi-Fi CAM & Arduino. IJFANS Journal, 11(06). https://doi.org/10.48047/IJIEMR/V11/SPL

Lakshakoti, B. (2021). Design and implementation of RFID-GSM based signal jump e-challan system. pp. 10221–10229.

Lakshakoti, B. (2023). Object detection in motion estimation and tracking analysis for IoT devices. ResearchGate, 2023(9). https://doi.org/10.48047/IJIEMR/V11/SPL

Lakshakoti, B. (2021). Design of a high-speed N-bit Vedic multiplier using mux-based compressors. In Proceedings of ICMRCET-2020 (pp. [page numbers]). ISBN 978-93-5437-153-0.

Yalini Devi Neelan | Engineering | Best Researcher Award

Dr. Yalini Devi Neelan | Engineering | Best Researcher Award

Google Scholar Profile

Educational Details

Dr. Yalini Devi Neelan completed her Ph.D. in Energy Harvesting Applications at Anna University, India, from 2016 to 2021. Her doctoral research focused on innovative methods for harnessing energy through advanced materials and nanotechnology. Prior to her Ph.D., she earned an M.Tech. in Nanoscience and Technology from Anna University, where she achieved an impressive GPA of 8.24/10 from 2014 to 2016. Dr. Neelan’s academic journey began with a Bachelor of Engineering in Electrical and Electronic Engineering, also from Anna University, where she graduated in 2014 with a GPA of 6.41/10. This solid educational background has equipped her with a strong foundation in both engineering principles and nanomaterials, driving her passion for research in energy solutions.

Research Experience

Dr. Yalini Devi Neelan is currently a Postdoctoral Researcher at the University of Milano, Italy, in the Thermoelectric’s Laboratory, where she focuses on the preparation and characterization of nanostructured silicon for thermoelectric applications. Her key responsibilities include preparing nanostructured materials, examining their physicochemical characteristics, and studying their Seebeck coefficient, electrical, and thermal conductivity to calculate the figure of merit (ZT). Prior to this, she was a Postdoctoral Researcher at Chungnam National University, South Korea, where she worked on nanostructured oxide-based materials for antibiotic degradation and battery applications, analyzing their photodegradation and electrochemical properties. Dr. Neelan also served as a Research Associate at Anna University, India, where she focused on energy harvesting and storage applications, preparing oxide-based nanomaterials and managing communications with funding agencies. During her Ph.D. at Anna University, she investigated nanostructured strontium titanate-based oxide thermoelectric materials for energy harvesting from waste heat. Additionally, she collaborated with Shimomura Laboratory at Shizuoka University, Japan, to enhance the thermoelectric power factor of nanostructured SrTiO3 through Gd and Nb co-substitution. Earlier in her academic journey, Dr. Neelan was a project student at the Indian Institute of Technology Madras, where she developed graphene oxide-based strain sensors for motion monitoring. Her diverse research experiences reflect her strong expertise in nanomaterials and energy applications.

Research Focus

Energy harvesting applications, particularly in thermoelectrics, focus on converting waste heat into usable electrical energy, thus promoting sustainable energy solutions. The synthesis of nanomaterials plays a crucial role in this field, as nanostructured materials exhibit enhanced thermoelectric properties due to their unique physical and chemical characteristics. These materials are engineered to optimize energy conversion efficiencies, allowing for effective harvesting from various heat sources. Additionally, advancements in energy storage applications complement energy harvesting by ensuring that the harvested energy can be effectively stored and utilized when needed. By integrating innovative synthesis techniques and exploring novel nanomaterials, researchers aim to improve the performance and efficiency of thermoelectric devices, ultimately contributing to a more sustainable and energy-efficient future.

Top Notable Publications

Enhancing effects of Te substitution on the thermoelectric power factor of nanostructured SnSe₁₋ₓTeₓ
Authors: D. Sidharth, A.S.A. Nedunchezhian, R. Rajkumar, N.Y. Devi, P. Rajasekaran, et al.
Journal: Physical Chemistry Chemical Physics
Year: 2019
Citations: 32

Effect of Gd and Nb co-substitution on enhancing the thermoelectric power factor of nanostructured SrTiO₃
Authors: N.Y. Devi, K. Vijayakumar, P. Rajasekaran, A.S.A. Nedunchezhian, et al.
Journal: Ceramics International
Year: 2021
Citations: 26

Enhanced thermoelectric performance of band structure engineered GeSe₁₋ₓTeₓ alloys
Authors: D. Sidharth, A.S.A. Nedunchezhian, R. Akilan, A. Srivastava, B. Srinivasan, et al.
Journal: Sustainable Energy & Fuels
Year: 2021
Citations: 25

Enhancement of thermoelectric power factor of hydrothermally synthesised SrTiO₃ nanostructures
Authors: N.Y. Devi, P. Rajasekaran, K. Vijayakumar, A.S.A. Nedunchezhian, et al.
Journal: Materials Research Express
Year: 2020
Citations: 15

Biogenic synthesis and characterization of silver nanoparticles: evaluation of their larvicidal, antibacterial, and cytotoxic activities
Authors: S. Mahalingam, P.K. Govindaraji, V.G. Solomon, H. Kesavan, Y.D. Neelan, et al.
Journal: ACS Omega
Year: 2023
Citations: 11

Effect of Bismuth substitution on the enhancement of thermoelectric power factor of nanostructured BiₓCo₃₋ₓO₄
Authors: A.S.A. Nedunchezhian, D. Sidharth, N.Y. Devi, R. Rajkumar, P. Rajasekaran, et al.
Journal: Ceramics International
Year: 2019
Citations: 11

Effective Visible-Light-Driven Photocatalytic Degradation of Harmful Antibiotics Using Reduced Graphene Oxide-Zinc Sulfide-Copper Sulfide Nanocomposites as a Catalyst
Authors: J.K. Shanmugam Mahalingam, Yalini Devi Neelan, Senthil Bakthavatchalam, et al.
Journal: ACS Omega
Year: 2023
Citations: 10

Enhancing the thermoelectric power factor of nanostructured ZnCo₂O₄ by Bi substitution
Authors: A.S.A. Nedunchezhian, D. Sidharth, R. Rajkumar, N.Y. Devi, K. Maeda, et al.
Journal: RSC Advances
Year: 2020
Citations: 7

High thermoelectric power factor of Ag and Nb co-substituted SrTiO₃ perovskite nanostructures
Authors: N.Y. Devi, A.S.A. Nedunchezhian, D. Sidharth, P. Rajasekaran, et al.
Journal: Materials Chemistry and Physics
Year: 2023
Citations: 3