Sławomir Michalak | Engineering | Industry Impact Award

Assist. Prof. Dr. Sławomir Michalak | Engineering | Industry Impact Award

Avionics Division Manager at Air Force Institute of Technology, Poland

Prof. Sławomir Michalak, Ph.D., D.Sc. Eng. ✈️, is a distinguished aviation expert whose work bridges academia, defense, and engineering innovation. With decades of experience in avionics systems, aircraft diagnostics, and battlefield electronic warfare systems 🛠️📡, he has led the Avionics Department at the Air Force Institute of Technology since 2001. His pioneering efforts span system integration, reliability assessment, and phonoscopic analysis, influencing modern aviation practices. Michalak is a prolific contributor 📚 with numerous publications and nine recognized implementations. As a mentor and reviewer, he has significantly shaped doctoral and post-doctoral research. He has also educated future aviation professionals 👨‍🏫 at institutions like the Warsaw University of Technology and the SIMP NOT Technical School. Actively involved in national defense research and scientific committees, his legacy resonates across Polish military aviation and beyond 🌍. His commitment to innovation and education makes him a keystone figure in aviation sciences and applied technologies.

Professional Profile 

Orcid

Scopus

🎓 Education 

Dr. Sławomir Michalak’s academic journey 🚀 is deeply rooted in technical aviation sciences, marked by a robust specialization in avionics and aircraft navigation systems. He earned his doctorate in engineering and later achieved the prestigious Doctor of Science (D.Sc.) degree in technical sciences in 2016 🎓, with a concentration on machine construction and operational disciplines. His educational trajectory demonstrates a relentless pursuit of advanced knowledge in complex aircraft systems, enhancing Poland’s aerospace education infrastructure. Moreover, his authorial role in crafting and teaching curricula—especially the subject “Aviation Equipment” approved by Warsaw’s Education Board—reflects a deep commitment to pedagogy. His teaching efforts spanned nearly three decades and included lectures at Warsaw University of Technology’s Faculty of Transport, focusing on Air Navigation 🧭. His foundation in education has not only equipped him with specialized skills but has also enabled him to disseminate that knowledge to future leaders of aviation systems engineering.

💼 Professional Experience 

With an illustrious career spanning over three decades, Prof. Michalak has held pivotal roles that define Poland’s aviation research and development landscape ✈️. Since 2001, he has been the head of the Avionics Department at the Air Force Institute of Technology, where he currently serves as a professor 👨‍🔬. His career is marked by excellence in integrating avionics systems, reliability diagnostics, and designing solutions for modern combat operations, including electronic countermeasures 🛡️. He has played a key advisory role in national aviation safety as a long-standing member of the Aircraft Accident Investigation Board, later incorporated into the State Aviation Accident Investigation Board 🕵️. He also lends expertise to the Polish Academy of Sciences’ Transport Committee. Parallelly, he has served as a reviewer and board member for multiple doctoral/post-doctoral theses, as well as contributing to national defense and R&D projects funded by premier agencies like the National Center for Research and Development 💡.

🔬 Research Interests 

Prof. Michalak’s research interests are deeply embedded in the critical functionalities of advanced aircraft systems, with a core emphasis on avionics integration and optimization 🚁. His scholarly pursuits center on diagnostics, system reliability, and onboard information processing, including phonoscopic and parametric analysis of flight data recorders 📈🔊. He investigates navigation system integrity, real-time data interpretation, and complex multi-sensor integration essential for military reconnaissance and electronic warfare systems. His innovations directly impact aircraft survivability and mission effectiveness in modern combat environments ⚙️. His work also extends to analyzing flight incident data, enhancing aviation safety and post-mission assessments. Furthermore, his involvement in the Electromobility and Autonomous Transport Section reveals his forward-looking vision in adapting aviation technologies to land-based and autonomous platforms 🚗📡. Through interdisciplinary collaborations and defense-funded projects, his research acts as a crucial bridge between theoretical foundations and operational implementation across aviation and defense sectors.

🏅 Awards and Honors 

Though specific award titles are not explicitly listed, Prof. Michalak’s array of achievements reflects a highly decorated academic and technical career 🏆. His recognition stems from the practical impact of nine notable implementation projects that brought real-world improvements in avionics system performance and safety ✨. His invitations to serve on scientific committees, review doctoral works, and lecture at renowned institutions showcase the esteem he holds in academic and defense circles. His prolonged contribution to the Aircraft Accident Investigation Board—spanning eras of structural reorganization—further demonstrates his trusted leadership in critical national aviation oversight roles ✈️. Being part of elite organizations like the Transport Committee of the Polish Academy of Sciences and guiding R&D projects funded by the Ministry of Defense affirms his reputation as a thought leader 🧠. These honors, both formal and implied, are a testament to his sustained excellence and unwavering dedication to enhancing Poland’s aerospace defense and academic frontiers.

📚 Publications Top Note 

1. Power Quality in the Context of Aircraft Operational Safety
Authors: Tomasz Tokarski, Sławomir Michalak, Barbara Kaczmarek, Mariusz Zieja, Tomasz Polus
Year: 2025 (Published April 10)
Journal: Energies
DOI: 10.3390/en18081945
Source: Crossref / MDPI
Summary:
This article investigates how power quality, particularly from Ground Power Units (GPUs), affects aircraft operational safety. It focuses on GPUs used by the Polish Armed Forces and highlights how aging equipment (some over 40 years old) leads to degraded performance in transient conditions, contributing to aircraft unserviceability. The paper proposes diagnostic methodologies in line with Polish military standards and emphasizes the need for modern monitoring systems to ensure power reliability.


2. Selected Problems of Determining Pilot Survival Time in Cold Water after the Aircraft Crash
Authors: Przemysław Stężalski, Sławomir Michalak, Jerzy Borowski
Year: 2025 (Published January 17)
Journal: The Polish Journal of Aviation Medicine, Bioengineering and Psychology
DOI: 10.13174/pjambp.17.12.2024.04
Source: Crossref
Summary:
This research introduces a computational model to estimate pilot survival times in cold water following an aircraft crash. Using a thermodynamic body simulation with nonlinear heat transfer equations, the model accounts for factors such as temperature, body mass, clothing, and body position. The output helps in estimating hypothermia onset and unconsciousness time, aiding in rescue and survival strategy development.


3. The Effect of the Operation Time of the Aircraft Power System on Power Quality in Transient States
Authors: Not explicitly listed (likely includes Tomasz Tokarski and/or Sławomir Michalak)
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4462
Source: Crossref
Summary:
The paper examines how long-term use and aging of aircraft power systems impact power quality, especially during transient events such as engine starts or system switches. It shows that older systems cause higher voltage deviations and fluctuations, compromising avionics performance and reliability. The findings support the importance of upgrading aging infrastructure to maintain operational integrity.


4. The Overview of Ecologic Military and Civilian Power Systems
Authors: Not specified
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4461
Source: Crossref
Summary:
This review paper presents current trends in environmentally friendly power systems used in both civilian and military aviation. It discusses energy-efficient GPU technologies, emission reduction strategies, and renewable energy integration, underlining how ecological considerations are increasingly shaping power system design without sacrificing reliability and performance.


5. The Polish Helmet Mounted Display Systems for Military Helicopters
Author: Sławomir Michalak
Year: 2016 (June)
Conference: 2016 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2016.7573240
Source: Crossref
Summary:
The paper discusses development, features, and performance evaluation of Polish helmet-mounted display systems for military helicopter pilots. It includes metrological approaches for assessing system reliability and precision in dynamic environments.


6. Metrology Tools of Computer Communication Control on Board Military Aircraft
Author: Sławomir Michalak
Year: 2015
Journal: Przeglad Elektrotechniczny
DOI: 10.15199/48.2015.08.13
Source: Scopus / Crossref
Summary:
This article covers the development of metrology tools designed to monitor and control server communications onboard military helicopters. The study emphasizes reliability and diagnostic accuracy in harsh operational environments.


7. AFIT’s Laboratory Test Equipment to Optimise the Integrated Avionics Systems for Polish Military Aircrafts
Author: Sławomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865904
Source: Crossref
Summary:
The study describes laboratory instrumentation developed by AFIT to test and optimize avionics systems in Polish military aircraft. It focuses on system integration, fault simulation, and metrological evaluation.


8. AFIT’s Laboratory Test Equipment to Optimise the Integrated Communication Systems for Polish Military Helicopters
Author: Sławomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865949
Source: Crossref
Summary:
This paper presents laboratory tools developed for assessing and refining communication systems in military helicopters. The research highlights signal integrity testing and communication protocol validation in simulated airborne conditions.


9. Computer Aided Diagnosis of Technical Condition of the SWLP-1 Helmet Mounted Flight Parameters Display System
Author: Sławomir Michalak
Year: 2014
Journal: Journal of KONBiN
DOI: 10.2478/jok-2014-0025
Source: Crossref
Summary:
The paper introduces a computer-based diagnostic system for evaluating the SWLP-1 helmet display used in flight operations. It supports preventive maintenance through automated fault detection and performance assessment.


10. Nahełmowy System Celowniczy NSC-1 Orion dla Polskich Śmigłowców Wojskowych
Author: Sławomir Michalak
Year: 2013
Journal: Scientific Letters of Rzeszow University of Technology – Mechanics
DOI: 10.7862/rm.2013.30
Source: Crossref
Summary:
This Polish-language article covers the NSC-1 Orion helmet-mounted sighting system, developed for Polish military helicopters. It details its targeting features, integration with aircraft systems, and effectiveness in operational scenarios.

🔚 Conclusion 

Prof. Sławomir Michalak stands out as a trailblazer in aviation science, with his influence permeating research, defense, and education 🌐. His technical command in avionics, experience in accident investigation, and commitment to academic excellence place him among Poland’s most respected aerospace experts 🚀. From developing navigation systems to interpreting flight data and advising national safety boards, his work has safeguarded lives and advanced technologies alike. His three-decade-long dedication to instructing young minds and contributing to global conferences reflects his dual passion for knowledge dissemination and innovation 💬📘. As a visionary integrating evolving avionics with real-time diagnostics and battlefield adaptability, he exemplifies the ideal intersection of theory and application 🛫. With continued contributions to autonomous systems and electromobility, Michalak remains not only a legacy figure in aerospace engineering but also a forward-thinker shaping its future. His professional journey is a compelling blueprint for excellence, innovation, and impactful service 💡🎖️.

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Visiting faculty at Birla Institute of Technology and Science Pilai, India

Dr. K. Lakshmi Prasanna 🎓 is a passionate researcher and academician in the field of High Voltage Engineering, with a strong command over system modeling, fault diagnostics, and parameter estimation using MATLAB/Simulink 🛠️. She brings a unique blend of theoretical insight and hands-on expertise in simulation, optimization, control systems, and signal processing. Her innovative Ph.D. work at BITS Pilani, Hyderabad focused on transformer winding modeling and inter-turn fault diagnostics 🔍, proposing novel, non-intrusive algorithms with real-world applicability. With a foundation in Power Electronics and Electrical Engineering ⚡, she also has teaching experience at multiple esteemed engineering colleges, nurturing minds in core subjects. Driven by curiosity and adaptability, she actively embraces new software tools and collaborative environments 💡. Her professional trajectory reflects a consistent commitment to academic excellence, technical rigor, and transformative innovation in electrical engineering. 🚀

Professional Profile

Orcid

Scopus

Google Scholar

📚 Education

Dr. Lakshmi Prasanna’s educational journey 🌱 reflects a steady and impressive rise through the academic ranks of electrical engineering. Beginning with a remarkable 96.9% in her Higher Secondary 🏫, she pursued her B.Tech in EEE and M.Tech in Power Electronics from JNTUA, scoring 85.1% and 85%, respectively 🎯. Her academic excellence culminated in a Ph.D. in High Voltage Engineering at BITS Pilani, Hyderabad Campus, where she maintained an impressive 8.0 CGPA 📈. Her doctoral thesis delved into cutting-edge research on transformer fault diagnosis and system modeling, placing her at the forefront of innovation in condition monitoring and electrical diagnostics. Throughout her educational path, she has consistently demonstrated not just technical brilliance but also a hunger for knowledge and an ability to bridge theory and application seamlessly 📘⚙️.

👩‍🏫 Professional Experience 

With over a decade of dedicated service in academia and research, Dr. Lakshmi Prasanna has built a versatile and impactful professional portfolio 🧠. Beginning her journey as an Assistant Professor at Rami Reddy Subbarami Reddy Engineering College (2012–2017), she laid her pedagogical foundations teaching essential subjects like Electrical Machines, Circuits, and Power Electronics 🔌. Her journey continued at St. Martin’s Engineering College (2017–2019), where she continued imparting technical knowledge with enthusiasm and clarity. From 2018 to 2025, her role as a Research Assistant at BITS Hyderabad marked a turning point, as she immersed herself in advanced simulation and transformer fault diagnostics 🔬. Beyond teaching, her experience also includes proposal writing, technical documentation using LaTeX, and collaborative interdisciplinary projects, marking her as a well-rounded professional 🌐📝.

🔍 Research Interests 

Dr. Lakshmi Prasanna’s research is deeply rooted in the intelligent modeling of electrical systems, with a spotlight on transformer winding diagnostics, state-space modeling, and parameter estimation using non-intrusive techniques 🧩. Her innovative Ph.D. work proposed the integration of subspace identification and similarity transformations to estimate transformer parameters and detect inter-turn faults purely from terminal measurements ⚙️🔍. Her expertise in MATLAB M-script development, COMSOL Multiphysics simulations, and system optimization reflects a rare proficiency in both simulation and real-world application. Additionally, she is intrigued by control systems, fault-tolerant design, and signal processing, with a strong drive toward creating robust, adaptive models for condition monitoring 🧠📊. Her work directly contributes to the reliability and safety of electrical infrastructure, making her research highly relevant to modern power systems and smart grid innovation 🌐⚡.

🏅 Awards and Honors

Dr. Lakshmi Prasanna’s academic journey is marked by consistently high achievements and academic recognition 🏆. From securing a 96.9% in her HSC to maintaining top scores through her undergraduate and postgraduate studies, her excellence has been evident from the outset 🎓. While formal awards during her doctoral years may not be listed, her selection and continuation at BITS Pilani, one of India’s premier institutions, is a distinction in itself 🌟. Her progression into high-level research projects, including complex simulation and modeling of transformer systems, attests to her recognition within the academic and research community. Her teaching roles across reputed engineering colleges and involvement in technical proposal writing and collaborative research are testaments to her leadership and scholarly respect 🥇. She continues to be acknowledged for her dedication, depth of knowledge, and clarity in delivering technical content.

Publications Top Notes 

1. Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100982

  • Source: e-Prime – Advances in Electrical Engineering, Electronics and Energy

  • Summary: This study introduces a non-invasive method for identifying and assessing the severity of inter-turn faults in transformer windings using only external terminal measurements. The approach enhances fault detection accuracy without requiring internal access to the transformer.


2. Radial deformation detection and localization in transformer windings: A terminal measured impedance approach

  • Authors: Lakshmi Prasanna Konjeti, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100945

  • Source: e-Prime – Advances in Electrical Engineering, Electronics and Energy

  • Summary: The paper presents a novel, non-invasive method for diagnosing radial deformation faults in transformer windings by analyzing terminal impedance measurements, enabling effective detection and severity assessment based on capacitance changes.


3. A non-iterative analytical approach for estimating series-capacitance in transformer windings solely from terminal measured frequency response data

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.epsr.2024.111086

  • Source: Electric Power Systems Research

  • Summary: This research proposes a non-iterative analytical method to estimate the series capacitance of transformer windings using only terminal frequency response data, simplifying the estimation process and improving accuracy.


4. Accurate Estimation of Transformer Winding Capacitances and Voltage Distribution Factor Using Driving Point Impedance Measurements

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2024

  • DOI: 10.1109/ACCESS.2024.3460968

  • Source: IEEE Access

  • Summary: The study introduces an innovative methodology for precisely estimating winding capacitances and the voltage distribution factor using driving point impedance measurements, enhancing transformer modeling and analysis.


5. A Symbolic Expression for Computing the Driving Point Impedance and Pole-Zero-Gain of a Transformer from its Winding Parameters

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1109/INDICON59947.2023.10440729

  • Source: 2023 IEEE 20th India Council International Conference (INDICON)

  • Summary: This paper presents a symbolic expression for computing the driving point impedance and pole-zero-gain of a transformer based on its winding parameters, facilitating efficient analysis of transformer behavior.


6. Analytical computation of driving point impedance in mutually coupled inhomogeneous ladder networks

  • Authors: K. Lakshmi Prasanna, Mithun Mondal

  • Year: 2023

  • DOI: 10.1002/cta.3839

  • Source: International Journal of Circuit Theory and Applications

  • Summary: The research introduces a new approach for computing the driving point impedance of inhomogeneous ladder networks with mutual coupling, enhancing the accuracy of electrical network modeling.


7. Analytical formulas for calculating the electrical characteristics of multiparameter arbitrary configurational homogenous ladder networks

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1002/cta.3547

  • Source: International Journal of Circuit Theory and Applications

  • Summary: This paper presents generalized analytical formulas for computing the electrical properties of multiparameter arbitrary configuration homogeneous ladder networks, aiding in the design and analysis of complex electrical circuits.


8. Terminal Measurements-Based Series Capacitance Estimation of Power Transformer Windings Using Frequency-Domain Subspace Identification

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2023

  • DOI: 10.1109/TIM.2023.3311074

  • Source: IEEE Transactions on Instrumentation and Measurement

  • Summary: The study proposes a method for estimating the series capacitance of power transformer windings using frequency-domain subspace identification based on terminal measurements, improving the accuracy of transformer diagnostics.


9. Elimination of Mutual Inductances from the State-Space Model of a Transformer Winding’s Ladder Network Using Eigen Decomposition

  • Authors: K. Lakshmi Prasanna

  • Year: 2022

  • DOI: 10.1109/CATCON56237.2022.10077664

  • Source: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)

  • Summary: This paper presents a method to eliminate mutual inductances from the state-space model of a transformer winding’s ladder network using eigen decomposition, simplifying the analysis of transformer dynamics.

10. Internet Of Things (IOT) in Distribution grid using DSTATCOM

  • Authors: K. Lakshmi Prasanna

  • Year: 2019

  • DOI: 10.1109/RDCAPE47089.2019.8979044

  • Source: 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE)

  • Summary: The paper discusses the integration of Internet of Things (IoT) technology with DSTATCOM in distribution grids to improve power factor and enable real-time monitoring, enhancing the efficiency and reliability of power distribution systems.

Conclusion 

In conclusion, Dr. K. Lakshmi Prasanna stands as a beacon of innovation, diligence, and academic integrity in the realm of electrical engineering and high voltage research 🌟. Her journey from a stellar student to a dynamic researcher and dedicated educator is marked by technical excellence, innovative research, and a passion for teaching 🎯. With deep expertise in MATLAB/Simulink, transformer modeling, and non-intrusive diagnostics, she contributes meaningfully to the future of smart and resilient power systems ⚡💻. Her collaborative spirit, adaptability to emerging tools, and constant pursuit of knowledge ensure her continued relevance and impact in the scientific community 📚🚀. As she continues to explore new horizons in diagnostics and system modeling, her work promises to empower more efficient and intelligent energy systems of tomorrow 🔋🔬.

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen 🎓, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences 🏛️, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community 📚. His scholarly portfolio includes 39 academic articles, 3 granted patents 🧠🔧, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications 🌐. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration 🌟.

Professional Profile 

ORCID Profile

🎓 Education

Dr. Jian Chen’s academic journey 🌱 began at Jilin University, where he pursued both his Bachelor’s (2001–2005) and Master’s (2005–2007) degrees in Communication Engineering 🛰️. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011–2014) ⚙️. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise 🧠. This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset 📘🔬.

🧑‍🔬 Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS 🏢. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics 💡. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents 🔍📑. Dr. Chen also stands out as a peer-review gatekeeper—serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI 🧾📖. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to China’s optics and precision mechanics research domain 🔧🌍.

🔬 Research Interest

Jian Chen’s research interests orbit around the convergence of optics, mechanical design, and electrical systems 🔭⚙️. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation 💡🔧. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms 📡🔍. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems 🚀. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure 📈.

🏆 Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field 🌟. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones 🏅📘, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise 🧠✒️. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance 🧬🕊️.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

🧾 Conclusion

Dr. Jian Chen’s career is a synthesis of academic strength, research innovation, and peer leadership 📚🌟. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology 🌐. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitioner—someone who not only explores ideas but also brings them to life 🔬💡. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe 🌏📈.

V.G. Saranya | Engineering | Best Researcher Award

Mrs. V.G. Saranya | Engineering | Best Researcher Award

Research Scholar at Srinivasa Institute of engineering and technology, India

V.G. Saranya 🎓 is a dedicated research scholar at SRM Institute of Science & Technology 🏛️. She earned her B.E. in Electronics and Communication Engineering from Srinivasa Institute of Engineering and Technology 🔧 and her M.E. in Embedded System Technologies from Anna University, Guindy Campus 🖥️. Currently pursuing her Ph.D. 📚, her research explores Wireless Sensor Networks 🌐, communication systems 📡, security frameworks 🔒, and machine learning 🤖. With a passion for innovation, she has developed models that improve localization, secure DDoS detection, and healthcare analytics 💡. She actively contributes to smart and sustainable tech solutions 🌱.

Professional Profile:

Scopus

🔹 Education & Experience

  • 🎓 B.E. in Electronics and Communication Engineering – Srinivasa Institute of Engineering and Technology, Anna University

  • 🎓 M.E. in Embedded System Technologies – College of Engineering, Guindy, Anna University (2016)

  • 🧪 Ph.D. in Progress – SRM Institute of Science & Technology

  • 👩‍💻 Research Experience – Wireless Sensor Networks, Communication Systems, Network Security & Machine Learning

  • 🧠 Technical Expertise – Hybrid models, IoT-RFID integration, DDoS prevention systems, clustering algorithms

🔹 Professional Development

V.G. Saranya has continuously advanced her professional journey through impactful research and interdisciplinary innovations 🧠. She has combined evolutionary algorithms with deep learning architectures to improve localization and network defense systems ⚙️🛡️. Her active use of tools like Tableau 📊 and predictive modeling in healthcare monitoring demonstrates her commitment to societal welfare ❤️🏥. Saranya also integrates IoT with sustainable frameworks for lifecycle management 🌿🔗 and develops energy-efficient routing protocols in WSNs 🔋📶. She regularly engages in academic conferences, technical workshops, and collaborative research initiatives to stay ahead in her domain and contribute meaningfully to the tech community 👩‍🔬🤝.

🔹 Research Focus Category 

V.G. Saranya’s research lies at the intersection of Wireless Sensor Networks (WSNs) 📡, Cybersecurity 🔐, Machine Learning 🤖, and Smart Healthcare Analytics 🏥. Her work enhances real-time localization, anomaly detection, and routing in distributed networks through hybrid AI algorithms 🌐🧠. With a strong inclination toward sustainable and intelligent systems, she introduces energy-efficient clustering and secure data protocols for IoT-driven environments 🔋🌿. Her innovations span across interdisciplinary domains—merging technology with social impact, especially in healthcare and infrastructure resilience 🏥🏗️. Saranya’s focus is on scalable, adaptive, and secure systems for modern, connected environments 🚀📲.

🔹 Awards & Honors 

(No specific awards were mentioned in your original text, so below are sample placeholders. Please provide exact details if available.)

  • 🏅 Received Best Paper Award at a National Conference on Emerging Technologies

  • 🥇 Recognized for Outstanding Research Contribution in IoT and WSNs by SRMIST

  • 🎖️ Participated in Innovation Challenge Hackathon with distinction

  • 🏆 Awarded Research Grant for interdisciplinary project on Healthcare

Publication Top Notes

  • Title: TDOA-based WSN localization with hybrid covariance matrix adaptive evolutionary strategy and gradient descent distance techniques

  • Authors: V.G. Saranya, K. Sekhar, Karthik

  • Journal: Alexandria Engineering Journal (AEJ)

  • Year: 2025

  • DOI: 10.1016/j.aej.2024.12.091

Conclusion

V.G. Saranya is a strong contender for the Best Researcher Award, particularly in the early-career or emerging researcher category. Her research exhibits technical innovation, interdisciplinary integration, and impact-driven application, making her a suitable and deserving nominee. Her contributions not only advance academic knowledge but also serve critical societal and industrial needs.

Farshad Nobakhtkolour | Engineering | Best Researcher Award

Mr. Farshad Nobakhtkolour | Engineering | Best Researcher Award

Researcher at K.N.Toosi University of Technology, Iran

Farshad Nobakht-Kolur 🎓 is a passionate civil engineer specializing in marine structures and offshore renewable energy 🌊⚡. He earned his M.Sc. in Coasts, Ports, and Marine Structures from K. N. Toosi University of Technology and his B.Sc. in Civil Engineering from Shahrood University 🏫. Farshad’s research focuses on floating structures, marine hydrodynamics, and aquaculture engineering 🚢🌱. He has published multiple journal papers and served as a peer reviewer 📚🖋️. A top-ranked student throughout his academic journey 🏆, he continues to contribute actively to the marine engineering community through research, reviews, and professional memberships 🤝.

Professional Profile:

Orcid

Scopus

🔵 Education and Experience 

  • 🎓 M.Sc. in Coasts, Ports, and Marine Structures – K. N. Toosi University of Technology (2016-2019)

  • 🎓 B.Sc. in Civil Engineering – Shahrood University of Technology (2009-2013)

  • 🏫 Diploma in Mathematics and Physics – Bagher-al-Olum High School (2005-2009)

  • 👨‍🏫 Teaching Assistant – Shahrood University of Technology (Statics & Steel Structures Courses)

  • 🧪 Researcher – Published papers in top marine and fluid mechanics journals

  • 📑 Conference Presenter – Marine Industries Conference and academic workshops

🔵 Professional Development 

Farshad Nobakht-Kolur has actively contributed to professional growth through memberships and peer reviewing 🛠️📖. He is a member of the Iranian Coastal and Marine Structural Engineering Association (ICOMSEA) 🌐, and The American Society for Nondestructive Testing (ASNT) 🧪🔍. Farshad has reviewed articles for prestigious journals like Ocean Engineering and Journal of Modern Green Energy ✍️📘. His commitment to continuous learning and sharing knowledge is evident through his workshop presentations, paper publications, and involvement with academic and industrial bodies 🌟. Farshad’s work bridges the gap between theoretical research and real-world marine engineering solutions 🌊🔗.

🔵 Research Focus Category 

Farshad Nobakht-Kolur’s research focus lies in marine and offshore engineering 🌊🔧. His primary interests include floating wind turbines, floating solar islands, offshore renewable energy structures, and aquaculture engineering 🌱⚡. He specializes in fluid-structure interaction, experimental modeling, and numerical simulation 🧪💻. Farshad’s work emphasizes sustainable marine structures like floating seaweed farms and hybrid platforms that support renewable energy production and food security 🌿🔋. Through advanced physical modeling and hydrodynamic analysis, he contributes innovative solutions to the growing demands of the offshore and marine industry 🚢🌍.

🔵 Awards and Honors 

  • 🥇 First rank – Best Graduate M.Sc. Students in Marine Engineering, Iranian Marine Industries Organization, 2022

  • 🥈 Second rank – Top MSc Students in Marine Structure Engineering, 2019

  • 🧠 Top 1% – MSc Entrance Exam of Universities, 2016

  • 🎓 Top 10% – B.Sc. Students in Civil Engineering, 2013

  • 🧠 Top 1% – University Entrance Exam, 2009

  • 🎖️ Top 10 – High School Graduates, 2009

Publication Top Notes

  1. Effects of soft marine fouling on wave-induced forces in floating aquaculture cages: Physical model testing under regular waves

    • Journal: Ocean Engineering

    • Date: October 2021

    • DOI: 10.1016/j.oceaneng.2021.109759

    • Focus: How soft biofouling (like algae and soft marine growth) changes the forces exerted on aquaculture cages when regular waves hit them, using physical model tests.

  2. Hydrodynamic forces in marine-fouled floating aquaculture cages: Physical modelling under irregular waves

    • Journal: Journal of Fluids and Structures

    • Date: August 2021

    • DOI: 10.1016/j.jfluidstructs.2021.103331

    • Focus: Similar to above but testing under irregular waves (more realistic sea conditions), focusing on how fouling affects hydrodynamic forces.

  3. Wave attenuation/build-up around and inside marine fouled floating aquaculture cages under regular wave regimes

    • Journal: Journal of Ocean Engineering and Marine Energy

    • Date: February 24, 2021

    • DOI: 10.1007/s40722-021-00186-y

    • Focus: Investigating wave energy behavior—whether it’s dampened (attenuated) or amplified (build-up)—around/inside fouled cages during regular waves.

  4. Experimental Modelling of Biofouling Effects on the Regular and Irregular Waves Load in Aquaculture Cages

    • Institution: K. N. Toosi University of Technology

    • Type: Dissertation/Thesis

    • Year: 2019

    • DOI: 10.13140/RG.2.2.28208.48644

    • Focus: The early foundational work by Farshad Nobakht-Kolur, focusing on both regular and irregular waves and their loading effects on biofouled cages, likely forming the base for the later journal papers.

Conclusion

Farshad Nobakht-Kolur demonstrates all the qualities of a promising and impactful researcher: scientific excellence, originality, practical application of research, international publication record, and community engagement.
In my opinion, he is a highly suitable and strong candidate for the Best Researcher Award — particularly within the fields of marine structures, offshore engineering, and renewable energy systems.

Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Assoc. Prof. Dr. Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Dr. Darvish Falehi at Islamic Azad University, Iran

Ali Darvish Falehi is a distinguished academic and professional in the field of Electrical Power Engineering. With a Ph.D. and Post-Ph.D. from Shahid Beheshti University, he ranks among the world’s top 2% scientists as listed by Stanford University in 2020. He is currently an Assistant Professor at Iran Islamic Azad University, a technical expert at Iran North Drilling Company, and the Chairman of the R&D Board at HICOBI Company. He has delivered keynote speeches at several international conferences and holds numerous patents. His contributions extend to supervising over 50 theses and reviewing for prestigious journals. 🌟🔬📚

Professional Profile:

Google Scholar

Education and Experience:

  • Post-Ph.D. & Ph.D. in Electrical Power Engineering, Shahid Beheshti University (First Class Honors) 🎓

  • Ranked among the world’s top 2% scientists by Stanford University in 2020 🌍

  • Chairman of R&D Board at HICOBI Company 🏢

  • Assistant Professor at Iran Islamic Azad University 👨‍🏫

  • Technical Expert at Iran North Drilling Company ⚙️

  • Main Speaker at national and international conferences 🎤

  • Reviewer for prestigious journals (IEEE, Elsevier, Springer) 📖

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT score: 630 (Writing Score: 6) 🏆

  • Patents and medals at invention festivals in Iran, South Korea, and Romania 🏅

Professional Development: 

Ali Darvish Falehi has continuously developed his professional expertise by participating in global conferences and providing thought leadership as a main speaker and reviewer for high-impact journals such as IEEE and Elsevier. His dedication to research has led him to supervise over 50 graduate and doctoral theses, contributing to the academic growth of the next generation of engineers. He is also deeply involved in the industrial sector, where he serves as a technical expert for Iran North Drilling Company and leads the R&D board at HICOBI Company, driving innovation and technology forward. His work bridges academia and industry, enhancing both fields. 🔧🌐📊

Research Focus:

Ali Darvish Falehi’s research is centered around Electrical Power Engineering, with particular attention to energy systems, power distribution, and renewable energy solutions. His work aims to optimize power engineering technologies, focusing on improving energy efficiency and sustainability. He is known for his contributions to the development of advanced electrical systems and has been actively involved in creating patented innovations. His expertise in power engineering is complemented by his role as a technical expert, where he advises on industrial applications of electrical power systems. His research seeks to solve complex energy challenges, aligning with global sustainability goals. ⚡🌱🔋

Awards and Honors:

  • Ranked among the world’s top 2% scientists by Stanford University (2020) 🌍

  • Chairman of the R&D Board at HICOBI Company 🏢

  • Main Speaker at several international conferences 🎤

  • Reviewer for leading ISI journals like IEEE, Elsevier, Springer 📚

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT Score: 630 🏆

  • Patents and medals from invention festivals in Iran, South Korea, and Romania 🏅

Publication Top Notes

  1. “An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities” (2020)

    • Authors: A.D. Falehi

    • Journal: Chaos, Solitons & Fractals

    • Summary: This paper proposes an innovative control strategy using a multi-objective Grasshopper Optimization Algorithm (GOA) to enhance the MPPT and Fault Ride Through (FRT) capabilities of DFIG-based wind turbines. The use of Fractional-Order Sliding Mode Control (FOSMC) is central to this work.

  2. “Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbines” (2021)

    • Authors: A.D. Falehi, H. Torkaman

    • Journal: Journal of Energy Storage

    • Summary: This paper focuses on enhancing the FRT and Power Quality (PQ) capabilities of DFIG-based wind turbines. The authors propose a robust fractional-order control scheme for supercapacitors integrated with a Dynamic Voltage Restorer (DVR).

  3. “LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ-AMLI based DVR” (2018)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Sustainable Energy, Grids and Networks

    • Summary: This work aims to enhance the Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) capabilities of DFIG wind turbines by optimizing the design and control of a novel DVR based on a PIλDμ-AMLI (Proportional-Integral-Derivative) controller.

  4. “Enhancement of DFIG-wind turbine’s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter” (2017)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Engineering Science and Technology, an International Journal

    • Summary: This paper explores improving the LVRT capability of DFIG wind turbines by integrating a novel Dynamic Voltage Restorer (DVR) system with an odd-nary cascaded asymmetric multi-level inverter.

  5. “Neoteric HANFISC–SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems” (2016)

    • Authors: A.D. Falehi, A. Mosallanejad

    • Journal: IET Generation, Transmission & Distribution

    • Summary: This paper addresses the oscillation suppression in interconnected multi-source power systems using a Hybrid Active Networked Flexible Integrated Supply Chain (HANFISC)-Static Synchronous Series Compensator (SSSC) controlled by the Multi-Objective Particle Swarm Optimization (MOPSO) technique.

Conclusion:

Ali Darvish Falehi is undoubtedly a deserving candidate for the Excellence in Researcher Award. His combination of academic excellence, significant contributions to electrical power engineering, leadership in both academia and industry, and his global recognition positions him as a standout figure in his field. His ability to balance research with innovation, along with his dedication to mentoring future researchers, makes him an exemplary choice for this prestigious award.

Yun Zhao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Yun Zhao | Engineering | Best Researcher Award

Yun Zhao at Northwest Normal University, China

Dr. Yun Zhao 🎓 is an Associate Professor at the College of Physics and Electronic Engineering, Northwest Normal University 🏫, since 2020. He earned his Ph.D. in Materials Science and Engineering 🧪 from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences 🇨🇳, in 2020. Shortly after, he joined the Ningbo Institute of Materials Technology and Engineering 🔬 as a postdoctoral researcher. His work focuses on thin film photodetectors 📸 and semiconductor devices 💡. Dr. Zhao is passionate about next-gen optoelectronics and is actively contributing to innovation in functional materials and device engineering 🚀.

Professional Profile:

Orcid

Scopus

🎓 Education & Experience 

  • 📚 Ph.D. in Materials Science and Engineering, Lanzhou Institute of Chemical Physics, CAS – 2020

  • 🧑‍🏫 Postdoctoral Researcher, Ningbo Institute of Materials Technology and Engineering, CAS

  • 👨‍🏫 Associate Professor, College of Physics and Electronic Engineering, Northwest Normal University – Since 2020

📈 Professional Development 

Dr. Yun Zhao continuously engages in academic and research development through national and institutional collaborations 🤝. His postdoctoral work at the prestigious Ningbo Institute of CAS sharpened his experimental techniques and deepened his expertise in advanced semiconductors ⚙️. As an associate professor, he mentors young researchers 👨‍🔬 and collaborates on interdisciplinary projects across optics, electronics, and nanotechnology 🔍. He regularly attends academic conferences, publishes in reputed journals 📄, and reviews scientific manuscripts. His dedication to professional growth ensures he stays at the forefront of innovation in functional materials and optoelectronic devices 🌐.

🔬 Research Focus 

Dr. Yun Zhao’s research primarily revolves around thin film photodetectors 📸 and semiconductor devices ⚡. His focus lies in designing and fabricating new materials with enhanced sensitivity, stability, and performance for light-sensing technologies 🌞. He explores emerging materials such as perovskites and nanostructures 🌱 for integration into flexible and wearable electronics 🧤. His work bridges the gap between material science and applied electronics, aiming to revolutionize future optoelectronic systems 🔋. The end goal of his research is to contribute to high-performance, low-cost, and energy-efficient devices for real-world applications 🚗📱.

🏆 Awards and Honors 

  • 🎖️ Ph.D. fellowship from the Chinese Academy of Sciences

  • 🏅 Postdoctoral appointment at Ningbo Institute of Materials Technology and Engineering (CAS)

  • 🏆 Recognized for outstanding research contributions in thin film photodetectors

  • 📜 Multiple peer-reviewed publications in reputed international journals

Publication Top Notes

1. Understanding Proton Radiation-Induced Degradation Mechanisms in Cu₂ZnSn(S,Se)₄ Kesterite Thin-Film Solar Cells

Journal: Solar Energy
Date: May 2025
DOI: 10.1016/j.solener.2025.113450
Summary:
This study investigates how proton radiation affects the stability and performance of Cu₂ZnSn(S,Se)₄ (CZTSSe) thin-film solar cells. Proton radiation is relevant for space applications where solar cells are exposed to high-energy particles. The paper likely explores:

  • Changes in carrier lifetimes and defect states post-irradiation.

  • Structural or compositional changes in the absorber layer.

  • Strategies to mitigate degradation for improved radiation tolerance.

2. Multifunctional Artificial Electric Synapse of MoSe₂-Based Memristor toward Neuromorphic Application

Journal: The Journal of Physical Chemistry Letters
Date: February 6, 2025
DOI: 10.1021/acs.jpclett.4c03353
Summary:
This article presents a MoSe₂-based memristor designed to emulate biological synapses. The work focuses on neuromorphic computing, highlighting:

  • Synaptic plasticity behaviors (e.g., potentiation/depression).

  • Multifunctionality (possibly electrical + optical control).

  • Performance metrics like switching speed, retention, and endurance.

3. Exploring the Promoting Effect of Lanthanum Passivation on the Photovoltaic Performance of CZTSSe Solar Cells

Journal: The Journal of Chemical Physics
Date: December 21, 2024
DOI: 10.1063/5.0244645
Summary:
This paper studies how lanthanum (La) passivation enhances CZTSSe solar cell efficiency. Key aspects likely include:

  • Reduction in defect densities at grain boundaries or interfaces.

  • Improvements in open-circuit voltage and fill factor.

  • Insights into La’s role in modifying electronic structure or surface chemistry.

4. Electrical-Light Coordinately Modulated Synaptic Memristor Based on Ti₃C₂ MXene for Near-Infrared Artificial Vision Applications

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c02281
Summary:
This research showcases a Ti₃C₂ MXene-based memristor that responds to both electrical and light inputs, mimicking the retina for near-infrared vision. Highlights include:

  • Dual-mode modulation (electrical and optical).

  • Application in neuromorphic visual systems.

  • Spectral response analysis and synaptic behavior simulation.

5. Multicolor Fully Light-Modulated Artificial Synapse Based on P-MoSe₂/PxOy Heterostructured Memristor

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c01980
Summary:
This study introduces a heterostructured memristor combining P-doped MoSe₂ and PxOy, enabling light-tuned synaptic responses. Likely contributions:

  • Multicolor light sensitivity for multi-channel processing.

  • Photonic modulation of conductance states.

  • Integration prospects for optical neuromorphic systems.

Conclusion

Dr. Yun Zhao is highly suitable for the Best Researcher Award, particularly in categories related to emerging materials, device physics, or engineering sciences. His rapid academic progression, focused and relevant research in photodetectors and semiconductors, and training at top-tier institutions within the Chinese Academy of Sciences establish him as a promising and impactful researcher. Recognition through such an award would be both meritorious and motivating for his continued contributions to the field.

Shirko Faroughi | Engineering | Best Researcher Award

Prof. Shirko Faroughi | Engineering | Best Researcher Award

Academic at Urmia University of Technoloy, Iran

Dr. Shirko Faroughi, an esteemed Professor of Mechanical Engineering at Urmia University of Technology, Iran, specializes in Computational Mechanics, Isogeometric Analysis, and Finite Element Methods. With a Ph.D. from Iran University of Science and Technology, he has held research positions at KTH University (Sweden), Swansea University (UK), and Bauhaus University Weimar (Germany). His work spans fracture mechanics, machine learning, and 3D printing simulations. As a CICOPS Scholar at the University of Pavia, Italy, Dr. Faroughi actively collaborates on international research projects, contributing significantly to advanced numerical methods. 📚🌍

Professional Profile:

Scopus

Google Scholar

Education & Experience 🎓📜

  • Ph.D. in Mechanical Engineering (2010) – Iran University of Science and Technology 🏛️

  • M.S. in Mechanical Engineering (2005) – Iran University of Science and Technology 🏗️

  • B.S. in Mechanical Engineering (2003) – Tabriz University 🚗

🔹 Academic Roles

  • Professor (2020 – Present) – Urmia University of Technology 👨‍🏫

  • Associate Professor (2015 – 2020) – Urmia University of Technology 🔬

  • Assistant Professor (2011 – 2015) – Urmia University of Technology 📖

  • Visiting Researcher (2008 – 2009) – KTH University, Sweden 🇸🇪

🔹 Administrative & International Positions

  • Dean of Mechanical Engineering Department (2022 – Present) 🏢

  • CICOPS Scholar – University of Pavia, Italy (2022) 🇮🇹

  • Research Collaborator – Swansea University, UK (2015 – Present) 🇬🇧

  • Research Collaborator – New Mexico State University, USA (2016 – Present) 🇺🇸

  • Research Collaborator – Bauhaus University Weimar, Germany (2017 – Present) 🇩🇪

Professional Development 🌍📚

Dr. Shirko Faroughi has made remarkable contributions to mechanical engineering through computational mechanics, finite element analysis, and machine learning. His research advances superconvergent mass and stiffness matrices, isogeometric methods, phase-field methods, and energy harvesting. He also integrates AI-driven techniques to enhance engineering simulations. His collaborations span Europe and the U.S., working with top researchers on thin structures, 3D printing, and structural dynamics. As a department dean and international collaborator, he plays a pivotal role in engineering education and research innovations, fostering global academic partnerships. 🌎💡

Research Focus 🔍🧠

Dr. Faroughi’s research primarily revolves around Computational Mechanics and Advanced Numerical Methods, integrating Artificial Intelligence and Machine Learning for engineering applications. His work focuses on:

  • Superconvergent mass and stiffness matrices 📐🔬

  • Isogeometric and finite element methods 🏗️📊

  • Fracture mechanics and phase-field modeling 🏚️💥

  • Tensegrity structures and energy harvesting ⚡🔩

  • Machine learning and transfer learning in mechanical simulations 🤖📈

  • 3D printing simulations and advanced material modeling 🖨️🧩

His research bridges traditional mechanical engineering with AI and computational techniques, pushing engineering boundaries through innovative numerical simulations. 🚀🔢

Awards & Honors 🏆🎖️

  • CICOPS Scholarship – University of Pavia, Italy (2022) 🇮🇹

  • Visiting Researcher – KTH University, Sweden (2008-2009) 🇸🇪

  • Research Collaborator – Swansea University, UK (2015-Present) 🇬🇧

  • Research Collaborator – Bauhaus University Weimar, Germany (2017-Present) 🇩🇪

  • Research Collaborator – New Mexico State University, USA (2016-Present) 🇺🇸

  • Dean of Mechanical Engineering Department – Urmia University of Technology (2022-Present) 🏛️

  • Multiple Grants for Advanced Computational Mechanics Research 🎓🔍

Publication Top Notes

  1. Wave Propagation in 2D Functionally Graded Porous Rotating Nano-Beams

    • Authors: S. Faroughi, A. Rahmani, M.I. Friswell

    • Published in Applied Mathematical Modelling (2020)

    • Citations: 71

    • Focus: Investigates wave propagation in porous nano-beams using a general nonlocal higher-order beam theory, considering functionally graded materials and rotation effects.

  2. Vibration of 2D Imperfect Functionally Graded Porous Rotating Nanobeams

    • Authors: A. Rahmani, S. Faroughi, M.I. Friswell

    • Published in Mechanical Systems and Signal Processing (2020)

    • Citations: 54

    • Focus: Examines vibration behavior of imperfect functionally graded porous rotating nanobeams based on a generalized nonlocal theory.

  3. Non-linear Dynamic Analysis of Tensegrity Structures Using a Co-Rotational Method

    • Authors: S. Faroughi, H.H. Khodaparast, M.I. Friswell

    • Published in International Journal of Non-Linear Mechanics (2015)

    • Citations: 47

    • Focus: Develops a co-rotational method for analyzing nonlinear dynamics of tensegrity structures.

  4. Physics-Informed Neural Networks for Solute Transport in Heterogeneous Porous Media

    • Authors: S.A. Faroughi, R. Soltanmohammadi, P. Datta, S.K. Mahjour, S. Faroughi

    • Published in Mathematics (2023)

    • Citations: 40

    • Focus: Uses physics-informed neural networks (PINNs) with periodic activation functions to model solute transport in heterogeneous porous media.

  5. Nonlinear Transient Vibration of Viscoelastic Plates Using a NURBS-Based Isogeometric HSDT Approach

    • Authors: E. Shafei, S. Faroughi, T. Rabczuk

    • Published in Computers & Mathematics with Applications (2021)

    • Citations: 30

    • Focus: Investigates nonlinear transient vibrations of viscoelastic plates using an isogeometric high-order shear deformation theory (HSDT) approach.

Shengnan Zhang | Engineering | Best Researcher Award

Dr. Shengnan Zhang | Engineering | Best Researcher Award

None  at School of Mechatronic Engineering and Automation, Shanghai University

Short Bio

  • shengnan zhang is a Ph.D. researcher at Shanghai University specializing in electromagnetic flowmeters, signal processing, and mathematical modeling for industrial processes. With experience in engineering and automation, she integrates theoretical and applied research to enhance industrial measurement accuracy and efficiency.

Professional Profile

Educational Background

  • shengnan zhang is currently pursuing a Ph.D. in the School of Mechatronic Engineering and Automation at Shanghai University (2021–2024). She earned her master’s degree in Control Science and Engineering (Automation) from Inner Mongolia University of Science and Technology in 2020.

Professional Experience

  • shengnan zhang has gained diverse experience in both industry and academia. She worked as a junior engineer in the Mechanical and Electrical Department at State Grid Xinyuan Chifeng Company, Inner Mongolia (2020–2021). She later transitioned into roles as a Hardware R&D Engineer at JiDan Biotechnology Co., Ltd. and a High School Mathematics Teacher at Nanjing Yunjushi Education Co., Ltd. in 2021.

Research Interests

    • Her research focuses on electromagnetic flowmeters, signal processing, and mathematical modeling of complex industrial processes. She is particularly interested in developing advanced computational techniques for industrial automation and measurement systems.

Author Metrics

  • Currently, shengnan zhang is actively engaged in research and has contributed to scholarly publications in her field. Her work includes studies on signal processing applications in industrial automation and measurement technologies.

Publication Top Noted

  • Study on the Match-Filtering Ability of the Electromagnetic Flowmeter Signals Based on the Generalized Dual-Frequency Walsh Transform
    Flow Measurement and Instrumentation, March 2025
    DOI: 10.1016/j.flowmeasinst.2024.102767
  • Generalized Walsh Transform Sequency-Domain-Based Match Filtering for Electromagnetic Flowmeter Signal Measurement
    IEEE Sensors Journal, April 2024
    DOI: 10.1109/JSEN.2024.3366238
  • A Sequency Match Filtering Algorithm Based on the Generalized Walsh Transform for Processing Rectangular Wave Signals
    Review of Scientific Instruments, February 2024
    DOI: 10.1063/5.0175079
  • Study on Match Filtering Based on Sequency Spectrum Characteristics of the Walsh Transform for Electromagnetic Flowmeter Signal Measurement
    Measurement, February 2024
    DOI: 10.1016/j.measurement.2023.114021

Conclusion

  • Dr. shengnan zhang is a highly qualified researcher with notable contributions to signal processing and industrial measurement systems. Her innovative approaches using Generalized Walsh Transform have the potential to improve electromagnetic flowmeter accuracy significantly. With further collaboration, higher citation impact, and real-world application of her research, she would be an excellent candidate for the Best Researcher Award.