Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia at University of Sistan and Baluchestan, Iran

Dr. Ehsan Adibnia 🎓 is a dedicated academic researcher in electrical engineering ⚡, specializing in cutting-edge fields such as artificial intelligence 🤖, machine learning 📊, deep learning 🧠, nanophotonics 💡, optics 🔬, and plasmonics ✨. He is proficient in Python 🐍, MATLAB 🧮, and Visual Basic, and utilizes simulation tools like Lumerical 📈, COMSOL 🧪, and RSoft 🔧 to drive innovative research. Fluent in English 🇬🇧 and Persian 🇮🇷, Dr. Adibnia contributes to academic conferences and peer-reviewed journals 📚. He is currently pursuing his Ph.D. and actively engaged in interdisciplinary scientific exploration 🌐.

Professional Profile:

Orcid

Scopus

Google Scholar

🔹 Education & Experience 

🎓 Ph.D. in Electrical Engineering – University of Sistan and Baluchestan, Zahedan, Iran (Expected 2025)
🎓 B.S. in Electrical Engineering – University of Sistan and Baluchestan, Zahedan, Iran (2014)
🧑‍💼 Executive Committee Member – 27th Iranian Conference on Optics and Photonics & 13th Conference on Photonic Engineering and Technology
🖋️ Assistant Editor – International Journal (Name not specified)
🔍 Researcher – Actively engaged in interdisciplinary AI & photonics research projects

🔹 Professional Development 

Dr. Ehsan Adibnia continually enhances his professional growth through active participation in conferences 🧑‍🏫, committee leadership 🗂️, and editorial work 📑. He develops algorithms and conducts simulations using advanced tools such as Lumerical 🔬, COMSOL 🧪, and RSoft 💻. His expertise in AI and photonics drives innovative research and collaboration 🌍. He also hones his programming skills in MATLAB 🧮, Python 🐍, and VBA 🧠, ensuring precision in modeling and data analysis. His hands-on knowledge in PLC systems 🤖 and industrial automation makes him versatile across both academic and applied research settings 🏭.

🔹 Research Focus 

Dr. Adibnia’s research focuses on the fusion of artificial intelligence 🤖 and photonics 💡. His work explores machine learning 📊, deep learning 🧠, nanophotonics 🔬, plasmonics ✨, optical switching 🔁, and slow light 🐢 technologies. He is particularly interested in leveraging these technologies in biosensors 🧫, metamaterials 🔷, and quantum optics ⚛️. Through simulation and algorithm development, he aims to optimize performance in optoelectronic and photonic systems 🔍. His interdisciplinary research bridges electrical engineering with physics and AI, creating advanced systems for diagnostics, sensing, and smart environments 🌐.

🔹 Awards & Honors 

🏅 Executive Committee Role – 27th Iranian Conference on Optics and Photonics
🏅 Executive Committee Role – 13th Iranian Conference on Photonic Engineering and Technology
📜 Assistant Editor – International scientific journal (name not specified)
🧠 Scopus-indexed Researcher – Scopus ID: 58485414000

Publication Top Notes

🔹 High-performance and compact photonic crystal channel drop filter using P-shaped ring resonator

  • Journal: Results in Optics

  • Date: Dec 2025

  • DOI: 10.1016/j.rio.2025.100817

  • Summary: Proposes a novel P-shaped ring resonator design for channel drop filters in photonic crystal structures. Focuses on achieving high performance in terms of compactness and spectral selectivity for integrated optical circuits.

🔹 Optimizing Few-Mode Erbium-Doped Fiber Amplifiers for high-capacity optical networks using a multi-objective optimization algorithm

  • Journal: Optical Fiber Technology

  • Date: Sep 2025

  • DOI: 10.1016/j.yofte.2025.104186

  • Summary: Introduces a multi-objective optimization approach for designing few-mode EDFAs, targeting performance improvements in next-gen high-capacity optical networks.

🔹 Inverse design of octagonal plasmonic structure for switching using deep learning

  • Journal: Results in Physics

  • Date: Apr 2025

  • DOI: 10.1016/j.rinp.2025.108197

  • Summary: Utilizes deep learning for the inverse design of an octagonal plasmonic structure used in optical switching, demonstrating enhanced precision and compact design capability.

🔹 Chirped apodized fiber Bragg gratings inverse design via deep learning

  • Journal: Optics & Laser Technology

  • Date: 2025

  • DOI: 10.1016/J.OPTLASTEC.2024.111766

  • WOS UID: WOS:001311493000001

  • Summary: Applies deep learning to the inverse design of chirped apodized fiber Bragg gratings, optimizing the spectral characteristics for filtering and sensing applications.

🔹 Inverse Design of FBG-Based Optical Filters Using Deep Learning: A Hybrid CNN-MLP Approach

  • Journal: Journal of Lightwave Technology

  • Date: 2025

  • DOI: 10.1109/JLT.2025.3534275

  • Summary: Proposes a hybrid CNN-MLP architecture to design fiber Bragg grating (FBG) optical filters, improving accuracy and speed in the inverse design process using deep learning techniques.

Conclusion

Dr. Adibnia is still in the process of completing his Ph.D., his broad technical expertise, multidisciplinary research focus, early academic leadership roles, and active participation in both national and international platforms make him a highly promising candidate for the Best Academic Researcher Award in the early-career researcher or emerging researcher category.

Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Assoc. Prof. Dr. Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Dr. Darvish Falehi at Islamic Azad University, Iran

Ali Darvish Falehi is a distinguished academic and professional in the field of Electrical Power Engineering. With a Ph.D. and Post-Ph.D. from Shahid Beheshti University, he ranks among the world’s top 2% scientists as listed by Stanford University in 2020. He is currently an Assistant Professor at Iran Islamic Azad University, a technical expert at Iran North Drilling Company, and the Chairman of the R&D Board at HICOBI Company. He has delivered keynote speeches at several international conferences and holds numerous patents. His contributions extend to supervising over 50 theses and reviewing for prestigious journals. 🌟🔬📚

Professional Profile:

Google Scholar

Education and Experience:

  • Post-Ph.D. & Ph.D. in Electrical Power Engineering, Shahid Beheshti University (First Class Honors) 🎓

  • Ranked among the world’s top 2% scientists by Stanford University in 2020 🌍

  • Chairman of R&D Board at HICOBI Company 🏢

  • Assistant Professor at Iran Islamic Azad University 👨‍🏫

  • Technical Expert at Iran North Drilling Company ⚙️

  • Main Speaker at national and international conferences 🎤

  • Reviewer for prestigious journals (IEEE, Elsevier, Springer) 📖

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT score: 630 (Writing Score: 6) 🏆

  • Patents and medals at invention festivals in Iran, South Korea, and Romania 🏅

Professional Development: 

Ali Darvish Falehi has continuously developed his professional expertise by participating in global conferences and providing thought leadership as a main speaker and reviewer for high-impact journals such as IEEE and Elsevier. His dedication to research has led him to supervise over 50 graduate and doctoral theses, contributing to the academic growth of the next generation of engineers. He is also deeply involved in the industrial sector, where he serves as a technical expert for Iran North Drilling Company and leads the R&D board at HICOBI Company, driving innovation and technology forward. His work bridges academia and industry, enhancing both fields. 🔧🌐📊

Research Focus:

Ali Darvish Falehi’s research is centered around Electrical Power Engineering, with particular attention to energy systems, power distribution, and renewable energy solutions. His work aims to optimize power engineering technologies, focusing on improving energy efficiency and sustainability. He is known for his contributions to the development of advanced electrical systems and has been actively involved in creating patented innovations. His expertise in power engineering is complemented by his role as a technical expert, where he advises on industrial applications of electrical power systems. His research seeks to solve complex energy challenges, aligning with global sustainability goals. ⚡🌱🔋

Awards and Honors:

  • Ranked among the world’s top 2% scientists by Stanford University (2020) 🌍

  • Chairman of the R&D Board at HICOBI Company 🏢

  • Main Speaker at several international conferences 🎤

  • Reviewer for leading ISI journals like IEEE, Elsevier, Springer 📚

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses 📝

  • TOEFL-PBT Score: 630 🏆

  • Patents and medals from invention festivals in Iran, South Korea, and Romania 🏅

Publication Top Notes

  1. “An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities” (2020)

    • Authors: A.D. Falehi

    • Journal: Chaos, Solitons & Fractals

    • Summary: This paper proposes an innovative control strategy using a multi-objective Grasshopper Optimization Algorithm (GOA) to enhance the MPPT and Fault Ride Through (FRT) capabilities of DFIG-based wind turbines. The use of Fractional-Order Sliding Mode Control (FOSMC) is central to this work.

  2. “Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbines” (2021)

    • Authors: A.D. Falehi, H. Torkaman

    • Journal: Journal of Energy Storage

    • Summary: This paper focuses on enhancing the FRT and Power Quality (PQ) capabilities of DFIG-based wind turbines. The authors propose a robust fractional-order control scheme for supercapacitors integrated with a Dynamic Voltage Restorer (DVR).

  3. “LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIλDμ-AMLI based DVR” (2018)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Sustainable Energy, Grids and Networks

    • Summary: This work aims to enhance the Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) capabilities of DFIG wind turbines by optimizing the design and control of a novel DVR based on a PIλDμ-AMLI (Proportional-Integral-Derivative) controller.

  4. “Enhancement of DFIG-wind turbine’s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter” (2017)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Engineering Science and Technology, an International Journal

    • Summary: This paper explores improving the LVRT capability of DFIG wind turbines by integrating a novel Dynamic Voltage Restorer (DVR) system with an odd-nary cascaded asymmetric multi-level inverter.

  5. “Neoteric HANFISC–SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems” (2016)

    • Authors: A.D. Falehi, A. Mosallanejad

    • Journal: IET Generation, Transmission & Distribution

    • Summary: This paper addresses the oscillation suppression in interconnected multi-source power systems using a Hybrid Active Networked Flexible Integrated Supply Chain (HANFISC)-Static Synchronous Series Compensator (SSSC) controlled by the Multi-Objective Particle Swarm Optimization (MOPSO) technique.

Conclusion:

Ali Darvish Falehi is undoubtedly a deserving candidate for the Excellence in Researcher Award. His combination of academic excellence, significant contributions to electrical power engineering, leadership in both academia and industry, and his global recognition positions him as a standout figure in his field. His ability to balance research with innovation, along with his dedication to mentoring future researchers, makes him an exemplary choice for this prestigious award.

Shirko Faroughi | Engineering | Best Researcher Award

Prof. Shirko Faroughi | Engineering | Best Researcher Award

Academic at Urmia University of Technoloy, Iran

Dr. Shirko Faroughi, an esteemed Professor of Mechanical Engineering at Urmia University of Technology, Iran, specializes in Computational Mechanics, Isogeometric Analysis, and Finite Element Methods. With a Ph.D. from Iran University of Science and Technology, he has held research positions at KTH University (Sweden), Swansea University (UK), and Bauhaus University Weimar (Germany). His work spans fracture mechanics, machine learning, and 3D printing simulations. As a CICOPS Scholar at the University of Pavia, Italy, Dr. Faroughi actively collaborates on international research projects, contributing significantly to advanced numerical methods. 📚🌍

Professional Profile:

Scopus

Google Scholar

Education & Experience 🎓📜

  • Ph.D. in Mechanical Engineering (2010) – Iran University of Science and Technology 🏛️

  • M.S. in Mechanical Engineering (2005) – Iran University of Science and Technology 🏗️

  • B.S. in Mechanical Engineering (2003) – Tabriz University 🚗

🔹 Academic Roles

  • Professor (2020 – Present) – Urmia University of Technology 👨‍🏫

  • Associate Professor (2015 – 2020) – Urmia University of Technology 🔬

  • Assistant Professor (2011 – 2015) – Urmia University of Technology 📖

  • Visiting Researcher (2008 – 2009) – KTH University, Sweden 🇸🇪

🔹 Administrative & International Positions

  • Dean of Mechanical Engineering Department (2022 – Present) 🏢

  • CICOPS Scholar – University of Pavia, Italy (2022) 🇮🇹

  • Research Collaborator – Swansea University, UK (2015 – Present) 🇬🇧

  • Research Collaborator – New Mexico State University, USA (2016 – Present) 🇺🇸

  • Research Collaborator – Bauhaus University Weimar, Germany (2017 – Present) 🇩🇪

Professional Development 🌍📚

Dr. Shirko Faroughi has made remarkable contributions to mechanical engineering through computational mechanics, finite element analysis, and machine learning. His research advances superconvergent mass and stiffness matrices, isogeometric methods, phase-field methods, and energy harvesting. He also integrates AI-driven techniques to enhance engineering simulations. His collaborations span Europe and the U.S., working with top researchers on thin structures, 3D printing, and structural dynamics. As a department dean and international collaborator, he plays a pivotal role in engineering education and research innovations, fostering global academic partnerships. 🌎💡

Research Focus 🔍🧠

Dr. Faroughi’s research primarily revolves around Computational Mechanics and Advanced Numerical Methods, integrating Artificial Intelligence and Machine Learning for engineering applications. His work focuses on:

  • Superconvergent mass and stiffness matrices 📐🔬

  • Isogeometric and finite element methods 🏗️📊

  • Fracture mechanics and phase-field modeling 🏚️💥

  • Tensegrity structures and energy harvesting ⚡🔩

  • Machine learning and transfer learning in mechanical simulations 🤖📈

  • 3D printing simulations and advanced material modeling 🖨️🧩

His research bridges traditional mechanical engineering with AI and computational techniques, pushing engineering boundaries through innovative numerical simulations. 🚀🔢

Awards & Honors 🏆🎖️

  • CICOPS Scholarship – University of Pavia, Italy (2022) 🇮🇹

  • Visiting Researcher – KTH University, Sweden (2008-2009) 🇸🇪

  • Research Collaborator – Swansea University, UK (2015-Present) 🇬🇧

  • Research Collaborator – Bauhaus University Weimar, Germany (2017-Present) 🇩🇪

  • Research Collaborator – New Mexico State University, USA (2016-Present) 🇺🇸

  • Dean of Mechanical Engineering Department – Urmia University of Technology (2022-Present) 🏛️

  • Multiple Grants for Advanced Computational Mechanics Research 🎓🔍

Publication Top Notes

  1. Wave Propagation in 2D Functionally Graded Porous Rotating Nano-Beams

    • Authors: S. Faroughi, A. Rahmani, M.I. Friswell

    • Published in Applied Mathematical Modelling (2020)

    • Citations: 71

    • Focus: Investigates wave propagation in porous nano-beams using a general nonlocal higher-order beam theory, considering functionally graded materials and rotation effects.

  2. Vibration of 2D Imperfect Functionally Graded Porous Rotating Nanobeams

    • Authors: A. Rahmani, S. Faroughi, M.I. Friswell

    • Published in Mechanical Systems and Signal Processing (2020)

    • Citations: 54

    • Focus: Examines vibration behavior of imperfect functionally graded porous rotating nanobeams based on a generalized nonlocal theory.

  3. Non-linear Dynamic Analysis of Tensegrity Structures Using a Co-Rotational Method

    • Authors: S. Faroughi, H.H. Khodaparast, M.I. Friswell

    • Published in International Journal of Non-Linear Mechanics (2015)

    • Citations: 47

    • Focus: Develops a co-rotational method for analyzing nonlinear dynamics of tensegrity structures.

  4. Physics-Informed Neural Networks for Solute Transport in Heterogeneous Porous Media

    • Authors: S.A. Faroughi, R. Soltanmohammadi, P. Datta, S.K. Mahjour, S. Faroughi

    • Published in Mathematics (2023)

    • Citations: 40

    • Focus: Uses physics-informed neural networks (PINNs) with periodic activation functions to model solute transport in heterogeneous porous media.

  5. Nonlinear Transient Vibration of Viscoelastic Plates Using a NURBS-Based Isogeometric HSDT Approach

    • Authors: E. Shafei, S. Faroughi, T. Rabczuk

    • Published in Computers & Mathematics with Applications (2021)

    • Citations: 30

    • Focus: Investigates nonlinear transient vibrations of viscoelastic plates using an isogeometric high-order shear deformation theory (HSDT) approach.

Shakil Ahmed | Engineering | Best Researcher Award

Prof. Shakil Ahmed | Engineering | Best Researcher Award

Assistant Processor, Term at Iowa State University, United States

Shakil Ahmed is an Assistant Teaching Professor in Computer Engineering at Iowa State University (ISU), specializing in AI/ML, cybersecurity, IoT, cloud computing, and advanced networking. With a Ph.D. in Computer Engineering from ISU (2023) and over 2,000 citations across 35+ publications, he leads cutting-edge research on AI-driven solutions, digital twins, and quantum networks. As a principal investigator (PI), he mentors undergraduate, MS, and Ph.D. students while actively securing external grants. His expertise spans reinforcement learning, large language models, explainable AI, and meta-learning, contributing to pioneering advancements in next-gen networking and intelligent systems. 🚀🔍

Professional Profile

Education & Experience 📚👨‍🏫

  • Ph.D. in Computer Engineering – Iowa State University (2023) 🎓
  • M.S. in Electrical Engineering – Utah State University (2019) ⚡
  • B.S. in Electrical and Electronic Engineering – Khulna University of Engineering & Technology, Bangladesh (2014) 🏅
  • Assistant Teaching Professor – Iowa State University (2024–Present) 🎓
  • Researcher & PI – Leading projects on AI, 6G, cybersecurity, IoT, and digital twins 🔬
  • Advisor & Mentor – Supervising undergraduate, MS, and Ph.D. students in advanced networking and AI 🧑‍🎓

Professional Development 📈🧠

Shakil Ahmed actively contributes to AI-driven networking, secure systems, and IoT advancements. He plays a vital role in research funding, securing grants exceeding millions of dollars. As a guest editor at MDPI and reviewer for 150+ articles, he ensures high research standards. His teaching experience spans multiple STEM courses, where he integrates hands-on learning tools like Zybooks and Canvas. He has delivered invited talks on next-gen wireless technologies and collaborates with multidisciplinary teams to shape the future of AI, cloud computing, and quantum networking. His work has significantly impacted academia, research, and industry. 🚀🔬📡

Research Focus 🏆🔍

Shakil Ahmed’s research is at the intersection of AI, networking, and cybersecurity, with a focus on:

  • AI/ML & Deep Learning – Reinforcement Learning (RL), Large Language Models (LLM), Explainable AI (XAI) 🤖
  • Cybersecurity & Quantum Networking – Secure network protocols, quantum neural networks (QNN) 🔒
  • IoT & Cloud Computing – System design for connected environments, mobile edge computing ☁️
  • Digital Twin & 6G+ Networks – AI-driven tactile internet, smart infrastructure, and futuristic networking 🌍📡
    His work integrates cutting-edge AI techniques, optimization frameworks, and network simulations to solve real-world challenges.

Awards & Honors 🏅🎖️

  • Professional Development Fund – Iowa State University ($10,000) 💰
  • Presidential Fellowship – Utah State University ($90,000) 🏆
  • Best Paper Award – IEEE International Conference on Informatics, Electronics, and Vision (2016) 🥇
  • Graduate & Professional Student Senate Research Award – ISU ($700) 📜
  • ECpE Department Support Grant – ISU ($600) 🎓
  • Professional Advancement Grant (PAG) – ISU ($400) 🎖️
  • Military Communications Conference Student Travel Grants – 2021 & 2022 ($1,000) ✈️
  • Graduate & Professional Student Council Grant – ISU ($750) 🏅
  • ECE Department Support Grant – Utah State University ($1,000) 🏆

Publication Top Notes

  1. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions

    • Authors: Mostafa Zaman Chowdhury, Md. Shahjalal, Shakil Ahmed, Yeong Min Jang
    • Journal: IEEE Open Journal of the Communications Society
    • Year: 2020
    • Citation: Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957–975.
  2. Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Access
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks. IEEE Access, 8, 21215–21225.
  3. Energy-Efficient UAV Relaying Communications to Serve Ground Nodes

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Communications Letters
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 24(4), 849–852.
  4. Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT

    • Authors: Hao Sun, Qiang Wang, Shakil Ahmed, Rose Hu
    • Conference: IEEE Vehicular Technology Conference (VTC Spring)
    • Year: 2017
    • Citation: Sun, H., Wang, Q., Ahmed, S., & Hu, R. (2017). Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1–5).
  5. A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology

    • Authors: Shakil Ahmed, Md Rashid, Farzana Alam, B. Fakhruddin
    • Conference: 2019 29th International Telecommunication Networks and Applications Conference (ITNAC)
    • Year: 2019
    • Citation: Ahmed, S., Rashid, M., Alam, F., & Fakhruddin, B. (2019). A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 20–25).

 

Svetislav Savovic | Engineering | Best Researcher Award

Prof. Dr. Svetislav Savovic | Engineering | Best Researcher Award

prof. Dr. Svetislav Savovic, University of Kragujevac, Serbia

prof. dr svetislav savovic is a distinguished physicist and professor at the university of kragujevac, serbia. With extensive expertise in optics, computational physics, and nuclear physics, he has contributed significantly to research in photonics, material science, and radiation measurements. He has collaborated with leading international institutions and is actively involved in advancing optical fiber technologies and experimental nuclear physics.

PROFILE

Scopus Profile

Educational Detail

PhD in Physics, university of kragujevac, serbia

MSc in Physics, university of belgrade, serbia

BSc in Physics, university of kragujevac, serbia

Professional Experience

Professor, university of kragujevac, faculty of science, serbia
December 2009 – present

Associate Professor, university of kragujevac, faculty of science, serbia
February 2004 – December 2009

Assistant Professor, university of kragujevac, faculty of science, serbia
September 1997 – February 2004

Visiting Professor/Researcher Positions:

Sapienza University of Rome, Italy (December 2019)

University of Applied Sciences, Leipzig, Germany (June 2018)

Polytechnic University of Hong Kong, Hong Kong (2015-2017, multiple terms)

City University of Hong Kong, Hong Kong (Senior Research Fellow, 3 years, 2000-2019)

Centre Recherche Nucleaires (CRN), Strasbourg, France (May-June 1991)

Aristotle University, Thessaloniki, Greece (Multiple terms, 1990-2009)

International Centre for Theoretical Physics, Trieste, Italy (1988-1990)

University of Poznan and University of Krakow, Poland (September-October 1990)

Teaching Experience

prof. savovic has extensive teaching expertise in the following areas:

Photonics

Metrology

Experimental techniques in physics

Numerical methods and simulations in physics

Informatics and computer programming

Laboratory of modern physics

Biophysics

Atomic physics

Monte-Carlo methods

Nuclear physics

Computational biophysics

Research Interests

Optics and photonics

Computational physics

Monte-Carlo methods

Partial differential equations

Experimental nuclear physics

Radiation measurements

Material science

Research Projects

Computer modeling of deflection-curvature sensors (1999-2000, Hong Kong)

Modal curvature gauge development (2000-2003, Hong Kong)

Mode coupling and power transfer in polymer optical fibers (2005-2009, Hong Kong)

Effects of gamma radiation on step-index plastic optical fibers (2011-2012, Hong Kong)

Advancements in W-type and graded-index plastic optical fibers (2013-2019, Hong Kong)

Characterization and design of photonic crystal fibers (2021-2025, Serbia, Hong Kong, UAE)

Nuclear Physics:

High-energy experimental nuclear physics (1997-2000, Serbia)

Standard Model parameter measurements and new particle searches (2006-2010, CERN, Geneva)

Member of the ATLAS collaboration at CERN (2006-2010)

Mathematics:

Numerical solutions for Stefan problems with accuracy and efficiency emphasis (2002-2003, Hong Kong)

Key Achievements

Long-term international collaborations across Europe and Asia.

Published groundbreaking research in optics and nuclear physics.

Developed innovative optical fiber technologies for sensing and data transmission.

Contributed to the ATLAS experiment at CERN, advancing particle physics research.

Top Notable Publications

Interference mitigation using optimised angle diversity receiver in LiFi cellular network
Zeng, Z., Chen, C., Wu, X., Safari, M., Haas, H.
Optics Communications, 2025, 574, 131125.
Citations: 0

Theoretical investigation of the space division multiplexing capacity of multimode step-index plastic optical fibers
Savović, S., Aidinis, K., Chen, C., Min, R.
Optik, 2024, 311, 171945.
Citations: 0

Influence of launch light beam conditions on the bandwidth in multimode graded-index microstructured POFs
Simović, A., Savović, S., Drljača, B., Chen, C., Min, R.
Applied Optics, 2024, 63(22), pp. 5926–5930.
Citations: 0

Enhancing OFDM with index modulation using heuristic geometric constellation shaping and generalized interleaving for underwater VLC
Zhao, Y., Chen, C., Zhong, X., Lin, B., Savović, S.
Optics Express, 2024, 32(8), pp. 13720–13732.
Citations: 5

Application of the power flow equation in modeling bandwidth in polymer optical fibers: a review
Drljača, B., Savović, S., Simović, A., Aidinis, K., Min, R.
Optical and Quantum Electronics, 2024, 56(4), 547.
Citations: 2

0.5-bit/s/Hz fine-grained adaptive OFDM modulation for bandlimited underwater VLC
Nie, Y., Chen, C., Savović, S., Zeng, Z., Shen, G.
Optics Express, 2024, 82(3), pp. 4537–4552.
Citations: 4

New method for the investigation of mode coupling in graded-index polymer photonic crystal fibers using the Langevin stochastic differential equation
Savović, S., Djordjevich, A., Aidinis, K., Chen, C., Min, R.
Frontiers in Physics, 2024, 12, 1479206.
Citations: 0

Wavelength dependent transmission in multimode graded-index microstructured polymer optical fibers
Simović, A., Savović, S., Wang, Z., Aidinis, K., Chen, C.
Frontiers in Physics, 2024, 12, 1340505.
Citations: 1

Theoretical and experimental investigation of the steady-state power distribution in multimode step-index plastic optical fibers
Dai, W., Savović, S., Zhao, C., Shao, R., Min, R.
Optical Fiber Technology, 2023, 81, 103531.
Citations: 2

Investigation of mode coupling in strained and unstrained multimode step-index POFs using the Langevin equation
Savović, S., Aidinis, K., Djordjevich, A., Min, R.
Heliyon, 2023, 9(7), e18156.
Citations: 1

Conclusion

Considering Prof. Dr. Svetislav Savovic’s vast academic qualifications, prolific research contributions, and impactful teaching and international collaborations, he is highly suitable for the Research for Best Researcher Award. His career epitomizes the values of innovation, academic excellence, and societal impact that the award seeks to honor.

 

 

 

 

 

 

 

 

 

 

 

 

Thi Hong Nhung Vu | Engineering | Best Researcher Award

Dr. Thi Hong Nhung Vu | Engineering | Best Researcher Award 

Dr. Thi Hong Nhung V,  Vietnam National University of Forestry at Dong Nai, Vietnam

Dr. thi hong nhung v is a dedicated researcher and educator with nearly two decades of experience in teaching and research. Her studies have spanned multiple disciplines, focusing on the development of nanofibrous materials and composite biomaterials for medical and ecological applications. Her contributions include enhancing the fabrication and efficiency of PVA and PVA-chitosan nanofibers, with practical applications in drug delivery systems. An active participant in the academic community, she has attended numerous international conferences and has a strong publication record in high-impact journals. Dr. thi hong nhung v continues to innovate in the fields of nano biomaterials and bioengineering, driving advancements in both academia and applied sciences.

PROFILE

Orcid  Profile

Educational Detail

Dr. thi hong nhung v holds advanced degrees in fields related to biopolymers, nanomaterials, and bioengineering. She pursued her studies both in Vietnam and the Russian Federation. In Vietnam, she specialized in natural component extraction, while in the Russian Federation, her focus shifted to the development of nanofibrous materials for drug integration. Her education was complemented by projects involving artificial intelligence, optotechnics, bioengineering, and composite biomaterials.

Professional Experience

Dr. thi hong nhung v has 19 years of experience as a secondary school teacher and university lecturer in Vietnam. She has participated in and contributed to three significant research projects:

Artificial intelligence methods for cyber-physical systems.

Development of methods and tools for applied problems in optotechnics and bioengineering.

Composite biomaterials and technologies for ecophotonics and medicine.

Over the past five years, she has attended 12 international scientific conferences and published nine research articles in reputable journals indexed in SCI and Scopus. She has also contributed to book publications, with one carrying the ISBN 978-3-031-26907-3.

Research Interests

Dr. thi hong nhung v’s research interests include:

Biopolymers and polymers

Nano biomaterials and electrospinning

Nano biochemistry and nanomaterials

Her work focuses on developing and improving PVA and PVA-chitosan nanofibers, emphasizing solution composition, technological parameters, and the use of multicomponent solvent systems to enhance material properties and drug incorporation efficiency.

Top Notable Publications

thi hong nhung v, Study on Fabrication and Properties of Polyvinyl Alcohol/Chitosan Nanofibers Created from Aqueous Solution with Acetic Acid and Ethanol by the Electrospinning Method. Polymers, 2024, 16(23), 3393. DOI: 10.3390/polym16233393.

thi hong nhung v, Study on Fabrication and Properties of Polyvinyl Alcohol—Chitosan Nanofibers from Aqueous Solution with Acetic Acid and Ethanol by Electrospinning Method. Preprint, 2024. DOI: 10.20944/preprints202410.0296.v1.

thi hong nhung v, The Influence of Acetic Acid and Ethanol on the Fabrication and Properties of Poly(Vinyl Alcohol) Nanofibers Produced by Electrospinning. Polymer Bulletin, 2024, 81, 768-780. DOI: 10.1007/s00289-024-05168-2.

thi hong nhung v, A Systematic Investigation of Solution and Technological Parameters for the Fabrication and Characterization of Poly(Vinyl Alcohol–Chitosan) Electrospun Nanofibers. Polymers for Advanced Technologies, 2024, 35(5), 6423. DOI: 10.1002/pat.6423.

thi hong nhung v, Tafamidis Drug Delivery Systems Based on Chitosan/Polyvinyl Alcohol Matrix. ASEC 2023 Conference Proceedings, 2023. DOI: 10.3390/ASEC2023-15905.

thi hong nhung v, Fabrication of Polyvinyl Alcohol Nanofibers for the Delivery of Biologically Active Molecules. 2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2022, pp. 117-123. DOI: 10.1109/iecbes54088.2022.10079434.

thi hong nhung v, Investigation of the Fabrication of Nanofibers from Aqueous Polyvinyl Alcohol Solutions by Electrospinning. Proceedings of the Voronezh State University of Engineering Technologies, 2022, 2, 210-220. DOI: 10.20914/2310-1202-2022-2-210-220.

Conclusion 

Based on her academic achievements, impactful research contributions, and interdisciplinary approach, Dr. Thi Hong Nhung V is an exemplary candidate for the Research for Best Researcher Award. Her work has significantly advanced the fields of nanotechnology and biomaterials, contributing to both scientific progress and practical applications in medicine and engineering.

 

 

 

 

 

 

 

 

 

 

Charikleia Karakosta | Engineering | Best Researcher Award

Dr. Charikleia Karakosta | Engineering | Best Researcher Award

Dr Charikleia Karakosta, National Technical University of Athens, Greece

Dr. charikleia karakosta is a senior sustainable energy and climate change expert, currently affiliated with the Greek Public Employment Service at the Ministry of Labour and Social Security and ENVIROMETRICS S.A. She has extensive expertise in energy efficiency, green economic policies, and sustainable energy project management, further enriched by her teaching and research roles at various academic institutions.

PROFILE

Orcid Profile

Educational Details

B.Sc., M.Sc. in Chemical Engineering (Grade: 8.91/10), National Technical University of Athens (NTUA), Greece (1999-2004)

M.Sc. in Energy Production and Management (Grade: 8.67/10), NTUA (2004-2006)

Ph.D. in Electrical & Computer Engineering, NTUA (2005-2014)
PhD Thesis: “Integrated Methodology for the Decision Support of the Promotion of the Effective Technology Transfer within the frame of Climate Change” (Grade: 10/10)

Professional Experience

Dr. karakosta has served as a project coordinator and expert in energy efficiency and green economic policies at NTUA’s Decision Support Systems Lab (EPU-NTUA), where she collaborated with Prof. John Psarras. Since January 2024, she has worked as a senior sustainable energy expert and project manager at ENVIROMETRICS S.A. Her responsibilities include leading sustainable energy projects, overseeing environmental assessments, and developing climate-resilient energy strategies.

In academia, she is a postdoctoral researcher at the University of Macedonia, focusing on decision support systems for sustainable energy transitions. Dr. karakosta is also an adjunct lecturer, teaching courses in operations research, the Internet of Things, and sustainable energy at the University of West Attica and the Open University of Cyprus.

Research Interests

Dr. karakosta’s research spans energy management, climate change adaptation, decision support systems, and sustainable technology transfer. Her work integrates environmental policy with technical innovations for climate resilience and low-carbon transitions.

Awards and Scholarships

ECOPOLIS Science Award (2016) for her PhD research

Onassis Foundation Scholarships for Master’s and Doctoral studies (2005-2006, 2008-2010)

State Scholarship Foundation (IKY) for academic excellence (2002-2003)

D. Thomaidis Award for scientific publications (2004-2018)

 

Top Notable Publications

A Fuzzy PROMETHEE Method for Evaluating Strategies towards a Cross-Country Renewable Energy Cooperation: The Cases of Egypt and Morocco

Authors: charikleia karakosta et al.

Year: 2024

Journal: Energies

DOI: 10.3390/en17194904

Publisher: Multidisciplinary Digital Publishing Institute

Financing Sustainable Energy Efficiency Projects: The Triple-A Case

Authors: charikleia karakosta et al.

Year: 2021

Journal: Environmental Sciences Proceedings

DOI: 10.3390/environsciproc2021011022

Publisher: Multidisciplinary Digital Publishing Institute

An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation

Authors: charikleia karakosta et al.

Year: 2020

Journal: Sustainability

DOI: 10.3390/su12072886

Publisher: Multidisciplinary Digital Publishing Institute

Analysis of Policy Scenarios for Achieving Renewable Energy Sources Targets: A Fuzzy TOPSIS Approach

Authors: charikleia karakosta et al.

Year: 2017

Journal: Energy and Environment

DOI: 10.1177/0958305X16685474

Publisher: SAGE Publications (via Scopus – Elsevier)

Exploring Opportunities and Risks for RES-E Deployment under Cooperation Mechanisms between EU and Western Balkans: A Multi-Criteria Assessment

Authors: charikleia karakosta et al.

Year: 2017

Journal: Renewable and Sustainable Energy Reviews

DOI: 10.1016/j.rser.2017.05.190

Publisher: Elsevier (via Scopus – Elsevier)

Renewable Energy Policy Dialogue towards 2030 – Editorial of the Special Issue

Authors: charikleia karakosta

Year: 2017

Journal: Energy and Environment

DOI: 10.1177/0958305X16685455

Publisher: SAGE Publications (via Scopus – Elsevier)

Conclusion

Dr. charikleia karakosta exemplifies a strong candidate for the Best Researcher Award due to her outstanding qualifications, impactful research in renewable energy policy and decision support, international recognition, and academic influence. Her continuous contributions, leadership in project management, dedication to teaching, and research accolades make her a distinguished figure in sustainable energy research.

 

 

 

Renwei Liu | Engineering | Excellence in Innovation Award

Dr. Renwei Liu | Engineering | Excellence in Innovation Award

Dr Renwei Liu, Jiangsu University of Science and Technology, China

Dr. Renwei Liu is a lecturer at Jiangsu University of Science and Technology, China, specializing in polar ships, ship-ice interaction, and marine engineering. His innovative research in peridynamics has made significant contributions to the understanding of ship-ice interactions, with numerous publications and patents. He is actively involved in both academic research and industry consultancy, working on cutting-edge projects related to Arctic operations and ice load modeling.

PROFILE

Google Scholar  Profile

Educational Details

Dr. Renwei Liu earned his Bachelor’s and Ph.D. degrees in Naval Architecture and Marine Engineering from Harbin Engineering University (2012-2021). His academic foundation laid the groundwork for his deep expertise in marine engineering, particularly in the field of polar ship design and the application of peridynamics in ship-ice interaction.

Professional Experience

Since 2021, Dr. Liu has been serving as a lecturer at the School of Naval Architecture and Marine Engineering, Jiangsu University of Science and Technology. His expertise spans various areas of naval architecture, with a particular focus on ship-ice interaction and polar ship technology. He has also contributed to consultancy and industry projects related to ice load prediction and anti-icing technologies for polar ships.

Research Interests

Dr. Liu’s primary research interests include the application of the peridynamics method in ship and marine structures, with a particular emphasis on polar ships, ice load prediction, and anti-icing technologies for Arctic operations. His work also extends to marine platform design and structural optimization for ice navigation.

Research and Innovations

Dr. Liu’s pioneering work includes introducing the peridynamics method for calculating ship ice loads, which led to the development of a numerical model for ship and ice interaction. This work resulted in the publication of the first paper in the field. His ongoing research projects include studies on the failure modes of sea ice and technologies for ice load modeling and anti-icing for Arctic operations. Notable ongoing projects include research funded by the National Natural Science Foundation of China and the Ministry of Science and Technology.

Collaborations

Dr. Liu has co-authored multiple papers with researchers from various institutions, exploring topics like sea ice structure interaction, ice load predictions, and thermomechanical removal of ice from frozen structures. Some of his prominent collaborations include publications in China Ocean Engineering and Ocean Engineering on topics like ice load prediction for ships and the dynamic response of offshore wind turbines under ice impact.

Patents

Dr. Liu holds several patents related to marine engineering, including inventions for ice recognition devices, adjustable towing systems for ice pools, and methods for measuring ice crack sizes using deep learning. His patent portfolio demonstrates his innovative approach to solving complex challenges in marine engineering and ice navigation.

Top Notable Publications

A review for numerical simulation methods of ship–ice interaction
Authors: Y. Xue, R. Liu, Z. Li, D. Han
Published in: Ocean Engineering
Year: 2020
Citations: 84
DOI: 10.1016/j.oceaneng.2020.107853

Simulation of ship navigation in ice rubble based on peridynamics
Authors: R. W. Liu, Y. Z. Xue, X. K. Lu, W. X. Cheng
Published in: Ocean Engineering
Year: 2018
Citations: 84
DOI: 10.1016/j.oceaneng.2017.11.055

Experimental and numerical investigation on self-propulsion performance of polar merchant ship in brash ice channel
Authors: C. Xie, L. Zhou, S. Ding, R. Liu, S. Zheng
Published in: Ocean Engineering
Year: 2023
Citations: 58
DOI: 10.1016/j.oceaneng.2022.113424

Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics
Authors: R. Liu, J. Yan, S. Li
Published in: Computational Particle Mechanics
Year: 2020
Citations: 49
DOI: 10.1007/s40571-020-00267-2

Peridynamic modeling and simulation of coupled thermomechanical removal of ice from frozen structures
Authors: Y. Song, R. Liu, S. Li, Z. Kang, F. Zhang
Published in: Meccanica
Year: 2020
Citations: 26
DOI: 10.1007/s11012-020-01068-2

Numerical simulations of the ice load of a ship navigating in level ice using peridynamics
Authors: Y. Xue, R. Liu, Y. Liu, L. Zeng, D. Han
Published in: Computer Modeling in Engineering & Sciences
Year: 2019
Citations: 21
DOI: 10.32604/cmes.2019.12258

Broken ice circumferential crack estimation via image techniques
Authors: J. Cai, S. Ding, Q. Zhang, R. Liu, D. Zeng, L. Zhou
Published in: Ocean Engineering
Year: 2022
Citations: 20
DOI: 10.1016/j.oceaneng.2022.111735

 

Conclusion

Dr. Renwei Liu exemplifies the qualities of an outstanding candidate for the Research for Excellence in Innovation Award. His innovative research on peridynamics, his leadership in polar ship research, and his contributions to industry applications make him a deserving nominee. His work continues to shape the future of marine engineering, polar exploration, and sustainable ice navigation technologies.

 

 

 

Dalel Azaiez | Engineering | Best Researcher Award

Ms. Dalel Azaiez | Engineering | Best Researcher Award 

Ms. Dalel Azaiez, Higher Institute of Technological Studies of Gafsa, Tunisia

Ms. Dalel Azaiez is a skilled geotechnical engineer and educator based at the Higher Institute of Technological Studies of Gafsa, Tunisia. With a Ph.D. in Geotechnical Engineering from the National Engineering School of Tunis, she has contributed to the field through both academic and practical applications, including the invention of the Cylindrical Shear Tool (TN 2020/0256). Her expertise spans civil engineering, soil mechanics, and quality control, and she brings practical knowledge to her teaching roles across several prestigious Tunisian institutions. Ms. Azaiez is proficient in technical tools such as Python, AutoCAD, and Arche Ossature, complemented by certifications in quality management and language proficiency.

PROFILE

Google  Scholar Profile

Scopus Profile

Educational Details

Ms. Dalel Azaiez is an accomplished academic and geotechnical engineer with a diverse background in civil engineering, teaching, and research innovation. She earned her Doctor of Philosophy in Geotechnical Engineering from the National Engineering School of Tunis (2015-2023), where she also contributed as a research engineer at SIMPRO, a firm specializing in geotechnical engineering. Her work led to the co-invention of the Cylindrical Shear Tool (TN 2020/0256), showcasing her drive for advancing practical applications in engineering. Ms. Azaiez’s earlier studies include a Civil Engineering degree from the National Engineering School of Sfax (2012-2015) and preparatory coursework in mathematics and physics at the Sfax Preparatory Engineering Institute, following her high school studies at Mohamed Ali Sfax.

Professional Experience

Ms. Azaiez has a rich teaching history across various esteemed institutions in Tunisia. Currently, she serves as a contract teacher at the Higher Institute of Technological Studies of Gafsa, where she instructs on quality control, computer-aided design, and project planning software, among other engineering-related topics. Her previous teaching roles include work as a temporary teacher at the Private Higher School of Engineering and Technology (ESPRIT), the Military Academy Fondouk El Jdid, and the National Engineering School of Tunis. Additionally, she taught practical classes in soil mechanics at the Higher Institute of Environmental Technologies, Urban Planning, and Building (ISTEUB).

Research Interest

Ms. Azaiez’s research is rooted in soil mechanics, materials testing, and innovative geotechnical engineering tools. Her contributions are marked by a strong focus on applying theoretical knowledge to solve real-world engineering problems, evident from her involvement in patenting the Cylindrical Shear Tool. Her technical acumen spans laboratory testing methods, geotechnics, and practical civil engineering applications.

Skills and Training

Her skill set includes proficiency in Python, AutoCAD 2D, and specialized engineering software like Arche Ossature. Ms. Azaiez is certified in ISO 9001 Quality Management and holds a DELF diploma, confirming her multilingual proficiency. Her continuous learning is exemplified by recent training in Python (2024), enhancing her technical and programming capabilities.

Ms. Azaiez’s academic, research, and teaching experiences underscore her commitment to geotechnical engineering and applied sciences, contributing to her impactful role in Tunisia’s higher education landscape.

Top Notable Publications

Azaiez, D., Boullosa Allariz, B., Levacher, D. (2024). Study of Physical and Mechanical Relationships during the Natural Dewatering of River Sediments and a Kaolin. Journal of Marine Science and Engineering, 12(8), 1354. Citations: 0.

Manigniavy, S.A., Bouassida, Y., Azaiez, D., Bouassida, M. (2023). Using Compression and Swelling Indices to Characterize Expansive Soils. Lecture Notes in Civil Engineering, 305, pp. 121–128. Citations: 1.

Bouassida, M., Azaiez, D. (2023). New Tool for the Measurement of Soils’ Shear Strength. Lecture Notes in Civil Engineering, 305, pp. 63–76. Citations: 0.

Azaiez, D., Bouassida, M. (2022). An Efficient Tool to Determine Undrained Shear Strength of Soft Soils. Geotechnical Engineering, 53(4), pp. 25–35. Citations: 0.

Bouassida, M., Manigniavy, S.A., Azaiez, D., Bouassida, Y. (2022). New Approach for Characterization and Mitigation of the Swelling Phenomenon. Frontiers in Built Environment, 8, 836277. Citations: 8.

Bouassida, M., Azaiez, D. (2019). On the Determination of Undrained Shear Strength from Vane Test. Sustainable Civil Infrastructures, pp. 50–68. Citations: 2.

Azaiez, D., Bouassida, M., Boullosa Allariz, B., Levacher, D. (2018). On the Characterization and Valorization of Sediments. 1st International Conference on Advances in Rock Mechanics, TuniRock 2018, pp. 133–142. Citations: 1.

Conclusion

Based on her academic qualifications, innovation in tool development, teaching experience, and research focus, Ms. Dalel Azaiez is a competitive candidate for the “Research for Best Researcher Award.” Her achievements and contributions highlight her dedication to advancing geotechnical engineering, which aligns well with the award’s focus on recognizing impactful research and practical innovation.

 

 

 

Masahiro Nishida | Impact Engineering | Best Researcher Award

Dr. Masahiro Nishida | Impact Engineering | Best Researcher Award

Orcid Profile

Educational Details

B.E. in Mechanical Engineering (1991): Tokyo Institute of Technology.

M.E. in Mechanical Engineering (1993): Tokyo Institute of Technology.

Ph.D. in Mechanical Engineering (1996): Tokyo Institute of Technology, under the supervision of Professor H. Matsumoto. His thesis was titled “Evaluation Method of Mechanical Properties for Material by Phase-Sensitive Acoustic Microscope”.

 

Professional Experience

Prof. Nishida began his career as a Research Associate in the Department of Mechanical Science at Tokyo Institute of Technology from 1996 to 1997. He then joined Nagoya Institute of Technology as a Research Associate in 1997, working under Professor K. Tanaka. He progressed to Lecturer (2001-2004), Associate Professor (2004-2018), and has been a full Professor since 2018. In addition to his academic roles, he has served as the General Manager of the Quality Innovation Techno-Center at Nagoya Institute of Technology since 2022. He has also been a visiting researcher at Luleå University of Technology, Sweden, in 2009.

Research Interest

Prof. Masahiro Nishida’s research focuses on the dynamic behavior of materials under extreme conditions, with particular emphasis on hypervelocity impacts and advanced material properties. His work on hypervelocity impact explores the performance of materials like metals and plastics used in space debris bumpers, carbon fiber-reinforced plastics, and components produced through additive manufacturing. In the field of dynamic strength of advanced materials, he investigates the mechanical properties of recycled aluminum alloys, additive manufacturing materials, and biodegradable plastics using the split Hopkinson pressure bar (SHPB) technique, which allows for high-strain-rate testing. Additionally, his research into the dynamics of heterogeneous materials involves studying the behavior of aggregated soft particles and understanding how contact forces propagate within these assemblies. This combination of experimental and computational approaches provides valuable insights into the resilience and performance of materials in extreme environments.

Top Notable Publications

Effects of electron beam irradiation on hypervelocity impact behavior of carbon fiber reinforced plastic plates
Journal: Journal of Composite Materials
Published: December 2021
DOI: 10.1177/00219983211037049
Citations: Data not provided through Scopus.

Effects of the shapes and addition amounts of crosslinking reagents on the properties of poly‐3‐hydroxybutyrate/poly(caprolactone) blends
Journal: Journal of Applied Polymer Science
Published: June 2021
DOI: 10.1002/app.51210
Citations: Data not provided through Scopus.

Effect of chain extender on morphology and tensile properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blends
Journal: Materials Today Communications
Published: March 2021
DOI: 10.1016/j.mtcomm.2020.101852
Citations: Data not provided through Scopus.

Correlative analysis between morphology and mechanical properties of poly-3-hydroxybutyrate (PHB) blended with polycaprolactone (PCL) using solid-state NMR
Journal: Polymer Testing
Published: November 2020
DOI: 10.1016/j.polymertesting.2020.106780
Citations: Data not provided through Scopus.

Correlative analysis between solid-state NMR and morphology for blends of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate)
Journal: Polymer
Published: 2020
DOI: 10.1016/j.polymer.2020.122591
Citations: Data not provided through Scopus.

Effects of deformation rate on tensile properties of ramie fiber/PLA/PBAT composites
Conference: ECCM 2018 – 18th European Conference on Composite Materials
Published: 2020
EID: 2-s2.0-85084162322
Citations: Data not provided through Scopus.

Effects of gamma ray irradiation on penetration hole in and fragment size from carbon fiber reinforced composite plates in hypervelocity impacts
Journal: Composites Part B: Engineering
Published: July 2019
DOI: 10.1016/j.compositesb.2019.04.007
Citations: Data not provided through Scopus.

Influence of impact angle on size distribution of fragments in hypervelocity impacts
Journal: International Journal of Impact Engineering
Published: June 2019
DOI: 10.1016/j.ijimpeng.2019.02.006
Citations: Data not provided through Scopus.

Conclusion

Prof. Masahiro Nishida is a highly qualified candidate for the Best Researcher Award. His strong educational background, extensive research experience, leadership roles, and cutting-edge research in dynamic material properties and hypervelocity impact make him a prominent figure in mechanical engineering. His research aligns well with current industrial needs, particularly in aerospace, sustainability, and material innovation, further enhancing his candidacy for such an award.