Farshad Nobakhtkolour | Engineering | Best Researcher Award

Mr. Farshad Nobakhtkolour | Engineering | Best Researcher Award

Researcher at K.N.Toosi University of Technology, Iran

Farshad Nobakht-Kolur ๐ŸŽ“ is a passionate civil engineer specializing in marine structures and offshore renewable energy ๐ŸŒŠโšก. He earned his M.Sc. in Coasts, Ports, and Marine Structures from K. N. Toosi University of Technology and his B.Sc. in Civil Engineering from Shahrood University ๐Ÿซ. Farshadโ€™s research focuses on floating structures, marine hydrodynamics, and aquaculture engineering ๐Ÿšข๐ŸŒฑ. He has published multiple journal papers and served as a peer reviewer ๐Ÿ“š๐Ÿ–‹๏ธ. A top-ranked student throughout his academic journey ๐Ÿ†, he continues to contribute actively to the marine engineering community through research, reviews, and professional memberships ๐Ÿค.

Professional Profile:

Orcid

Scopus

๐Ÿ”ต Education and Experienceย 

  • ๐ŸŽ“ M.Sc. in Coasts, Ports, and Marine Structures โ€“ K. N. Toosi University of Technology (2016-2019)

  • ๐ŸŽ“ B.Sc. in Civil Engineering โ€“ Shahrood University of Technology (2009-2013)

  • ๐Ÿซ Diploma in Mathematics and Physics โ€“ Bagher-al-Olum High School (2005-2009)

  • ๐Ÿ‘จโ€๐Ÿซ Teaching Assistant โ€“ Shahrood University of Technology (Statics & Steel Structures Courses)

  • ๐Ÿงช Researcher โ€“ Published papers in top marine and fluid mechanics journals

  • ๐Ÿ“‘ Conference Presenter โ€“ Marine Industries Conference and academic workshops

๐Ÿ”ต Professional Developmentย 

Farshad Nobakht-Kolur has actively contributed to professional growth through memberships and peer reviewing ๐Ÿ› ๏ธ๐Ÿ“–. He is a member of the Iranian Coastal and Marine Structural Engineering Association (ICOMSEA) ๐ŸŒ, and The American Society for Nondestructive Testing (ASNT) ๐Ÿงช๐Ÿ”. Farshad has reviewed articles for prestigious journals like Ocean Engineering and Journal of Modern Green Energy โœ๏ธ๐Ÿ“˜. His commitment to continuous learning and sharing knowledge is evident through his workshop presentations, paper publications, and involvement with academic and industrial bodies ๐ŸŒŸ. Farshadโ€™s work bridges the gap between theoretical research and real-world marine engineering solutions ๐ŸŒŠ๐Ÿ”—.

๐Ÿ”ต Research Focus Categoryย 

Farshad Nobakht-Kolurโ€™s research focus lies in marine and offshore engineering ๐ŸŒŠ๐Ÿ”ง. His primary interests include floating wind turbines, floating solar islands, offshore renewable energy structures, and aquaculture engineering ๐ŸŒฑโšก. He specializes in fluid-structure interaction, experimental modeling, and numerical simulation ๐Ÿงช๐Ÿ’ป. Farshadโ€™s work emphasizes sustainable marine structures like floating seaweed farms and hybrid platforms that support renewable energy production and food security ๐ŸŒฟ๐Ÿ”‹. Through advanced physical modeling and hydrodynamic analysis, he contributes innovative solutions to the growing demands of the offshore and marine industry ๐Ÿšข๐ŸŒ.

๐Ÿ”ต Awards and Honorsย 

  • ๐Ÿฅ‡ First rank โ€“ Best Graduate M.Sc. Students in Marine Engineering, Iranian Marine Industries Organization, 2022

  • ๐Ÿฅˆ Second rank โ€“ Top MSc Students in Marine Structure Engineering, 2019

  • ๐Ÿง  Top 1% โ€“ MSc Entrance Exam of Universities, 2016

  • ๐ŸŽ“ Top 10% โ€“ B.Sc. Students in Civil Engineering, 2013

  • ๐Ÿง  Top 1% โ€“ University Entrance Exam, 2009

  • ๐ŸŽ–๏ธ Top 10 โ€“ High School Graduates, 2009

Publication Top Notes

  1. Effects of soft marine fouling on wave-induced forces in floating aquaculture cages: Physical model testing under regular waves

    • Journal: Ocean Engineering

    • Date: October 2021

    • DOI: 10.1016/j.oceaneng.2021.109759

    • Focus: How soft biofouling (like algae and soft marine growth) changes the forces exerted on aquaculture cages when regular waves hit them, using physical model tests.

  2. Hydrodynamic forces in marine-fouled floating aquaculture cages: Physical modelling under irregular waves

    • Journal: Journal of Fluids and Structures

    • Date: August 2021

    • DOI: 10.1016/j.jfluidstructs.2021.103331

    • Focus: Similar to above but testing under irregular waves (more realistic sea conditions), focusing on how fouling affects hydrodynamic forces.

  3. Wave attenuation/build-up around and inside marine fouled floating aquaculture cages under regular wave regimes

    • Journal: Journal of Ocean Engineering and Marine Energy

    • Date: February 24, 2021

    • DOI: 10.1007/s40722-021-00186-y

    • Focus: Investigating wave energy behaviorโ€”whether it’s dampened (attenuated) or amplified (build-up)โ€”around/inside fouled cages during regular waves.

  4. Experimental Modelling of Biofouling Effects on the Regular and Irregular Waves Load in Aquaculture Cages

    • Institution: K. N. Toosi University of Technology

    • Type: Dissertation/Thesis

    • Year: 2019

    • DOI: 10.13140/RG.2.2.28208.48644

    • Focus: The early foundational work by Farshad Nobakht-Kolur, focusing on both regular and irregular waves and their loading effects on biofouled cages, likely forming the base for the later journal papers.

Conclusion

Farshad Nobakht-Kolur demonstrates all the qualities of a promising and impactful researcher: scientific excellence, originality, practical application of research, international publication record, and community engagement.
In my opinion, he is a highly suitable and strong candidate for the Best Researcher Award โ€” particularly within the fields of marine structures, offshore engineering, and renewable energy systems.

Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia at University of Sistan and Baluchestan, Iran

Dr. Ehsan Adibnia ๐ŸŽ“ is a dedicated academic researcher in electrical engineering โšก, specializing in cutting-edge fields such as artificial intelligence ๐Ÿค–, machine learning ๐Ÿ“Š, deep learning ๐Ÿง , nanophotonics ๐Ÿ’ก, optics ๐Ÿ”ฌ, and plasmonics โœจ. He is proficient in Python ๐Ÿ, MATLAB ๐Ÿงฎ, and Visual Basic, and utilizes simulation tools like Lumerical ๐Ÿ“ˆ, COMSOL ๐Ÿงช, and RSoft ๐Ÿ”ง to drive innovative research. Fluent in English ๐Ÿ‡ฌ๐Ÿ‡ง and Persian ๐Ÿ‡ฎ๐Ÿ‡ท, Dr. Adibnia contributes to academic conferences and peer-reviewed journals ๐Ÿ“š. He is currently pursuing his Ph.D. and actively engaged in interdisciplinary scientific exploration ๐ŸŒ.

Professional Profile:

Orcid

Scopus

Google Scholar

๐Ÿ”น Education & Experienceย 

๐ŸŽ“ Ph.D. in Electrical Engineering โ€“ University of Sistan and Baluchestan, Zahedan, Iran (Expected 2025)
๐ŸŽ“ B.S. in Electrical Engineering โ€“ University of Sistan and Baluchestan, Zahedan, Iran (2014)
๐Ÿง‘โ€๐Ÿ’ผ Executive Committee Member โ€“ 27th Iranian Conference on Optics and Photonics & 13th Conference on Photonic Engineering and Technology
๐Ÿ–‹๏ธ Assistant Editor โ€“ International Journal (Name not specified)
๐Ÿ” Researcher โ€“ Actively engaged in interdisciplinary AI & photonics research projects

๐Ÿ”น Professional Developmentย 

Dr. Ehsan Adibnia continually enhances his professional growth through active participation in conferences ๐Ÿง‘โ€๐Ÿซ, committee leadership ๐Ÿ—‚๏ธ, and editorial work ๐Ÿ“‘. He develops algorithms and conducts simulations using advanced tools such as Lumerical ๐Ÿ”ฌ, COMSOL ๐Ÿงช, and RSoft ๐Ÿ’ป. His expertise in AI and photonics drives innovative research and collaboration ๐ŸŒ. He also hones his programming skills in MATLAB ๐Ÿงฎ, Python ๐Ÿ, and VBA ๐Ÿง , ensuring precision in modeling and data analysis. His hands-on knowledge in PLC systems ๐Ÿค– and industrial automation makes him versatile across both academic and applied research settings ๐Ÿญ.

๐Ÿ”น Research Focusย 

Dr. Adibniaโ€™s research focuses on the fusion of artificial intelligence ๐Ÿค– and photonics ๐Ÿ’ก. His work explores machine learning ๐Ÿ“Š, deep learning ๐Ÿง , nanophotonics ๐Ÿ”ฌ, plasmonics โœจ, optical switching ๐Ÿ”, and slow light ๐Ÿข technologies. He is particularly interested in leveraging these technologies in biosensors ๐Ÿงซ, metamaterials ๐Ÿ”ท, and quantum optics โš›๏ธ. Through simulation and algorithm development, he aims to optimize performance in optoelectronic and photonic systems ๐Ÿ”. His interdisciplinary research bridges electrical engineering with physics and AI, creating advanced systems for diagnostics, sensing, and smart environments ๐ŸŒ.

๐Ÿ”น Awards & Honorsย 

๐Ÿ… Executive Committee Role โ€“ 27th Iranian Conference on Optics and Photonics
๐Ÿ… Executive Committee Role โ€“ 13th Iranian Conference on Photonic Engineering and Technology
๐Ÿ“œ Assistant Editor โ€“ International scientific journal (name not specified)
๐Ÿง  Scopus-indexed Researcher โ€“ Scopus ID: 58485414000

Publication Top Notes

๐Ÿ”น High-performance and compact photonic crystal channel drop filter using P-shaped ring resonator

  • Journal: Results in Optics

  • Date: Dec 2025

  • DOI: 10.1016/j.rio.2025.100817

  • Summary: Proposes a novel P-shaped ring resonator design for channel drop filters in photonic crystal structures. Focuses on achieving high performance in terms of compactness and spectral selectivity for integrated optical circuits.

๐Ÿ”น Optimizing Few-Mode Erbium-Doped Fiber Amplifiers for high-capacity optical networks using a multi-objective optimization algorithm

  • Journal: Optical Fiber Technology

  • Date: Sep 2025

  • DOI: 10.1016/j.yofte.2025.104186

  • Summary: Introduces a multi-objective optimization approach for designing few-mode EDFAs, targeting performance improvements in next-gen high-capacity optical networks.

๐Ÿ”น Inverse design of octagonal plasmonic structure for switching using deep learning

  • Journal: Results in Physics

  • Date: Apr 2025

  • DOI: 10.1016/j.rinp.2025.108197

  • Summary: Utilizes deep learning for the inverse design of an octagonal plasmonic structure used in optical switching, demonstrating enhanced precision and compact design capability.

๐Ÿ”น Chirped apodized fiber Bragg gratings inverse design via deep learning

  • Journal: Optics & Laser Technology

  • Date: 2025

  • DOI: 10.1016/J.OPTLASTEC.2024.111766

  • WOS UID: WOS:001311493000001

  • Summary: Applies deep learning to the inverse design of chirped apodized fiber Bragg gratings, optimizing the spectral characteristics for filtering and sensing applications.

๐Ÿ”น Inverse Design of FBG-Based Optical Filters Using Deep Learning: A Hybrid CNN-MLP Approach

  • Journal: Journal of Lightwave Technology

  • Date: 2025

  • DOI: 10.1109/JLT.2025.3534275

  • Summary: Proposes a hybrid CNN-MLP architecture to design fiber Bragg grating (FBG) optical filters, improving accuracy and speed in the inverse design process using deep learning techniques.

Conclusion

Dr. Adibnia is still in the process of completing his Ph.D., his broad technical expertise, multidisciplinary research focus, early academic leadership roles, and active participation in both national and international platforms make him a highly promising candidate for the Best Academic Researcher Award in the early-career researcher or emerging researcher category.

Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Assoc. Prof. Dr. Ali Darvish Falehi | Engineering | Excellence in Researcher Award

Dr. Darvish Falehi at Islamic Azad University, Iran

Ali Darvish Falehi is a distinguished academic and professional in the field of Electrical Power Engineering. With a Ph.D. and Post-Ph.D. from Shahid Beheshti University, he ranks among the worldโ€™s top 2% scientists as listed by Stanford University in 2020. He is currently an Assistant Professor at Iran Islamic Azad University, a technical expert at Iran North Drilling Company, and the Chairman of the R&D Board at HICOBI Company. He has delivered keynote speeches at several international conferences and holds numerous patents. His contributions extend to supervising over 50 theses and reviewing for prestigious journals. ๐ŸŒŸ๐Ÿ”ฌ๐Ÿ“š

Professional Profile:

Google Scholar

Education and Experience:

  • Post-Ph.D. & Ph.D. in Electrical Power Engineering, Shahid Beheshti University (First Class Honors) ๐ŸŽ“

  • Ranked among the worldโ€™s top 2% scientists by Stanford University in 2020 ๐ŸŒ

  • Chairman of R&D Board at HICOBI Company ๐Ÿข

  • Assistant Professor at Iran Islamic Azad University ๐Ÿ‘จโ€๐Ÿซ

  • Technical Expert at Iran North Drilling Company โš™๏ธ

  • Main Speaker at national and international conferences ๐ŸŽค

  • Reviewer for prestigious journals (IEEE, Elsevier, Springer) ๐Ÿ“–

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses ๐Ÿ“

  • TOEFL-PBT score: 630 (Writing Score: 6) ๐Ÿ†

  • Patents and medals at invention festivals in Iran, South Korea, and Romania ๐Ÿ…

Professional Development:ย 

Ali Darvish Falehi has continuously developed his professional expertise by participating in global conferences and providing thought leadership as a main speaker and reviewer for high-impact journals such as IEEE and Elsevier. His dedication to research has led him to supervise over 50 graduate and doctoral theses, contributing to the academic growth of the next generation of engineers. He is also deeply involved in the industrial sector, where he serves as a technical expert for Iran North Drilling Company and leads the R&D board at HICOBI Company, driving innovation and technology forward. His work bridges academia and industry, enhancing both fields. ๐Ÿ”ง๐ŸŒ๐Ÿ“Š

Research Focus:

Ali Darvish Falehi’s research is centered around Electrical Power Engineering, with particular attention to energy systems, power distribution, and renewable energy solutions. His work aims to optimize power engineering technologies, focusing on improving energy efficiency and sustainability. He is known for his contributions to the development of advanced electrical systems and has been actively involved in creating patented innovations. His expertise in power engineering is complemented by his role as a technical expert, where he advises on industrial applications of electrical power systems. His research seeks to solve complex energy challenges, aligning with global sustainability goals. โšก๐ŸŒฑ๐Ÿ”‹

Awards and Honors:

  • Ranked among the worldโ€™s top 2% scientists by Stanford University (2020) ๐ŸŒ

  • Chairman of the R&D Board at HICOBI Company ๐Ÿข

  • Main Speaker at several international conferences ๐ŸŽค

  • Reviewer for leading ISI journals like IEEE, Elsevier, Springer ๐Ÿ“š

  • Supervisor & Adviser for 50+ M.Sc. and Ph.D. theses ๐Ÿ“

  • TOEFL-PBT Score: 630 ๐Ÿ†

  • Patents and medals from invention festivals in Iran, South Korea, and Romania ๐Ÿ…

Publication Top Notes

  1. “An innovative optimal RPO-FOSMC based on multi-objective grasshopper optimization algorithm for DFIG-based wind turbine to augment MPPT and FRT capabilities” (2020)

    • Authors: A.D. Falehi

    • Journal: Chaos, Solitons & Fractals

    • Summary: This paper proposes an innovative control strategy using a multi-objective Grasshopper Optimization Algorithm (GOA) to enhance the MPPT and Fault Ride Through (FRT) capabilities of DFIG-based wind turbines. The use of Fractional-Order Sliding Mode Control (FOSMC) is central to this work.

  2. “Promoted supercapacitor control scheme based on robust fractional-order super-twisting sliding mode control for dynamic voltage restorer to enhance FRT and PQ capabilities of DFIG-based wind turbines” (2021)

    • Authors: A.D. Falehi, H. Torkaman

    • Journal: Journal of Energy Storage

    • Summary: This paper focuses on enhancing the FRT and Power Quality (PQ) capabilities of DFIG-based wind turbines. The authors propose a robust fractional-order control scheme for supercapacitors integrated with a Dynamic Voltage Restorer (DVR).

  3. “LVRT/HVRT capability enhancement of DFIG wind turbine using optimal design and control of novel PIฮปDฮผ-AMLI based DVR” (2018)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Sustainable Energy, Grids and Networks

    • Summary: This work aims to enhance the Low Voltage Ride Through (LVRT) and High Voltage Ride Through (HVRT) capabilities of DFIG wind turbines by optimizing the design and control of a novel DVR based on a PIฮปDฮผ-AMLI (Proportional-Integral-Derivative) controller.

  4. “Enhancement of DFIG-wind turbineโ€™s LVRT capability using novel DVR based odd-nary cascaded asymmetric multi-level inverter” (2017)

    • Authors: A.D. Falehi, M. Rafiee

    • Journal: Engineering Science and Technology, an International Journal

    • Summary: This paper explores improving the LVRT capability of DFIG wind turbines by integrating a novel Dynamic Voltage Restorer (DVR) system with an odd-nary cascaded asymmetric multi-level inverter.

  5. “Neoteric HANFISCโ€“SSSC based on MOPSO technique aimed at oscillation suppression of interconnected multi-source power systems” (2016)

    • Authors: A.D. Falehi, A. Mosallanejad

    • Journal: IET Generation, Transmission & Distribution

    • Summary: This paper addresses the oscillation suppression in interconnected multi-source power systems using a Hybrid Active Networked Flexible Integrated Supply Chain (HANFISC)-Static Synchronous Series Compensator (SSSC) controlled by the Multi-Objective Particle Swarm Optimization (MOPSO) technique.

Conclusion:

Ali Darvish Falehi is undoubtedly a deserving candidate for the Excellence in Researcher Award. His combination of academic excellence, significant contributions to electrical power engineering, leadership in both academia and industry, and his global recognition positions him as a standout figure in his field. His ability to balance research with innovation, along with his dedication to mentoring future researchers, makes him an exemplary choice for this prestigious award.

Guanqun Li | Engineering | Best Researcher Award

Dr. Guanqun Li | Engineering | Best Researcher Award

Associate Researcher at Shengli oilfield, SINOPEC, China

Guanqun Li (ๆŽๅ† ็พค), born in May 1994 in Shandong, China ๐Ÿ‡จ๐Ÿ‡ณ, is an Associate Researcher at Shengli Oilfield Company, SINOPEC ๐Ÿ›ข๏ธ. He earned his PhD in Oil and Gas Field Development Engineering from China University of Petroleum (East China) ๐ŸŽ“. His work focuses on the microscopic characterization of shale reservoirs and fluid dynamics in oil and gas systems ๐Ÿ”ฌ๐Ÿ’ง. With numerous publications in top journals like Fuel and Physics of Fluids ๐Ÿ“š, he brings innovation to shale oil recovery technologies. Passionate about fractal modeling and fluid imbibition research, Guanqun Li is contributing significantly to modern energy development โš™๏ธ๐ŸŒ.

Professional Profile:

Scopus

๐Ÿ”น Education and Experienceย 

  • ๐ŸŽ“ Sep. 2016 โ€“ June 2019: Masterโ€™s in Oil and Gas Field Development Engineering, Yangtze University

  • ๐Ÿ“š Sep. 2019 โ€“ June 2023: PhD in Oil and Gas Field Development Engineering, China University of Petroleum (East China)

  • ๐Ÿข July 2023 โ€“ Present: Associate Researcher, Shengli Oilfield Company, SINOPEC

๐Ÿ”น Professional Developmentย 

Dr. Guanqun Li ๐Ÿ“˜ has shown consistent professional growth, moving from academic research to applied industry innovation. His academic journey through Yangtze University and the China University of Petroleum provided a solid foundation in oilfield development โš’๏ธ. At SINOPEC, he applies his expertise in reservoir simulation, fracturing mechanics, and fluid flow modeling ๐Ÿ”ฌ. He actively contributes to peer-reviewed journals and international conferences ๐ŸŒ. Guanqun continuously develops novel analytical and fractal models for imbibition in shale formations ๐ŸŒ€. His cross-disciplinary collaboration and technical excellence are hallmarks of his evolving career in the energy sector ๐Ÿš€.

๐Ÿ”น Research Focus Categoryย 

Guanqun Liโ€™s research centers on unconventional oil and gas recovery, specifically shale oil reservoir characterization and fluid imbibition mechanisms ๐Ÿ›ข๏ธ๐Ÿ’ง. His work explores microscale fluid motion, fractal modeling, and productivity analysis in hydraulically fractured formations ๐Ÿ”๐Ÿ“ˆ. He is especially interested in the spontaneous and forced imbibition processes in complex porous media under various boundary conditions ๐Ÿงช. His models help optimize horizontal well performance and support enhanced oil recovery (EOR) strategies ๐Ÿง โš™๏ธ. With a clear focus on improving efficiency in volume fracturing and fluid migration mechanisms, his research is highly impactful in modern petroleum engineering ๐Ÿšง.

๐Ÿ”น Awards and Honorsย 

  • ๐Ÿ… Interpore Conference Presentation (2020) โ€“ Recognized for outstanding research on production enhancement in fractured wells

  • ๐Ÿ“– Multiple First-Author Publications โ€“ Published in top journals like Fuel, Physics of Fluids, and Energy & Fuels

  • ๐Ÿง  Acknowledged for Innovative Fractal Modeling โ€“ In spontaneous/forced imbibition in shale formations

  • ๐Ÿฅ‡ Highly Cited Review Paper โ€“ On EOR techniques in shale oil (Geofluids, 2021)

Publication Top Notes

  • Title: Quantifying lithofacies-dependent imbibition behavior in continental shale oil by fractal modeling: A case study of the gentle slope fault zone, Jiyang DepressionAuthors: Li Guanqun, Peng Yanxia, Yang Yong, Cao Xiaopeng, Su YuliangJournal: Fuel

    Year: 2025

Conclusion

Dr. Guanqun Li stands out as an emerging leader in petroleum reservoir engineering with clear scientific originality, engineering relevance, and a solid record of first-author publications in high-impact journals. His work has contributed meaningfully to advancing the understanding of shale oil imbibition mechanisms and their application in field operations.

Yun Zhao | Engineering | Best Researcher Award

Assoc. Prof. Dr. Yun Zhao | Engineering | Best Researcher Award

Yun Zhao at Northwest Normal University, China

Dr. Yun Zhao ๐ŸŽ“ is an Associate Professor at the College of Physics and Electronic Engineering, Northwest Normal University ๐Ÿซ, since 2020. He earned his Ph.D. in Materials Science and Engineering ๐Ÿงช from the Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences ๐Ÿ‡จ๐Ÿ‡ณ, in 2020. Shortly after, he joined the Ningbo Institute of Materials Technology and Engineering ๐Ÿ”ฌ as a postdoctoral researcher. His work focuses on thin film photodetectors ๐Ÿ“ธ and semiconductor devices ๐Ÿ’ก. Dr. Zhao is passionate about next-gen optoelectronics and is actively contributing to innovation in functional materials and device engineering ๐Ÿš€.

Professional Profile:

Orcid

Scopus

๐ŸŽ“ Education & Experienceย 

  • ๐Ÿ“š Ph.D. in Materials Science and Engineering, Lanzhou Institute of Chemical Physics, CAS โ€“ 2020

  • ๐Ÿง‘โ€๐Ÿซ Postdoctoral Researcher, Ningbo Institute of Materials Technology and Engineering, CAS

  • ๐Ÿ‘จโ€๐Ÿซ Associate Professor, College of Physics and Electronic Engineering, Northwest Normal University โ€“ Since 2020

๐Ÿ“ˆ Professional Developmentย 

Dr. Yun Zhao continuously engages in academic and research development through national and institutional collaborations ๐Ÿค. His postdoctoral work at the prestigious Ningbo Institute of CAS sharpened his experimental techniques and deepened his expertise in advanced semiconductors โš™๏ธ. As an associate professor, he mentors young researchers ๐Ÿ‘จโ€๐Ÿ”ฌ and collaborates on interdisciplinary projects across optics, electronics, and nanotechnology ๐Ÿ”. He regularly attends academic conferences, publishes in reputed journals ๐Ÿ“„, and reviews scientific manuscripts. His dedication to professional growth ensures he stays at the forefront of innovation in functional materials and optoelectronic devices ๐ŸŒ.

๐Ÿ”ฌ Research Focusย 

Dr. Yun Zhaoโ€™s research primarily revolves around thin film photodetectors ๐Ÿ“ธ and semiconductor devices โšก. His focus lies in designing and fabricating new materials with enhanced sensitivity, stability, and performance for light-sensing technologies ๐ŸŒž. He explores emerging materials such as perovskites and nanostructures ๐ŸŒฑ for integration into flexible and wearable electronics ๐Ÿงค. His work bridges the gap between material science and applied electronics, aiming to revolutionize future optoelectronic systems ๐Ÿ”‹. The end goal of his research is to contribute to high-performance, low-cost, and energy-efficient devices for real-world applications ๐Ÿš—๐Ÿ“ฑ.

๐Ÿ† Awards and Honorsย 

  • ๐ŸŽ–๏ธ Ph.D. fellowship from the Chinese Academy of Sciences

  • ๐Ÿ… Postdoctoral appointment at Ningbo Institute of Materials Technology and Engineering (CAS)

  • ๐Ÿ† Recognized for outstanding research contributions in thin film photodetectors

  • ๐Ÿ“œ Multiple peer-reviewed publications in reputed international journals

Publication Top Notes

1. Understanding Proton Radiation-Induced Degradation Mechanisms in Cuโ‚‚ZnSn(S,Se)โ‚„ Kesterite Thin-Film Solar Cells

Journal: Solar Energy
Date: May 2025
DOI: 10.1016/j.solener.2025.113450
Summary:
This study investigates how proton radiation affects the stability and performance of Cuโ‚‚ZnSn(S,Se)โ‚„ (CZTSSe) thin-film solar cells. Proton radiation is relevant for space applications where solar cells are exposed to high-energy particles. The paper likely explores:

  • Changes in carrier lifetimes and defect states post-irradiation.

  • Structural or compositional changes in the absorber layer.

  • Strategies to mitigate degradation for improved radiation tolerance.

2. Multifunctional Artificial Electric Synapse of MoSeโ‚‚-Based Memristor toward Neuromorphic Application

Journal: The Journal of Physical Chemistry Letters
Date: February 6, 2025
DOI: 10.1021/acs.jpclett.4c03353
Summary:
This article presents a MoSeโ‚‚-based memristor designed to emulate biological synapses. The work focuses on neuromorphic computing, highlighting:

  • Synaptic plasticity behaviors (e.g., potentiation/depression).

  • Multifunctionality (possibly electrical + optical control).

  • Performance metrics like switching speed, retention, and endurance.

3. Exploring the Promoting Effect of Lanthanum Passivation on the Photovoltaic Performance of CZTSSe Solar Cells

Journal: The Journal of Chemical Physics
Date: December 21, 2024
DOI: 10.1063/5.0244645
Summary:
This paper studies how lanthanum (La) passivation enhances CZTSSe solar cell efficiency. Key aspects likely include:

  • Reduction in defect densities at grain boundaries or interfaces.

  • Improvements in open-circuit voltage and fill factor.

  • Insights into Laโ€™s role in modifying electronic structure or surface chemistry.

4. Electrical-Light Coordinately Modulated Synaptic Memristor Based on Tiโ‚ƒCโ‚‚ MXene for Near-Infrared Artificial Vision Applications

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c02281
Summary:
This research showcases a Tiโ‚ƒCโ‚‚ MXene-based memristor that responds to both electrical and light inputs, mimicking the retina for near-infrared vision. Highlights include:

  • Dual-mode modulation (electrical and optical).

  • Application in neuromorphic visual systems.

  • Spectral response analysis and synaptic behavior simulation.

5. Multicolor Fully Light-Modulated Artificial Synapse Based on P-MoSeโ‚‚/PxOy Heterostructured Memristor

Journal: The Journal of Physical Chemistry Letters
Date: August 29, 2024
DOI: 10.1021/acs.jpclett.4c01980
Summary:
This study introduces a heterostructured memristor combining P-doped MoSeโ‚‚ and PxOy, enabling light-tuned synaptic responses. Likely contributions:

  • Multicolor light sensitivity for multi-channel processing.

  • Photonic modulation of conductance states.

  • Integration prospects for optical neuromorphic systems.

Conclusion

Dr. Yun Zhao is highly suitable for the Best Researcher Award, particularly in categories related to emerging materials, device physics, or engineering sciences. His rapid academic progression, focused and relevant research in photodetectors and semiconductors, and training at top-tier institutions within the Chinese Academy of Sciences establish him as a promising and impactful researcher. Recognition through such an award would be both meritorious and motivating for his continued contributions to the field.

Morteza Khorami | Engineering | Best Researcher Award

Assoc. Prof. Dr. Morteza Khorami | Engineering | Best Researcher Award

Associate Professor at Coventry University, United Kingdom

Morteza Khorami ๐ŸŽ“ is a distinguished civil engineer and academic at Coventry University, specializing in structural engineering, sustainable construction materials, and reinforced concrete. With over 20 years of experience ๐Ÿ—๏ธ, he has led research projects on innovative cement composites and green building materials. As a Chartered Engineer (CEng) and Senior Fellow of the Higher Education Academy (SFHEA) ๐ŸŽ–๏ธ, he has contributed significantly to academia through teaching, mentoring, and publishing in high-impact journals. His expertise in project management and material innovation makes him a key figure in sustainable infrastructure development. ๐ŸŒ๐Ÿข

Professional Profile:

Orcid

Scopus

Google Scholar

Education & Experience

๐Ÿ“š Education:

๐Ÿ’ผ Experience:

  • Professor at Coventry University (2015 โ€“ Present) ๐Ÿ“–๐Ÿ—๏ธ

    • Conducts lectures and supervises research in structural engineering and construction materials.

    • Leads research on innovative materials for sustainable construction.

    • Publishes in high-impact journals and presents at international conferences.

    • Mentors postgraduate students in thesis development and engineering methodologies.

Professional Development

Morteza Khorami is a leading researcher in sustainable construction materials ๐Ÿ—๏ธ๐ŸŒฑ, focusing on reinforced concrete, cement composites, and eco-friendly building technologies. As a Chartered Engineer (CEng) ๐ŸŽ–๏ธ and Senior Fellow of the Higher Education Academy (SFHEA) ๐Ÿ…, he actively promotes innovation in civil engineering. He collaborates with global researchers to advance construction methodologies ๐ŸŒ and enhance material durability. His passion for teaching and mentorship ๐Ÿ‘จโ€๐Ÿซ has influenced many students in academia and industry. With extensive project management expertise ๐Ÿ“Š, he integrates cutting-edge research into practical engineering solutions for sustainable infrastructure. ๐Ÿข๐Ÿ”ฌ

Research Focus

Morteza Khoramiโ€™s research focuses on sustainable and innovative materials in civil engineering ๐Ÿ—๏ธ๐ŸŒฟ. His studies explore reinforced concrete durability, cement composites, and eco-friendly alternatives such as waste-based construction materials. He has conducted extensive research on fiber-reinforced cement boards, geopolymer mortars, and corrosion-resistant structures ๐Ÿ”ฌโš™๏ธ. His work contributes to reducing carbon footprints in construction by utilizing materials like scrap tires, bagasse fibers, and nano silica fume ๐ŸŒŽโ™ป๏ธ. Through his research, he aims to improve structural resilience and sustainability, making a lasting impact on the construction industry. ๐Ÿ›๏ธ๐Ÿ”

Awards & Honors

๐Ÿ… Chartered Engineer (CEng) โ€“ Recognized for professional excellence in engineering.
๐ŸŽ–๏ธ Senior Fellow of the Higher Education Academy (SFHEA) โ€“ Prestigious recognition in academia.
๐Ÿ† Published over 18 high-impact research papers in leading international journals.
๐Ÿ“š Authored multiple books and book chapters on structural engineering and materials science.
๐ŸŒ Presented research at international conferences, influencing global construction methodologies.

Publication Top Notes

  1. Effect of Low-Grade Calcined Clay on the Durability Performance of Blended Cement Mortar

    • Journal: Buildings

    • Publication Date: April 2, 2025

    • DOI: 10.3390/buildings15071159

    • Summary: This study investigates how incorporating low-grade calcined clay influences the durability of blended cement mortar. The research focuses on properties such as compressive strength, porosity, and resistance to chloride penetration.โ€‹

  2. Performance of Calcined Impure Kaolinitic Clay as a Partial Substitute for Portland Cement Concrete: A Review

    • Journal: Journal of Composites Science

    • Publication Date: March 21, 2025

    • DOI: 10.3390/jcs9040145

    • Summary: This review examines the viability of using calcined impure kaolinitic clay as a partial replacement for Portland cement. It evaluates the material’s impact on mechanical properties, durability, and environmental benefits.โ€‹

  3. Behaviour of Reinforced Concrete Beams Subjected to Corrosion Damage Under Cyclic Loading

    • Journal: Proceedings of the Institution of Civil Engineers – Structures and Buildings

    • Publication Date: March 7, 2025

    • DOI: 10.1680/jstbu.24.00104

    • Summary: This paper explores how corrosion damage affects the performance of reinforced concrete beams under cyclic loading conditions, focusing on changes in load-bearing capacity and structural integrity.โ€‹

  4. Development of Fiber Cement Boards Using Recycled Jute Fibers for Building Applications

    • Journal: Journal of Materials in Civil Engineering

    • Publication Date: January 2025

    • DOI: 10.1061/JMCEE7.MTENG-18084

    • Summary: This research focuses on creating fiber cement boards incorporating recycled jute fibers, assessing their mechanical properties, durability, and potential for sustainable building applications.โ€‹

  5. Assessment of the Mechanical and Microstructural Performance of Waste Kraft Fibre Reinforced Cement Composite Incorporating Sustainable Eco-Friendly Additives

    • Journal: Buildings

    • Publication Date: August 30, 2024

    • DOI: 10.3390/buildings14092725

    • Summary: This study evaluates the mechanical and microstructural properties of cement composites reinforced with waste kraft fibers and sustainable additives, aiming to enhance performance while promoting eco-friendly construction materials.

Conclusion

Dr. Morteza Khorami’s outstanding contributions to structural engineering, sustainable materials research, and academic leadership make him a highly deserving candidate for the Best Researcher Award. His work has not only advanced scientific knowledge but has also had practical applications in the construction industry, promoting sustainability and innovation.

Sahar Ghatrehsamani | Engineering | Best Scholar Award

Dr. Sahar Ghatrehsamani | Engineering | Best Scholar Award

Postdoctoral at Isfahan University of Technology, Iran

Dr. Sahar Ghatrehsamani is a passionate mechanical engineer specializing in tribology, with a strong background in machine learning and surface engineering. She earned her Ph.D. in Mechanical Engineering from Isfahan University of Technology (IUT), Iran (2022) and is currently a postdoctoral researcher at IUT, applying AI techniques to predict the tribological behavior of agricultural machinery. With expertise in CAD, FEA, and statistical analysis, she has contributed significantly to teaching, research, and mentoring students. Her work intersects materials science, additive manufacturing, and precision agriculture, making her a versatile and innovative researcher. ๐ŸŒ๐Ÿ”ฌ

Professional Profile:

Scopus

Google Scholar

Education & Experience

๐Ÿ“š Education:

  • ๐ŸŽ“ Ph.D. in Mechanical Engineering (Tribology) โ€“ Isfahan University of Technology, Iran (2017-2022)

  • ๐ŸŽ“ M.Sc. in Mechanical Engineering (Tribology) โ€“ Isfahan University of Technology, Iran (2015-2017)

  • ๐ŸŽ“ B.Sc. in Mechanical Engineering (Biosystem) โ€“ Shahrekord University, Iran (2009-2013)

๐Ÿ”ฌ Experience:

  • ๐Ÿ” Postdoctoral Researcher โ€“ Isfahan University of Technology, Iran (2024-Present)

  • ๐Ÿ‘ฉโ€๐Ÿซ Teaching Experience โ€“ Multiple undergraduate courses in mechanical engineering at IUT (2018-Present)

  • ๐Ÿค Co-Advisor โ€“ 2 Master’s & 6 Bachelor’s students

Professional Development

Dr. Sahar Ghatrehsamani is dedicated to research, teaching, and innovation in mechanical engineering, particularly in tribology, surface engineering, and AI-driven modeling. She has actively mentored students, guided research projects, and developed expertise in CAD, numerical simulation, and data analysis. Her teaching career at Isfahan University of Technology spans multiple engineering courses, and she has consistently ranked highly in teaching evaluations. Passionate about bridging the gap between mechanical engineering and materials science, she explores new technologies in additive manufacturing and precision agriculture to enhance sustainability and performance. ๐Ÿšœ๐Ÿ› ๏ธ

Research Focus

Dr. Sahar Ghatrehsamani’s research spans multiple engineering domains, focusing on:

  • ๐ŸŽ๏ธ Tribology โ€“ Studying friction, wear, and lubrication for various applications

  • ๐Ÿญ Surface Engineering โ€“ Enhancing material properties for durability and efficiency

  • ๐Ÿค– Machine Learning & AI โ€“ Applying predictive modeling in tribological behavior and material design

  • ๐Ÿ— Mechanical Behavior of Materials โ€“ Understanding stress, strain, and failure mechanics

  • ๐Ÿšœ Precision Agriculture โ€“ Developing efficient and smart agricultural machinery

  • ๐Ÿ–จ๏ธ Additive Manufacturing โ€“ Investigating 3D printing & advanced manufacturing

  • ๐Ÿ“Š Data Analysis & Numerical Modeling โ€“ Integrating simulation techniques for engineering solutions

Awards & Honors

Teaching Excellence:

  • ๐ŸŽ–๏ธ Ranked 1st in Mechanical Engineering Group (2021)

  • ๐Ÿ… Ranked 2nd in College of Engineering (2021)

  • ๐Ÿ† Ranked 13th among 569 faculty members at IUT (2021)

Research Contributions:

  • ๐Ÿ“œ Published multiple high-impact research papers in tribology and AI modeling

  • ๐ŸŒ Contributed to international collaborations in mechanical engineering research

๐Ÿš€ Her dedication to education, research, and innovation has established her as a rising expert in tribology and machine learning!

Publication Top Notes

  1. On the running-in nature of metallic tribo-components: A review

    • Authors: M.M. Khonsari, S. Ghatrehsamani, S. Akbarzadeh

    • Journal: Wear (Vol. 474, 2021)

    • Citations: 113

    • Summary: A comprehensive review of the running-in phase in metallic tribo-systems, examining the changes in friction, wear, and surface topography over time.

  2. Experimentally verified prediction of friction coefficient and wear rate during running-in dry contact

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Tribology International (Vol. 170, 2022)

    • Citations: 41

    • Summary: Experimental validation of predictive models for friction and wear rate during the running-in phase under dry contact conditions.

  3. Experimental and numerical study of the running-in wear coefficient during dry sliding contact

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Surface Topography: Metrology and Properties (Vol. 9, Issue 1, 2021)

    • Citations: 25

    • Summary: Investigates the wear coefficient during dry sliding contact using both experimental methods and numerical simulations.

  4. Predicting the wear coefficient and friction coefficient in dry point contact using continuum damage mechanics

    • Authors: S. Ghatrehsamani, S. Akbarzadeh

    • Journal: Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology (2019)

    • Citations: 23

    • Summary: Develops a predictive framework for wear and friction coefficients in dry point contact using continuum damage mechanics.

  5. Application of continuum damage mechanics to predict wear in systems subjected to variable loading

    • Authors: S. Ghatrehsamani, S. Akbarzadeh, M.M. Khonsari

    • Journal: Tribology Letters (Vol. 69, 2021)

    • Citations: 15

    • Summary: Extends continuum damage mechanics principles to predict wear in tribological systems under varying load conditions.

Conclusion

Sahar Ghatrehsamani is a strong candidate for the Best Scholar Award. Her contributions to tribology, AI-driven material predictions, and mechanical behavior research are significant. She excels in both academic and applied research, making notable interdisciplinary advancements. Given her teaching excellence, mentorship, and research output, she is highly deserving of recognition as a leading researcher in her field.

Guanwei Jia | Engineering | Best Researcher Award

Dr. Guanwei Jia | Engineering | Best Researcher Award

Associate Professor at Henan University, China

Guanwei jia (born in 1982) is an associate professor at the School of Physics and Electronics, Henan University, China. He holds a BSc in Electronic Information Engineering (2006), an MSc in Mechanical Engineering (2012), and a Ph.D. in Mechanical Engineering from Beihang University (2018). His research focuses on hydrogen-blended natural gas pipeline transportation and energy storage. By Spring 2025, he has 38 publications indexed in Web of Science. His contributions aim to enhance energy efficiency and sustainable energy solutions, making him a key figure in the field of energy engineering. ๐Ÿ”ฌโšก

Professional Profile:

Orcid

Education & Experience ๐ŸŽ“๐Ÿ“œ

  • BSc in Electronic Information Engineering โ€“ 2006 ๐ŸŽ“๐Ÿ“ก

  • MSc in Mechanical Engineering โ€“ 2012 ๐Ÿ› ๏ธ๐Ÿ“Š

  • Ph.D. in Mechanical Engineering (Beihang University) โ€“ 2018 ๐ŸŽ“โš™๏ธ

  • Associate Professor, Henan University โ€“ Present ๐ŸŽ“๐Ÿ›๏ธ

Professional Development ๐Ÿš€๐Ÿ”

Guanwei jia has significantly contributed to energy research, particularly in hydrogen-blended natural gas pipeline transportation and energy storage. His work integrates advanced mechanical engineering techniques with sustainable energy solutions. With 38 Web of Science-indexed publications, his research provides insights into energy optimization and pipeline safety. He collaborates with industry and academia to advance clean energy technologies. As an associate professor, he mentors students and leads research projects, fostering innovation in energy sustainability. His efforts in alternative energy solutions contribute to global efforts for a cleaner and more efficient energy future. ๐Ÿ”ฌโšก๐ŸŒ

Research Focus ๐Ÿ”ฌโšก

Guanwei jia specializes in hydrogen-blended natural gas transportation and energy storage, addressing key challenges in pipeline safety, efficiency, and sustainability. His research explores how hydrogen integration in natural gas pipelines enhances energy efficiency while reducing carbon emissions. By leveraging mechanical engineering principles, he aims to develop secure and cost-effective storage solutions. His studies help advance the transition toward renewable energy, making natural gas pipelines adaptable for future hydrogen-based energy systems. His findings are valuable for energy infrastructure development, ensuring a safer, cleaner, and more efficient energy network for the future. โš™๏ธ๐ŸŒโšก

Awards & Honors ๐Ÿ†๐ŸŽ–๏ธ

  • 38 Web of Science-indexed publications ๐Ÿ“‘๐Ÿ”

  • Recognized for contributions to hydrogen-blended gas research โšก๐Ÿ”ฌ

  • Active mentor and researcher in energy storage solutions ๐ŸŽ“๐Ÿ“š

  • Key collaborator in sustainable energy initiatives ๐ŸŒ๐Ÿ”‹

Publication Top Notes

  1. “Water Vapour Condensation Behaviour within Hydrogen-Blended Natural Gas in Laval Nozzles”

    • Authors: Not specified in the provided information.

    • Journal: Case Studies in Thermal Engineering

    • Publication Date: March 2025

    • DOI: 10.1016/j.csite.2025.106064

    • Summary: This study investigates how water vapor condenses in hydrogen-blended natural gas as it flows through Laval nozzles. Understanding this behavior is crucial for optimizing nozzle design and ensuring efficient operation in systems utilizing hydrogen-enriched natural gas.โ€‹

  2. “Simulation Study on Hydrogen Concentration Distribution in Hydrogen Blended Natural Gas Transportation Pipeline”

    • Authors: Not specified in the provided information.

    • Journal: PLOS ONE

    • Publication Date: December 3, 2024

    • DOI: 10.1371/journal.pone.0314453

    • Summary: This research employs simulations to analyze how hydrogen distributes within natural gas pipelines when blended. The findings provide insights into maintaining consistent hydrogen concentrations, which is vital for pipeline safety and efficiency.โ€‹

  3. “Numerical Simulation of the Transport and Thermodynamic Properties of Imported Natural Gas Injected with Hydrogen in the Manifold”

    • Authors: Not specified in the provided information.

    • Journal: International Journal of Hydrogen Energy

    • Publication Date: February 2024

    • DOI: 10.1016/j.ijhydene.2023.11.178

    • Summary: This paper presents numerical simulations examining how injecting hydrogen into imported natural gas affects its transport and thermodynamic properties within a manifold. The study aims to inform strategies for integrating hydrogen into existing natural gas infrastructures.โ€‹

  4. “Performance Analysis of Multiple Structural Parameters of Injectors for Hydrogen-Mixed Natural Gas Using Orthogonal Experimental Methods”

    • Authors: Not specified in the provided information.

    • Journal: Physics of Fluids

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0175018

    • Summary: This study evaluates how various structural parameters of injectors influence the performance of hydrogen-mixed natural gas systems. Using orthogonal experimental methods, the research identifies optimal injector designs to enhance efficiency and reliability.โ€‹

  5. “Ultrasonic Gas Flow Metering in Hydrogen-Mixed Natural Gas Using Lamb Waves”

    • Authors: Not specified in the provided information.

    • Journal: AIP Advances

    • Publication Date: November 1, 2023

    • DOI: 10.1063/5.0172477

    • Summary: This paper explores the application of Lamb waves in ultrasonic gas flow metering for hydrogen-mixed natural gas. The research demonstrates the effectiveness of this non-contact method in accurately measuring gas flow, which is essential for monitoring and controlling gas distribution systems.

Conclusion

While Guanwei Jia has made valuable contributions to the field of hydrogen energy and pipeline transportation, his suitability for a Best Researcher Award would depend on additional factors such as citations, research impact, industry collaborations, patents, and leadership in major projects. If he has demonstrated exceptional influence beyond publicationsโ€”such as shaping energy policies, leading significant projects, or achieving high citation impactโ€”he would be a strong candidate for the award.

Shirko Faroughi | Engineering | Best Researcher Award

Prof. Shirko Faroughi | Engineering | Best Researcher Award

Academic at Urmia University of Technoloy, Iran

Dr. Shirko Faroughi, an esteemed Professor of Mechanical Engineering at Urmia University of Technology, Iran, specializes in Computational Mechanics, Isogeometric Analysis, and Finite Element Methods. With a Ph.D. from Iran University of Science and Technology, he has held research positions at KTH University (Sweden), Swansea University (UK), and Bauhaus University Weimar (Germany). His work spans fracture mechanics, machine learning, and 3D printing simulations. As a CICOPS Scholar at the University of Pavia, Italy, Dr. Faroughi actively collaborates on international research projects, contributing significantly to advanced numerical methods. ๐Ÿ“š๐ŸŒ

Professional Profile:

Scopus

Google Scholar

Education & Experience ๐ŸŽ“๐Ÿ“œ

  • Ph.D. in Mechanical Engineering (2010) โ€“ Iran University of Science and Technology ๐Ÿ›๏ธ

  • M.S. in Mechanical Engineering (2005) โ€“ Iran University of Science and Technology ๐Ÿ—๏ธ

  • B.S. in Mechanical Engineering (2003) โ€“ Tabriz University ๐Ÿš—

๐Ÿ”น Academic Roles

  • Professor (2020 โ€“ Present) โ€“ Urmia University of Technology ๐Ÿ‘จโ€๐Ÿซ

  • Associate Professor (2015 โ€“ 2020) โ€“ Urmia University of Technology ๐Ÿ”ฌ

  • Assistant Professor (2011 โ€“ 2015) โ€“ Urmia University of Technology ๐Ÿ“–

  • Visiting Researcher (2008 โ€“ 2009) โ€“ KTH University, Sweden ๐Ÿ‡ธ๐Ÿ‡ช

๐Ÿ”น Administrative & International Positions

  • Dean of Mechanical Engineering Department (2022 โ€“ Present) ๐Ÿข

  • CICOPS Scholar โ€“ University of Pavia, Italy (2022) ๐Ÿ‡ฎ๐Ÿ‡น

  • Research Collaborator โ€“ Swansea University, UK (2015 โ€“ Present) ๐Ÿ‡ฌ๐Ÿ‡ง

  • Research Collaborator โ€“ New Mexico State University, USA (2016 โ€“ Present) ๐Ÿ‡บ๐Ÿ‡ธ

  • Research Collaborator โ€“ Bauhaus University Weimar, Germany (2017 โ€“ Present) ๐Ÿ‡ฉ๐Ÿ‡ช

Professional Development ๐ŸŒ๐Ÿ“š

Dr. Shirko Faroughi has made remarkable contributions to mechanical engineering through computational mechanics, finite element analysis, and machine learning. His research advances superconvergent mass and stiffness matrices, isogeometric methods, phase-field methods, and energy harvesting. He also integrates AI-driven techniques to enhance engineering simulations. His collaborations span Europe and the U.S., working with top researchers on thin structures, 3D printing, and structural dynamics. As a department dean and international collaborator, he plays a pivotal role in engineering education and research innovations, fostering global academic partnerships. ๐ŸŒŽ๐Ÿ’ก

Research Focus ๐Ÿ”๐Ÿง 

Dr. Faroughi’s research primarily revolves around Computational Mechanics and Advanced Numerical Methods, integrating Artificial Intelligence and Machine Learning for engineering applications. His work focuses on:

  • Superconvergent mass and stiffness matrices ๐Ÿ“๐Ÿ”ฌ

  • Isogeometric and finite element methods ๐Ÿ—๏ธ๐Ÿ“Š

  • Fracture mechanics and phase-field modeling ๐Ÿš๏ธ๐Ÿ’ฅ

  • Tensegrity structures and energy harvesting โšก๐Ÿ”ฉ

  • Machine learning and transfer learning in mechanical simulations ๐Ÿค–๐Ÿ“ˆ

  • 3D printing simulations and advanced material modeling ๐Ÿ–จ๏ธ๐Ÿงฉ

His research bridges traditional mechanical engineering with AI and computational techniques, pushing engineering boundaries through innovative numerical simulations. ๐Ÿš€๐Ÿ”ข

Awards & Honors ๐Ÿ†๐ŸŽ–๏ธ

  • CICOPS Scholarship โ€“ University of Pavia, Italy (2022) ๐Ÿ‡ฎ๐Ÿ‡น

  • Visiting Researcher โ€“ KTH University, Sweden (2008-2009) ๐Ÿ‡ธ๐Ÿ‡ช

  • Research Collaborator โ€“ Swansea University, UK (2015-Present) ๐Ÿ‡ฌ๐Ÿ‡ง

  • Research Collaborator โ€“ Bauhaus University Weimar, Germany (2017-Present) ๐Ÿ‡ฉ๐Ÿ‡ช

  • Research Collaborator โ€“ New Mexico State University, USA (2016-Present) ๐Ÿ‡บ๐Ÿ‡ธ

  • Dean of Mechanical Engineering Department โ€“ Urmia University of Technology (2022-Present) ๐Ÿ›๏ธ

  • Multiple Grants for Advanced Computational Mechanics Research ๐ŸŽ“๐Ÿ”

Publication Top Notes

  1. Wave Propagation in 2D Functionally Graded Porous Rotating Nano-Beams

    • Authors: S. Faroughi, A. Rahmani, M.I. Friswell

    • Published in Applied Mathematical Modelling (2020)

    • Citations: 71

    • Focus: Investigates wave propagation in porous nano-beams using a general nonlocal higher-order beam theory, considering functionally graded materials and rotation effects.

  2. Vibration of 2D Imperfect Functionally Graded Porous Rotating Nanobeams

    • Authors: A. Rahmani, S. Faroughi, M.I. Friswell

    • Published in Mechanical Systems and Signal Processing (2020)

    • Citations: 54

    • Focus: Examines vibration behavior of imperfect functionally graded porous rotating nanobeams based on a generalized nonlocal theory.

  3. Non-linear Dynamic Analysis of Tensegrity Structures Using a Co-Rotational Method

    • Authors: S. Faroughi, H.H. Khodaparast, M.I. Friswell

    • Published in International Journal of Non-Linear Mechanics (2015)

    • Citations: 47

    • Focus: Develops a co-rotational method for analyzing nonlinear dynamics of tensegrity structures.

  4. Physics-Informed Neural Networks for Solute Transport in Heterogeneous Porous Media

    • Authors: S.A. Faroughi, R. Soltanmohammadi, P. Datta, S.K. Mahjour, S. Faroughi

    • Published in Mathematics (2023)

    • Citations: 40

    • Focus: Uses physics-informed neural networks (PINNs) with periodic activation functions to model solute transport in heterogeneous porous media.

  5. Nonlinear Transient Vibration of Viscoelastic Plates Using a NURBS-Based Isogeometric HSDT Approach

    • Authors: E. Shafei, S. Faroughi, T. Rabczuk

    • Published in Computers & Mathematics with Applications (2021)

    • Citations: 30

    • Focus: Investigates nonlinear transient vibrations of viscoelastic plates using an isogeometric high-order shear deformation theory (HSDT) approach.

Mahmood Shakiba | Engineering | Best Researcher Award

Assist. Prof. Dr. Mahmood Shakiba | Engineering | Best Researcher Award

Faculty member at Ferdowsi University of Mashhad, Iran

Dr. mahmood shakiba ๐Ÿ‡ฎ๐Ÿ‡ท is an assistant professor at Ferdowsi University of Mashhad, specializing in petroleum engineering with expertise in hydrocarbon reservoirs and enhanced oil recovery (EOR) ๐Ÿ›ข๏ธ. He earned his Ph.D. from Amirkabir University of Technology (2020) ๐ŸŽ“, focusing on nano-assisted smart water for sand production control. With extensive experience in COโ‚‚ and Hโ‚‚ underground storage projects, reservoir characterization, and formation damage remediation, he has held key academic and industrial roles. As a researcher and educator, he has contributed significantly to petroleum engineering, guiding students and leading innovative studies in reservoir engineering and geomechanics ๐Ÿ”ฌ๐Ÿ“š.

Professional Profile

Scopus

Google Scholar

Education & Experience

Education ๐ŸŽ“

โœ… Ph.D. in Petroleum Engineering (Hydrocarbon Reservoirs), Amirkabir University of Technology (2016-2020)

  • Thesis: Nano-assisted smart water for sand production in unconsolidated sandstone reservoirs.

โœ… M.Sc. in Petroleum Engineering (Hydrocarbon Reservoirs), Shiraz University (2012-2014)

  • Thesis: Enhanced oil recovery & COโ‚‚ storage via carbonated water injection.

โœ… B.Sc. in Petroleum Engineering (Reservoir Engineering), Shiraz University (2008-2012)

  • Thesis: Simulation of solution gas drive in fractured reservoirs.

Work Experience ๐Ÿ› ๏ธ

๐Ÿ”น Assistant Professor โ€“ Ferdowsi University of Mashhad (2023-Present)
๐Ÿ”น Project Supervisor โ€“ Underground COโ‚‚ Storage (2023-Present)
๐Ÿ”น Researcher โ€“ Underground Hโ‚‚ Storage, RIPI (2023-Present)
๐Ÿ”น Technical Manager โ€“ Upstream Oil Research Center, Sharif University (2020-2022)
๐Ÿ”น Technical Supervisor โ€“ MAPSA Co., Tehran (2019-2020)
๐Ÿ”น Industrial Consultant โ€“ MAPSA Co., Tehran (2019-2020)
๐Ÿ”น Senior Lab Equipment Designer โ€“ MAPSA Co., Tehran (2018-2019)
๐Ÿ”น Researcher โ€“ Advanced EOR Research Center, Shiraz University (2011-2014)

Professional Development ๐ŸŒŸ

Dr. mahmood shakiba has significantly contributed to petroleum engineering through teaching, research, and industrial consulting ๐Ÿ“–๐Ÿ”ฌ. His expertise spans reservoir engineering, well testing, and gas reservoirs ๐Ÿš€. At Ferdowsi University, he educates students on reservoir management and maintenance, while leading projects on underground COโ‚‚ and Hโ‚‚ storage. His industry experience includes technical supervision, reservoir characterization, and EOR techniques ๐Ÿญ. Dr. shakiba has also played a key role in laboratory equipment design and geomechanical feasibility studies. His dedication to advancing sustainable energy storage and petroleum recovery has established him as a leader in the field ๐ŸŒ๐Ÿ’ก.

Research Focus ๐Ÿ”ฌ

Dr. shakibaโ€™s research primarily focuses on enhanced oil recovery (EOR), underground storage of COโ‚‚ and Hโ‚‚, and reservoir geomechanics ๐Ÿ—๏ธ. His experimental and simulation studies have explored innovative methods for improving oil recovery and mitigating environmental impact ๐ŸŒฑ. He has investigated nano-assisted smart water flooding, formation damage remediation, and COโ‚‚ sequestration to optimize hydrocarbon reservoir performance. His geological and geomechanical feasibility studies have contributed to safe underground hydrogen storage โšก. His work advances sustainable energy solutions while improving oil and gas recovery efficiency for the future ๐ŸŒ๐Ÿ”‹.

Awards & Honors ๐Ÿ†

๐Ÿ… Technical Leadership Award โ€“ Upstream Oil Research Center, Sharif University
๐Ÿ… Outstanding Research Contribution โ€“ Research Institute of Petroleum Industry (RIPI)
๐Ÿ… Best Thesis Award โ€“ Amirkabir University of Technology (2020)
๐Ÿ… Top Researcher Recognition โ€“ Shiraz University EOR Research Center
๐Ÿ… Best Instructor Award โ€“ Ferdowsi University of Mashhad (2023)

Publication Top Notes

  1. Investigation of oil recovery and COโ‚‚ storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    • Journal of Petroleum Science and Engineering (2016)
    • Citations: 79
    • Examines how carbonated water injection (CWI) enhances oil recovery and COโ‚‚ storage efficiency in carbonate reservoirs under secondary and tertiary injection scenarios.
  2. A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs

    • Journal of Molecular Liquids (2020)
    • Citations: 35
    • Investigates how smart water, combined with nanoparticles, helps mitigate sand production in weakly consolidated sandstone reservoirs while improving oil recovery.
  3. The impact of connate water saturation and salinity on oil recovery and COโ‚‚ storage capacity during carbonated water injection in carbonate rock

    • Chinese Journal of Chemical Engineering (2019)
    • Citations: 29
    • Analyzes how variations in connate water saturation and salinity influence oil displacement efficiency and COโ‚‚ trapping during CWI in carbonate formations.
  4. Effects of type and distribution of clay minerals on the physico-chemical and geomechanical properties of engineered porous rocks

    • Scientific Reports (2023)
    • Citations: 21* (recently published)
    • Studies how different clay minerals affect the structural integrity and chemical behavior of engineered porous rocks, impacting reservoir performance.
  5. An experimental insight into the influence of sand grain size distribution on the petrophysical and geomechanical properties of artificially made sandstones

    • Journal of Petroleum Science and Engineering (2022)
    • Citations: 15
    • Explores the role of sand grain size variations in determining the permeability, porosity, and mechanical strength of artificial sandstone samples.