Prof. Dr. Lijun You | Engineering | Best Researcher Award

Prof. Dr. Lijun You | Engineering | Best Researcher Award

Professor at South China University of Technology, China

Prof. Lijun You, a leading scholar in food science, currently serves as a professor at the School of Food Science and Engineering, South China University of Technology (SCUT). With over two decades of academic and research engagement, he has carved a specialized niche in polysaccharide science—exploring their degradation pathways, molecular structures, biofunctions, and biomedical applications. His international exposure includes a formative research stint at Cornell University, USA. He has authored more than 160 peer-reviewed publications, garnering over 8,000 citations and achieving an impressive h-index of 53. His investigations span from seaweed-derived polysaccharides to their transformative impact on skin health, inflammation, gut ecology, and wound repair. As department director since 2016 and professor since 2020, he has guided both institutional growth and scientific inquiry. Prof. You’s innovative contributions not only advance polysaccharide-based therapeutics but also position him as a recognized authority in food bioactives and functional biomaterials research.

Professional Profile 

Education

Prof. Lijun You’s educational journey began and flourished at South China University of Technology, where he earned both his bachelor’s (2001–2005) and doctoral degrees (2005–2010) in Food Science. His doctoral research laid a strong foundation for his future exploration of polysaccharides and their multifaceted applications in health and medicine. To complement his domestic training, he expanded his academic horizon internationally by spending a year (2009–2010) at Cornell University, USA, as a non-degree scholar. There, he gained vital exposure to advanced methodologies and interdisciplinary food science paradigms. This combination of strong local grounding and international perspective has deeply informed his research philosophy and academic rigor. His educational path is emblematic of a scholar committed to lifelong learning, cross-border collaboration, and translational research. This fusion of technical depth and global awareness has propelled Prof. You into the forefront of food biochemistry and polysaccharide innovation.

Professional Experience

Prof. Lijun You’s professional ascent within the South China University of Technology is marked by leadership, mentorship, and research excellence. Since joining the School of Food Science and Engineering, he has taken on progressive responsibilities, culminating in his promotion to full professor in 2020. He assumed the role of Department Director of Food Science in 2016, where he continues to oversee academic strategy, curriculum development, and collaborative research initiatives. Prof. You’s administrative acumen complements his scientific pursuits, allowing him to foster a research-driven academic culture within the department. Through his leadership, SCUT’s food science program has gained visibility in polysaccharide research and international academic networks. His career reflects a rare synergy of educator, manager, and innovator—advancing both the scholarly community and institutional reputation. His professional milestones underscore a dedication to excellence, from teaching and mentoring to groundbreaking explorations in bioactive compounds and functional materials.

Research Interests

At the heart of Prof. Lijun You’s scientific mission lies an intense focus on polysaccharides—complex carbohydrates with vast therapeutic potential. His research encompasses four interconnected domains: the controlled degradation of seaweed polysaccharides, detailed analysis of their molecular architecture, the examination of their bioactive roles (notably in anti-photoaging, anti-inflammatory functions, and gut microbiota modulation), and the development of polysaccharide-based hydrogels for biomedical uses like wound healing. His multidisciplinary work bridges food science, biochemistry, pharmacology, and materials engineering, offering insights into the therapeutic potential of natural biopolymers. By decoding structure–function relationships, Prof. You reveals how polysaccharides can serve as nutraceuticals and advanced wound-care agents. His contributions have shaped not just scholarly discourse, but also future prospects in functional foods and regenerative medicine. With over 8,000 citations and a publication record of 166 scientific articles, his research continues to guide the field toward innovative health-promoting solutions grounded in food-derived compounds.

Awards and Honors

While specific awards and honors are not listed, Prof. Lijun You’s distinguished citation metrics—over 8,000 citations and an h-index of 53—stand as testament to his widespread recognition in the global research community. These achievements suggest a strong impact across scientific disciplines, especially within polysaccharide and functional food research. His selection for an international academic exchange at Cornell University indicates peer recognition of his potential early in his career. In addition, his longstanding leadership as department director reflects institutional confidence in his strategic vision and academic leadership. His frequent publication in high-impact journals and sustained research output also imply numerous internal and external acknowledgments. Though formal accolades are not detailed here, Prof. You’s academic footprint and leadership roles highlight a scholar whose work has earned both national and international esteem, reinforcing his role as a key contributor to the advancement of food science and health-related biomaterials.

Publications Top Notes

  • Title: Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates
    Authors: L. You, M. Zhao, C. Cui, H. Zhao, B. Yang
    Year: 2009
    Citations: 377
    Source: Innovative Food Science & Emerging Technologies, 10(2), 235–240

  • Title: Changes in the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates during a simulated gastrointestinal digestion
    Authors: L. You, M. Zhao, J.M. Regenstein, J. Ren
    Year: 2010
    Citations: 365
    Source: Food Chemistry, 120(3), 810–816

  • Title: In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion
    Authors: L. You, M. Zhao, J.M. Regenstein, J. Ren
    Year: 2011
    Citations: 363
    Source: Food Chemistry, 124(1), 188–194

  • Title: Optimization for ultrasound extraction of polysaccharides from mulberry fruits with antioxidant and hyperglycemic activity in vitro
    Authors: C. Chen, L.J. You, A.M. Abbasi, X. Fu, R.H. Liu
    Year: 2015
    Citations: 315
    Source: Carbohydrate Polymers, 130, 122–132

  • Title: Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-MS/MS
    Authors: L. You, M. Zhao, J.M. Regenstein, J. Ren
    Year: 2010
    Citations: 257
    Source: Food Research International, 43(4), 1167–1173

  • Title: Transforming insect biomass into consumer wellness foods: A review
    Authors: D. Sun-Waterhouse, G.I.N. Waterhouse, L. You, J. Zhang, Y. Liu, L. Ma, J. Gao, …
    Year: 2016
    Citations: 233
    Source: Food Research International, 89, 129–151

  • Title: Characterization of polysaccharide fractions in mulberry fruit and assessment of their antioxidant and hypoglycemic activities in vitro
    Authors: C. Chen, L.J. You, A.M. Abbasi, X. Fu, R.H. Liu, C. Li
    Year: 2016
    Citations: 221
    Source: Food & Function, 7(1), 530–539

  • Title: Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities
    Authors: L. You, Q. Gao, M. Feng, B. Yang, J. Ren, L. Gu, C. Cui, M. Zhao
    Year: 2013
    Citations: 210
    Source: Food Chemistry, 138(4), 2242–2249

  • Title: Optimization of microwave-assisted extraction of Sargassum thunbergii polysaccharides and its antioxidant and hypoglycemic activities
    Authors: B. Ren, C. Chen, C. Li, X. Fu, L. You, R.H. Liu
    Year: 2017
    Citations: 209
    Source: Carbohydrate Polymers, 173, 192–201

  • Title: Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn
    Authors: C. Li, Q. Huang, X. Fu, X.J. Yue, R.H. Liu, L.J. You
    Year: 2015
    Citations: 207
    Source: International Journal of Biological Macromolecules, 75, 298–305

Conclusion

Prof. Lijun You represents a dynamic blend of academic excellence, international perspective, and scientific innovation in the realm of food science and engineering. His deep specialization in polysaccharide chemistry and bioactivity has driven meaningful contributions to health sciences, particularly in areas like gut health, skincare, and tissue repair. With a foundation built at SCUT and refined at Cornell, his education and professional pathway reflect global competence and leadership. As a professor and department director, he mentors the next generation of scientists while steering research initiatives with clarity and purpose. His prolific publication record and high citation index underscore a lasting impact on scholarly literature. Though specific awards are not enumerated, the scope and influence of his work stand as accolades in themselves. Prof. You continues to shape the future of functional foods and biopolymer applications, offering innovative solutions that blend traditional knowledge with cutting-edge science.

Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam at The Hong Kong Polytechnic University , Hong Kong

Prof. Hwa Yaw TAM 🎓🔬, IEEE Life Fellow and OPTICA Fellow, is a visionary in photonics and optical fibre sensing. Currently Chair Professor of Photonics at The Hong Kong Polytechnic University 🇭🇰, he has spearheaded groundbreaking innovations in fibre-optic sensor systems for transportation 🚄, energy ⚡, and medical 👂 applications. With over 800 publications 📚 and 20 patents 🔖, he stands as the second most cited expert in fibre-optic sensing, boasting an H-index of 73. His trailblazing contributions span continents, from Hong Kong’s MTR to the Netherlands and Australia 🌍. A laureate of the Berthold Leibinger Innovationspreis 🏆 and multiple Geneva Invention awards, Prof. Tam’s legacy bridges academia, industry, and public safety. His work has also spun off seven photonics companies 🚀. With unwavering passion and pioneering spirit, Prof. Tam continues to illuminate the future of smart sensing and laser technologies 🔭.

Professional Profile 

🎓 Education

Prof. Hwa Yaw TAM embarked on his academic voyage at The University of Manchester, UK 🇬🇧, earning both his B.Eng in 1985 and Ph.D. in 1989 🎓. His early educational foundations laid the groundwork for a lifelong commitment to photonics and optical engineering. Specializing in electrical and electronic engineering, his doctoral studies fused rigorous theory with hands-on research in laser systems and fibre technologies 🔍. This dual emphasis cultivated a mindset driven by innovation and precision. The UK academic environment, rich in historical scientific achievement, greatly influenced his research ethos 🌐. Prof. Tam’s education not only equipped him with cutting-edge technical knowledge but also instilled in him a vision to translate science into impactful, real-world applications. Today, that foundation continues to echo through his advanced fibre-optic sensor innovations 🔬, standing as a beacon for future generations of engineers and scientists 📘💡.

🏛️ Professional Experience

Prof. Tam’s professional journey spans academia and industry in equal brilliance 🌠. He began his research career at GEC-Marconi Ltd. (London) between 1989–1993, delving into erbium-doped fibre amplifiers and laser systems 💡. He then joined The Hong Kong Polytechnic University in 1993, rising through the ranks from Lecturer to Chair Professor of Photonics. He also served as Head of the Electrical Engineering Department and was the Founding Director of the Photonics Research Centre (2000–2022) 🏫. Presently, he is Associate Director at PolyU’s Photonics Research Institute, spearheading interdisciplinary innovations. Prof. Tam’s work transcends traditional academia—his team has launched seven start-ups, catalyzing photonics-based solutions globally 🚀. His leadership has shaped fibre-optic sensing systems for cities and industries across Asia, Europe, and Australia, turning theoretical breakthroughs into operational systems in railways 🚉, energy grids 🔋, and hospitals 🏥, positioning him as a pivotal force in global smart sensing networks 🌐.

🔬 Research Interest

Prof. Tam’s research orbits around specialty optical fibres tailored for real-world sensor applications 🔍. His core interests span the design and fabrication of advanced fibre-optic systems that serve as digital sentinels in complex infrastructures 🧠. From structural health monitoring (SHM) to real-time railway diagnostics, his innovations help prevent failures before they occur ⚠️. His pioneering optical fibre networks have monitored everything from high-speed trains 🚆 to smart escalators and even cochlear implants for medical precision 👂. By embedding fibre Bragg gratings (FBGs) into intelligent sensing webs, he’s revolutionized predictive maintenance across industries. His group’s work is particularly transformative in railway monitoring, with deployment success stories in Hong Kong, Singapore, and the Netherlands 🌍. Always ahead of the curve, Prof. Tam’s research fuses AI 🤖, photonic engineering, and real-time analytics to create a safer, more connected world through light 🌈 and precision sensing technologies 📈.

🏅 Awards and Honors

Prof. Tam’s achievements are globally celebrated 🏆. In 2025, he won the Special Prize and Gold Medal at Geneva’s Invention Expo for a smart cochlear implant 👂🌟. In 2024, he secured another Gold Medal for lithium-ion battery health monitoring via FBG sensors 🔋. Earlier, in 2022, his intelligent escalator monitoring system earned him yet another Geneva Gold Award 🥇. The Berthold Leibinger Innovationspreis in 2014, among the world’s highest laser tech honors, recognized his work in wavelength-tunable laser sensing for railways 🚄. His team also received the President’s Award for Knowledge Transfer in 2022 at PolyU for creating AI-enhanced optical fibre networks 🌐. Further accolades include a Best Paper finalist at IEEE SENSORS 2016 📃. Each honor underscores Prof. Tam’s deep impact on laser technology, smart sensing, and translational engineering. His consistent award-winning contributions reflect a perfect blend of scientific creativity, societal value, and engineering excellence 💼🔬.

📚 Publications Top Note 

  1. Title: Enhanced Quasi-Distributed Accelerometer Array Based on ϕ-OTDR and Ultraweak Fiber Bragg Grating
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: IEEE Sensors Journal
    Summary: Proposes an enhanced accelerometer array using phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and ultraweak fiber Bragg gratings for distributed vibration sensing, suitable for applications like structural health monitoring.


  1. Title: Label-Free DNA Detection Using Etched Tilted Bragg Fiber Grating-Based Biosensor
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: Sensors
    Summary: Describes a label-free biosensor using etched tilted fiber Bragg gratings to detect DNA without the need for fluorescent labels, enhancing sensitivity and simplicity in genetic diagnostics.


  1. Title: Recovery of a Highly Reflective Bragg Grating in DPDS-Doped Polymer Optical Fiber by Thermal Annealing
    Authors: , , , …
    Year: 2023
    Citations: 2
    Source: Optics Letters
    Summary: Demonstrates the recovery of degraded Bragg gratings in doped polymer optical fibers using thermal annealing, showing potential for longer lifespan and reusability in fiber-optic sensors.


  1. Title: Accident Risk Tensor-Specific Covariant Model for Railway Accident Risk Assessment and Prediction
    Authors: , , , …
    Year: 2023
    Citations: 8
    Source: Reliability Engineering and System Safety
    Summary: Introduces a tensor-based statistical model for accurately assessing and predicting accident risks in railway systems by incorporating covariant risk factors.


  1. Title: Polymeric Fiber Sensors for Insertion Forces and Trajectory Determination of Cochlear Implants in Hearing Preservation
    Authors: , , , …
    Year: 2023
    Citations: 10
    Source: Biosensors and Bioelectronics
    Summary: Presents polymeric fiber-optic sensors designed to measure insertion force and trajectory during cochlear implant surgeries, helping to preserve hearing by reducing inner ear trauma.


  1. Title: Miniature Two-Axis Accelerometer Based on Multicore Fiber for Pantograph-Catenary System
    Authors: , , , ,
    Year: 2023
    Citations: 8
    Source: IEEE Transactions on Instrumentation and Measurement
    Summary: Develops a compact fiber-based accelerometer capable of sensing in two axes, tailored for monitoring the dynamics of pantograph-catenary interactions in electric rail systems.


  1. Title: Ultraminiature Optical Fiber-Tip Directly-Printed Plasmonic Biosensors for Label-Free Biodetection
    Authors: , , , …
    Year: 2022
    Citations: 19
    Source: Biosensors and Bioelectronics
    Summary: Describes a highly miniaturized fiber-tip plasmonic biosensor fabricated via direct printing, enabling sensitive and label-free detection of biomolecules at the microscale.


  1. Title: Accelerated Pyro-Catalytic Hydrogen Production Enabled by Plasmonic Local Heating of Au on Pyroelectric BaTiO3 Nanoparticles
    Authors: , , , …
    Year: 2022
    Citations: 83
    Source: Nature Communications
    Summary: Reports a novel hydrogen production method using gold-decorated BaTiO₃ nanoparticles, where plasmonic heating enhances pyro-catalytic activity under mild conditions.


  1. Title: Biomechanical Assessment and Quantification of Femur Healing Process Using Fibre Bragg Grating Strain Sensors
    Authors: , , , …
    Year: 2022
    Citations: 5
    Source: Sensors and Actuators A: Physical
    Summary: Uses fiber Bragg grating strain sensors to monitor and quantify mechanical changes in the femur during bone healing, supporting better postoperative assessment.


  1. Title: Mach-Zehnder Interferometer Based Fiber-Optic Nitrate Sensor
    Authors: , , , ,
    Year: 2022
    Citations: Not listed
    Source: Optics Express
    Summary: Presents a Mach-Zehnder interferometer design using optical fiber for detecting nitrate concentrations in water, aiming at applications in environmental monitoring

🔚 Conclusion 

Prof. Hwa Yaw TAM is more than a scholar—he is a trailblazer in light-based sensing technologies 🌟. His career weaves together pioneering science, practical engineering, and impactful entrepreneurship 🌐. Through over 800 papers, 20 patents, and numerous awards, he has reshaped how the world monitors structural, environmental, and human conditions using optical fibres 💡. His real-world implementations—from monitoring city-wide railways to enabling hearing restoration—demonstrate how research can elevate safety, precision, and quality of life for millions 🌍. He continues to mentor future innovators and drive collaborative photonic research through his leadership roles at PolyU and the Photonics Research Institute. With vision, dedication, and humility, Prof. Tam stands as a guiding light for the global photonics community 🌠. His journey exemplifies how science, when paired with compassion and creativity, becomes a force for building a smarter, safer, and more sustainable world 🔗🌿.

Sławomir Michalak | Engineering | Industry Impact Award

Assist. Prof. Dr. Sławomir Michalak | Engineering | Industry Impact Award

Avionics Division Manager at Air Force Institute of Technology, Poland

Prof. Sławomir Michalak, Ph.D., D.Sc. Eng. ✈️, is a distinguished aviation expert whose work bridges academia, defense, and engineering innovation. With decades of experience in avionics systems, aircraft diagnostics, and battlefield electronic warfare systems 🛠️📡, he has led the Avionics Department at the Air Force Institute of Technology since 2001. His pioneering efforts span system integration, reliability assessment, and phonoscopic analysis, influencing modern aviation practices. Michalak is a prolific contributor 📚 with numerous publications and nine recognized implementations. As a mentor and reviewer, he has significantly shaped doctoral and post-doctoral research. He has also educated future aviation professionals 👨‍🏫 at institutions like the Warsaw University of Technology and the SIMP NOT Technical School. Actively involved in national defense research and scientific committees, his legacy resonates across Polish military aviation and beyond 🌍. His commitment to innovation and education makes him a keystone figure in aviation sciences and applied technologies.

Professional Profile 

Orcid

Scopus

🎓 Education 

Dr. Sławomir Michalak’s academic journey 🚀 is deeply rooted in technical aviation sciences, marked by a robust specialization in avionics and aircraft navigation systems. He earned his doctorate in engineering and later achieved the prestigious Doctor of Science (D.Sc.) degree in technical sciences in 2016 🎓, with a concentration on machine construction and operational disciplines. His educational trajectory demonstrates a relentless pursuit of advanced knowledge in complex aircraft systems, enhancing Poland’s aerospace education infrastructure. Moreover, his authorial role in crafting and teaching curricula—especially the subject “Aviation Equipment” approved by Warsaw’s Education Board—reflects a deep commitment to pedagogy. His teaching efforts spanned nearly three decades and included lectures at Warsaw University of Technology’s Faculty of Transport, focusing on Air Navigation 🧭. His foundation in education has not only equipped him with specialized skills but has also enabled him to disseminate that knowledge to future leaders of aviation systems engineering.

💼 Professional Experience 

With an illustrious career spanning over three decades, Prof. Michalak has held pivotal roles that define Poland’s aviation research and development landscape ✈️. Since 2001, he has been the head of the Avionics Department at the Air Force Institute of Technology, where he currently serves as a professor 👨‍🔬. His career is marked by excellence in integrating avionics systems, reliability diagnostics, and designing solutions for modern combat operations, including electronic countermeasures 🛡️. He has played a key advisory role in national aviation safety as a long-standing member of the Aircraft Accident Investigation Board, later incorporated into the State Aviation Accident Investigation Board 🕵️. He also lends expertise to the Polish Academy of Sciences’ Transport Committee. Parallelly, he has served as a reviewer and board member for multiple doctoral/post-doctoral theses, as well as contributing to national defense and R&D projects funded by premier agencies like the National Center for Research and Development 💡.

🔬 Research Interests 

Prof. Michalak’s research interests are deeply embedded in the critical functionalities of advanced aircraft systems, with a core emphasis on avionics integration and optimization 🚁. His scholarly pursuits center on diagnostics, system reliability, and onboard information processing, including phonoscopic and parametric analysis of flight data recorders 📈🔊. He investigates navigation system integrity, real-time data interpretation, and complex multi-sensor integration essential for military reconnaissance and electronic warfare systems. His innovations directly impact aircraft survivability and mission effectiveness in modern combat environments ⚙️. His work also extends to analyzing flight incident data, enhancing aviation safety and post-mission assessments. Furthermore, his involvement in the Electromobility and Autonomous Transport Section reveals his forward-looking vision in adapting aviation technologies to land-based and autonomous platforms 🚗📡. Through interdisciplinary collaborations and defense-funded projects, his research acts as a crucial bridge between theoretical foundations and operational implementation across aviation and defense sectors.

🏅 Awards and Honors 

Though specific award titles are not explicitly listed, Prof. Michalak’s array of achievements reflects a highly decorated academic and technical career 🏆. His recognition stems from the practical impact of nine notable implementation projects that brought real-world improvements in avionics system performance and safety ✨. His invitations to serve on scientific committees, review doctoral works, and lecture at renowned institutions showcase the esteem he holds in academic and defense circles. His prolonged contribution to the Aircraft Accident Investigation Board—spanning eras of structural reorganization—further demonstrates his trusted leadership in critical national aviation oversight roles ✈️. Being part of elite organizations like the Transport Committee of the Polish Academy of Sciences and guiding R&D projects funded by the Ministry of Defense affirms his reputation as a thought leader 🧠. These honors, both formal and implied, are a testament to his sustained excellence and unwavering dedication to enhancing Poland’s aerospace defense and academic frontiers.

📚 Publications Top Note 

1. Power Quality in the Context of Aircraft Operational Safety
Authors: Tomasz Tokarski, Sławomir Michalak, Barbara Kaczmarek, Mariusz Zieja, Tomasz Polus
Year: 2025 (Published April 10)
Journal: Energies
DOI: 10.3390/en18081945
Source: Crossref / MDPI
Summary:
This article investigates how power quality, particularly from Ground Power Units (GPUs), affects aircraft operational safety. It focuses on GPUs used by the Polish Armed Forces and highlights how aging equipment (some over 40 years old) leads to degraded performance in transient conditions, contributing to aircraft unserviceability. The paper proposes diagnostic methodologies in line with Polish military standards and emphasizes the need for modern monitoring systems to ensure power reliability.


2. Selected Problems of Determining Pilot Survival Time in Cold Water after the Aircraft Crash
Authors: Przemysław Stężalski, Sławomir Michalak, Jerzy Borowski
Year: 2025 (Published January 17)
Journal: The Polish Journal of Aviation Medicine, Bioengineering and Psychology
DOI: 10.13174/pjambp.17.12.2024.04
Source: Crossref
Summary:
This research introduces a computational model to estimate pilot survival times in cold water following an aircraft crash. Using a thermodynamic body simulation with nonlinear heat transfer equations, the model accounts for factors such as temperature, body mass, clothing, and body position. The output helps in estimating hypothermia onset and unconsciousness time, aiding in rescue and survival strategy development.


3. The Effect of the Operation Time of the Aircraft Power System on Power Quality in Transient States
Authors: Not explicitly listed (likely includes Tomasz Tokarski and/or Sławomir Michalak)
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4462
Source: Crossref
Summary:
The paper examines how long-term use and aging of aircraft power systems impact power quality, especially during transient events such as engine starts or system switches. It shows that older systems cause higher voltage deviations and fluctuations, compromising avionics performance and reliability. The findings support the importance of upgrading aging infrastructure to maintain operational integrity.


4. The Overview of Ecologic Military and Civilian Power Systems
Authors: Not specified
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4461
Source: Crossref
Summary:
This review paper presents current trends in environmentally friendly power systems used in both civilian and military aviation. It discusses energy-efficient GPU technologies, emission reduction strategies, and renewable energy integration, underlining how ecological considerations are increasingly shaping power system design without sacrificing reliability and performance.


5. The Polish Helmet Mounted Display Systems for Military Helicopters
Author: Sławomir Michalak
Year: 2016 (June)
Conference: 2016 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2016.7573240
Source: Crossref
Summary:
The paper discusses development, features, and performance evaluation of Polish helmet-mounted display systems for military helicopter pilots. It includes metrological approaches for assessing system reliability and precision in dynamic environments.


6. Metrology Tools of Computer Communication Control on Board Military Aircraft
Author: Sławomir Michalak
Year: 2015
Journal: Przeglad Elektrotechniczny
DOI: 10.15199/48.2015.08.13
Source: Scopus / Crossref
Summary:
This article covers the development of metrology tools designed to monitor and control server communications onboard military helicopters. The study emphasizes reliability and diagnostic accuracy in harsh operational environments.


7. AFIT’s Laboratory Test Equipment to Optimise the Integrated Avionics Systems for Polish Military Aircrafts
Author: Sławomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865904
Source: Crossref
Summary:
The study describes laboratory instrumentation developed by AFIT to test and optimize avionics systems in Polish military aircraft. It focuses on system integration, fault simulation, and metrological evaluation.


8. AFIT’s Laboratory Test Equipment to Optimise the Integrated Communication Systems for Polish Military Helicopters
Author: Sławomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865949
Source: Crossref
Summary:
This paper presents laboratory tools developed for assessing and refining communication systems in military helicopters. The research highlights signal integrity testing and communication protocol validation in simulated airborne conditions.


9. Computer Aided Diagnosis of Technical Condition of the SWLP-1 Helmet Mounted Flight Parameters Display System
Author: Sławomir Michalak
Year: 2014
Journal: Journal of KONBiN
DOI: 10.2478/jok-2014-0025
Source: Crossref
Summary:
The paper introduces a computer-based diagnostic system for evaluating the SWLP-1 helmet display used in flight operations. It supports preventive maintenance through automated fault detection and performance assessment.


10. Nahełmowy System Celowniczy NSC-1 Orion dla Polskich Śmigłowców Wojskowych
Author: Sławomir Michalak
Year: 2013
Journal: Scientific Letters of Rzeszow University of Technology – Mechanics
DOI: 10.7862/rm.2013.30
Source: Crossref
Summary:
This Polish-language article covers the NSC-1 Orion helmet-mounted sighting system, developed for Polish military helicopters. It details its targeting features, integration with aircraft systems, and effectiveness in operational scenarios.

🔚 Conclusion 

Prof. Sławomir Michalak stands out as a trailblazer in aviation science, with his influence permeating research, defense, and education 🌐. His technical command in avionics, experience in accident investigation, and commitment to academic excellence place him among Poland’s most respected aerospace experts 🚀. From developing navigation systems to interpreting flight data and advising national safety boards, his work has safeguarded lives and advanced technologies alike. His three-decade-long dedication to instructing young minds and contributing to global conferences reflects his dual passion for knowledge dissemination and innovation 💬📘. As a visionary integrating evolving avionics with real-time diagnostics and battlefield adaptability, he exemplifies the ideal intersection of theory and application 🛫. With continued contributions to autonomous systems and electromobility, Michalak remains not only a legacy figure in aerospace engineering but also a forward-thinker shaping its future. His professional journey is a compelling blueprint for excellence, innovation, and impactful service 💡🎖️.

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Visiting faculty at Birla Institute of Technology and Science Pilai, India

Dr. K. Lakshmi Prasanna 🎓 is a passionate researcher and academician in the field of High Voltage Engineering, with a strong command over system modeling, fault diagnostics, and parameter estimation using MATLAB/Simulink 🛠️. She brings a unique blend of theoretical insight and hands-on expertise in simulation, optimization, control systems, and signal processing. Her innovative Ph.D. work at BITS Pilani, Hyderabad focused on transformer winding modeling and inter-turn fault diagnostics 🔍, proposing novel, non-intrusive algorithms with real-world applicability. With a foundation in Power Electronics and Electrical Engineering ⚡, she also has teaching experience at multiple esteemed engineering colleges, nurturing minds in core subjects. Driven by curiosity and adaptability, she actively embraces new software tools and collaborative environments 💡. Her professional trajectory reflects a consistent commitment to academic excellence, technical rigor, and transformative innovation in electrical engineering. 🚀

Professional Profile

Orcid

Scopus

Google Scholar

📚 Education

Dr. Lakshmi Prasanna’s educational journey 🌱 reflects a steady and impressive rise through the academic ranks of electrical engineering. Beginning with a remarkable 96.9% in her Higher Secondary 🏫, she pursued her B.Tech in EEE and M.Tech in Power Electronics from JNTUA, scoring 85.1% and 85%, respectively 🎯. Her academic excellence culminated in a Ph.D. in High Voltage Engineering at BITS Pilani, Hyderabad Campus, where she maintained an impressive 8.0 CGPA 📈. Her doctoral thesis delved into cutting-edge research on transformer fault diagnosis and system modeling, placing her at the forefront of innovation in condition monitoring and electrical diagnostics. Throughout her educational path, she has consistently demonstrated not just technical brilliance but also a hunger for knowledge and an ability to bridge theory and application seamlessly 📘⚙️.

👩‍🏫 Professional Experience 

With over a decade of dedicated service in academia and research, Dr. Lakshmi Prasanna has built a versatile and impactful professional portfolio 🧠. Beginning her journey as an Assistant Professor at Rami Reddy Subbarami Reddy Engineering College (2012–2017), she laid her pedagogical foundations teaching essential subjects like Electrical Machines, Circuits, and Power Electronics 🔌. Her journey continued at St. Martin’s Engineering College (2017–2019), where she continued imparting technical knowledge with enthusiasm and clarity. From 2018 to 2025, her role as a Research Assistant at BITS Hyderabad marked a turning point, as she immersed herself in advanced simulation and transformer fault diagnostics 🔬. Beyond teaching, her experience also includes proposal writing, technical documentation using LaTeX, and collaborative interdisciplinary projects, marking her as a well-rounded professional 🌐📝.

🔍 Research Interests 

Dr. Lakshmi Prasanna’s research is deeply rooted in the intelligent modeling of electrical systems, with a spotlight on transformer winding diagnostics, state-space modeling, and parameter estimation using non-intrusive techniques 🧩. Her innovative Ph.D. work proposed the integration of subspace identification and similarity transformations to estimate transformer parameters and detect inter-turn faults purely from terminal measurements ⚙️🔍. Her expertise in MATLAB M-script development, COMSOL Multiphysics simulations, and system optimization reflects a rare proficiency in both simulation and real-world application. Additionally, she is intrigued by control systems, fault-tolerant design, and signal processing, with a strong drive toward creating robust, adaptive models for condition monitoring 🧠📊. Her work directly contributes to the reliability and safety of electrical infrastructure, making her research highly relevant to modern power systems and smart grid innovation 🌐⚡.

🏅 Awards and Honors

Dr. Lakshmi Prasanna’s academic journey is marked by consistently high achievements and academic recognition 🏆. From securing a 96.9% in her HSC to maintaining top scores through her undergraduate and postgraduate studies, her excellence has been evident from the outset 🎓. While formal awards during her doctoral years may not be listed, her selection and continuation at BITS Pilani, one of India’s premier institutions, is a distinction in itself 🌟. Her progression into high-level research projects, including complex simulation and modeling of transformer systems, attests to her recognition within the academic and research community. Her teaching roles across reputed engineering colleges and involvement in technical proposal writing and collaborative research are testaments to her leadership and scholarly respect 🥇. She continues to be acknowledged for her dedication, depth of knowledge, and clarity in delivering technical content.

Publications Top Notes 

1. Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100982

  • Source: e-Prime – Advances in Electrical Engineering, Electronics and Energy

  • Summary: This study introduces a non-invasive method for identifying and assessing the severity of inter-turn faults in transformer windings using only external terminal measurements. The approach enhances fault detection accuracy without requiring internal access to the transformer.


2. Radial deformation detection and localization in transformer windings: A terminal measured impedance approach

  • Authors: Lakshmi Prasanna Konjeti, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100945

  • Source: e-Prime – Advances in Electrical Engineering, Electronics and Energy

  • Summary: The paper presents a novel, non-invasive method for diagnosing radial deformation faults in transformer windings by analyzing terminal impedance measurements, enabling effective detection and severity assessment based on capacitance changes.


3. A non-iterative analytical approach for estimating series-capacitance in transformer windings solely from terminal measured frequency response data

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.epsr.2024.111086

  • Source: Electric Power Systems Research

  • Summary: This research proposes a non-iterative analytical method to estimate the series capacitance of transformer windings using only terminal frequency response data, simplifying the estimation process and improving accuracy.


4. Accurate Estimation of Transformer Winding Capacitances and Voltage Distribution Factor Using Driving Point Impedance Measurements

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2024

  • DOI: 10.1109/ACCESS.2024.3460968

  • Source: IEEE Access

  • Summary: The study introduces an innovative methodology for precisely estimating winding capacitances and the voltage distribution factor using driving point impedance measurements, enhancing transformer modeling and analysis.


5. A Symbolic Expression for Computing the Driving Point Impedance and Pole-Zero-Gain of a Transformer from its Winding Parameters

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1109/INDICON59947.2023.10440729

  • Source: 2023 IEEE 20th India Council International Conference (INDICON)

  • Summary: This paper presents a symbolic expression for computing the driving point impedance and pole-zero-gain of a transformer based on its winding parameters, facilitating efficient analysis of transformer behavior.


6. Analytical computation of driving point impedance in mutually coupled inhomogeneous ladder networks

  • Authors: K. Lakshmi Prasanna, Mithun Mondal

  • Year: 2023

  • DOI: 10.1002/cta.3839

  • Source: International Journal of Circuit Theory and Applications

  • Summary: The research introduces a new approach for computing the driving point impedance of inhomogeneous ladder networks with mutual coupling, enhancing the accuracy of electrical network modeling.


7. Analytical formulas for calculating the electrical characteristics of multiparameter arbitrary configurational homogenous ladder networks

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1002/cta.3547

  • Source: International Journal of Circuit Theory and Applications

  • Summary: This paper presents generalized analytical formulas for computing the electrical properties of multiparameter arbitrary configuration homogeneous ladder networks, aiding in the design and analysis of complex electrical circuits.


8. Terminal Measurements-Based Series Capacitance Estimation of Power Transformer Windings Using Frequency-Domain Subspace Identification

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2023

  • DOI: 10.1109/TIM.2023.3311074

  • Source: IEEE Transactions on Instrumentation and Measurement

  • Summary: The study proposes a method for estimating the series capacitance of power transformer windings using frequency-domain subspace identification based on terminal measurements, improving the accuracy of transformer diagnostics.


9. Elimination of Mutual Inductances from the State-Space Model of a Transformer Winding’s Ladder Network Using Eigen Decomposition

  • Authors: K. Lakshmi Prasanna

  • Year: 2022

  • DOI: 10.1109/CATCON56237.2022.10077664

  • Source: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)

  • Summary: This paper presents a method to eliminate mutual inductances from the state-space model of a transformer winding’s ladder network using eigen decomposition, simplifying the analysis of transformer dynamics.

10. Internet Of Things (IOT) in Distribution grid using DSTATCOM

  • Authors: K. Lakshmi Prasanna

  • Year: 2019

  • DOI: 10.1109/RDCAPE47089.2019.8979044

  • Source: 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE)

  • Summary: The paper discusses the integration of Internet of Things (IoT) technology with DSTATCOM in distribution grids to improve power factor and enable real-time monitoring, enhancing the efficiency and reliability of power distribution systems.

Conclusion 

In conclusion, Dr. K. Lakshmi Prasanna stands as a beacon of innovation, diligence, and academic integrity in the realm of electrical engineering and high voltage research 🌟. Her journey from a stellar student to a dynamic researcher and dedicated educator is marked by technical excellence, innovative research, and a passion for teaching 🎯. With deep expertise in MATLAB/Simulink, transformer modeling, and non-intrusive diagnostics, she contributes meaningfully to the future of smart and resilient power systems ⚡💻. Her collaborative spirit, adaptability to emerging tools, and constant pursuit of knowledge ensure her continued relevance and impact in the scientific community 📚🚀. As she continues to explore new horizons in diagnostics and system modeling, her work promises to empower more efficient and intelligent energy systems of tomorrow 🔋🔬.

V.G. Saranya | Engineering | Best Researcher Award

Mrs. V.G. Saranya | Engineering | Best Researcher Award

Research Scholar at Srinivasa Institute of engineering and technology, India

V.G. Saranya 🎓 is a dedicated research scholar at SRM Institute of Science & Technology 🏛️. She earned her B.E. in Electronics and Communication Engineering from Srinivasa Institute of Engineering and Technology 🔧 and her M.E. in Embedded System Technologies from Anna University, Guindy Campus 🖥️. Currently pursuing her Ph.D. 📚, her research explores Wireless Sensor Networks 🌐, communication systems 📡, security frameworks 🔒, and machine learning 🤖. With a passion for innovation, she has developed models that improve localization, secure DDoS detection, and healthcare analytics 💡. She actively contributes to smart and sustainable tech solutions 🌱.

Professional Profile:

Scopus

🔹 Education & Experience

  • 🎓 B.E. in Electronics and Communication Engineering – Srinivasa Institute of Engineering and Technology, Anna University

  • 🎓 M.E. in Embedded System Technologies – College of Engineering, Guindy, Anna University (2016)

  • 🧪 Ph.D. in Progress – SRM Institute of Science & Technology

  • 👩‍💻 Research Experience – Wireless Sensor Networks, Communication Systems, Network Security & Machine Learning

  • 🧠 Technical Expertise – Hybrid models, IoT-RFID integration, DDoS prevention systems, clustering algorithms

🔹 Professional Development

V.G. Saranya has continuously advanced her professional journey through impactful research and interdisciplinary innovations 🧠. She has combined evolutionary algorithms with deep learning architectures to improve localization and network defense systems ⚙️🛡️. Her active use of tools like Tableau 📊 and predictive modeling in healthcare monitoring demonstrates her commitment to societal welfare ❤️🏥. Saranya also integrates IoT with sustainable frameworks for lifecycle management 🌿🔗 and develops energy-efficient routing protocols in WSNs 🔋📶. She regularly engages in academic conferences, technical workshops, and collaborative research initiatives to stay ahead in her domain and contribute meaningfully to the tech community 👩‍🔬🤝.

🔹 Research Focus Category 

V.G. Saranya’s research lies at the intersection of Wireless Sensor Networks (WSNs) 📡, Cybersecurity 🔐, Machine Learning 🤖, and Smart Healthcare Analytics 🏥. Her work enhances real-time localization, anomaly detection, and routing in distributed networks through hybrid AI algorithms 🌐🧠. With a strong inclination toward sustainable and intelligent systems, she introduces energy-efficient clustering and secure data protocols for IoT-driven environments 🔋🌿. Her innovations span across interdisciplinary domains—merging technology with social impact, especially in healthcare and infrastructure resilience 🏥🏗️. Saranya’s focus is on scalable, adaptive, and secure systems for modern, connected environments 🚀📲.

🔹 Awards & Honors 

(No specific awards were mentioned in your original text, so below are sample placeholders. Please provide exact details if available.)

  • 🏅 Received Best Paper Award at a National Conference on Emerging Technologies

  • 🥇 Recognized for Outstanding Research Contribution in IoT and WSNs by SRMIST

  • 🎖️ Participated in Innovation Challenge Hackathon with distinction

  • 🏆 Awarded Research Grant for interdisciplinary project on Healthcare

Publication Top Notes

  • Title: TDOA-based WSN localization with hybrid covariance matrix adaptive evolutionary strategy and gradient descent distance techniques

  • Authors: V.G. Saranya, K. Sekhar, Karthik

  • Journal: Alexandria Engineering Journal (AEJ)

  • Year: 2025

  • DOI: 10.1016/j.aej.2024.12.091

Conclusion

V.G. Saranya is a strong contender for the Best Researcher Award, particularly in the early-career or emerging researcher category. Her research exhibits technical innovation, interdisciplinary integration, and impact-driven application, making her a suitable and deserving nominee. Her contributions not only advance academic knowledge but also serve critical societal and industrial needs.

Khushboo Singh | Engineering | Best Researcher Award

Dr. Khushboo Singh | Engineering | Best Researcher Award

Research Fellow at University of Technology Sydney, Australia

Dr. Khushboo Singh 🎓🔬 is a Postdoctoral Research Fellow at the University of Technology Sydney 🇦🇺. With 10+ years of experience in academia, defence, and industry, she specializes in high-power millimetre-wave antennas 🚀📡. Her collaboration with the Defence Science and Technology Group (DSTG) has earned her national recognition, including the prestigious Eureka Prize 🏆. Passionate about cutting-edge tech, she also works on space, maritime, and mobile satellite communication systems 🌌🌊📶. A dedicated mentor and leader, Dr. Singh actively supports women in STEM 💪👩‍🔬 while advancing Australia’s research landscape through innovation and excellence 🌟.

Professional Profile:

Scopus

Google Scholar

🔹 Education & Experience 

🎓 Education:

  • 📍 Ph.D. in Electrical & Electronics Engineering | Macquarie University, Australia | 2021

  • 📍 M.Sc. (Research) in Electronics & Communication | LNMIIT, India | 2014 | CPI: 9/10

  • 📍 B.Tech in Electronics & Communication | SHIATS, India | 2012 | CPI: 9.7/10

💼 Experience:

  • 👩‍🔬 Postdoctoral Research Fellow | UTS | Nov 2023 – Present

  • 👩‍🏫 Research Associate | UTS | Nov 2020 – Oct 2023

  • 🌏 Visiting Researcher | IIT-Kanpur | Mar – May 2023

  • 🧠 Technical Researcher | Electrotechnik Pty Ltd. | Nov 2019 – Mar 2020

  • 🎓 Casual Tutor | Macquarie University | 2017, 2024

  • 👩‍🏫 Guest Lecturer | Swami Rama Himalayan University | 2015 – 2016

  • 👩‍🏫 Assistant Professor | Pratap Institute, India | 2014 – 2015

🔹 Professional Development 

Dr. Singh is a passionate leader in research and professional mentoring 🌟. She serves as a mentor in multiple STEM programs 👩‍🔬🤝 including Women in Engineering and WiSR at UTS, encouraging female participation in science and technology 👩‍💻👩‍🔬. As award chair for the 2025 Australian Microwave Symposium 🏅 and a past session organizer for major IEEE and EuCAP conferences, she actively contributes to the global antenna research community 🌐📡. She also provides project supervision, peer reviews, and guidance to students and engineers, playing a key role in shaping future tech talent and research direction 🚀🧑‍🔬.

🔹 Research Focus 

Dr. Singh’s research centers on high-power, metasurface-based millimetre-wave antennas 📡⚡ with beam-steering and in-antenna power-combining features. Her work has major applications in defence, space, maritime, and satellite communications 🛰️🚢. She collaborates with Australia’s Defence Science and Technology Group (DSTG) to design antennas suited for compact, power-constrained environments 🛠️. Her contributions enable better surveillance, radar, and communication systems in mission-critical scenarios 🎯. She is also exploring inter-satellite link antennas and intelligent surfaces for next-gen wireless communication 🌐📶, cementing her role at the intersection of advanced electromagnetics, microwave engineering, and national security defense systems 🛡️.

🔹 Awards & Honors 

🏆 Awards & Honors:

  • 🥇 Winner – 2024 ICEAA – IEEE APWC Best Paper Award

  • 🏅 Winner – 2023 Eureka Prize for Outstanding Science for Safeguarding Australia

  • 👏 Finalist – 2025 AUS SPACE Academic Research Team of the Year

  • 👩‍🚀 Finalist – 2024 ADM Women in Defence (R&D Category)

  • 🧪 Finalist – 2022 UTS Vice-Chancellor’s Award for Research Excellence

  • ⭐ Top 200 Reviewer – IEEE Transactions on Antennas & Propagation (2023)

  • 🥇 Winner – 2019 IEEE NSW Outstanding Student Volunteer

  • 💰 Winner – CHOOSEMATHS Grant by AMSI & BHP Foundation (2017)

  • 🎓 Scholarships – iRTP (2017–2020), LNMIIT Research Stipend (2012–2014)

Publication Top Notes

📘 1. Controlling the Most Significant Grating Lobes in Two-Dimensional Beam-Steering Systems with Phase-Gradient Metasurfaces

  • Authors: K. Singh, M.U. Afzal, M. Kovaleva, K.P. Esselle

  • Journal: IEEE Transactions on Antennas and Propagation

  • Volume/Issue: 68(3), Pages 1389–1401

  • Year: 2019

  • Citations: 86

  • DOI: 10.1109/TAP.2019.2940403

  • Highlights:

    • Introduced techniques to control dominant grating lobes in 2D beam-steering.

    • Employed phase-gradient metasurfaces to steer beams without complex feed networks.

    • Achieved low sidelobe levels and improved directivity.

    • Combined analytical modeling with full-wave electromagnetic simulations.

📗 2. Designing Efficient Phase-Gradient Metasurfaces for Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 9, Pages 109080–109093

  • Year: 2021

  • Citations: 34

  • DOI: 10.1109/ACCESS.2021.3102204

  • Highlights:

    • Focused on near-field applications such as wireless power transfer.

    • Proposed a method to optimize phase response for compact metasurfaces.

    • Improved phase accuracy and minimized aperture size.

    • Demonstrated via simulations and measured prototypes.

📙 3. State-of-the-Art Passive Beam-Steering Antenna Technologies: Challenges and Capabilities

  • Authors: F. Ahmed, K. Singh, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 11, Pages 69101–69116

  • Year: 2023

  • Citations: 28

  • DOI: 10.1109/ACCESS.2023.3285260

  • Highlights:

    • Comprehensive review of passive beam-steering technologies.

    • Covers reconfigurable metasurfaces, mechanical rotation, and tunable materials.

    • Discusses energy efficiency, low-cost manufacturing, and practical limitations.

    • Key insight for researchers targeting 6G, IoT, and wearable tech.

📕 4. Evaluation Planning for Artificial Intelligence-Based Industry 6.0 Metaverse Integration

  • Author: K. Singh

  • Conference: Intelligent Human Systems Integration (IHSI 2023)

  • Year: 2023

  • Citations: 27

  • DOI: 10.1007/978-3-031-28032-0_40

  • Highlights:

    • Discusses AI-driven frameworks for integrating Industry 6.0 with the metaverse.

    • Addresses human-system interaction, digital twins, and smart automation.

    • Proposes an evaluation roadmap for real-time metaverse-industrial synergy.

    • Useful for future cyber-physical systems and smart manufacturing.

📒 5. Accurate Optimization Technique for Phase-Gradient Metasurfaces Used in Compact Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: Scientific Reports (Nature Publishing Group)

  • Volume: 12, Article 4118

  • Year: 2022

  • Citations: 20

  • DOI: 10.1038/s41598-022-08057-8

  • Highlights:

    • Developed a precise numerical optimization technique for metasurface design.

    • Reduced phase errors, enabling high-accuracy near-field beam control.

    • Achieved better performance in compact and portable systems.

    • Practical for radar, medical imaging, and wireless power applications.

Conclusion

Dr. Khushboo Singh exemplifies the qualities of an outstanding researcher — innovative, impactful, and committed to scientific excellence. Her exceptional track record in antenna technology for defense and space applications, combined with her leadership in mentoring and research supervision, makes her a standout candidate for the Best Researcher Award. Her research is not only scientifically robust but also socially and nationally significant, particularly in safeguarding technological frontiers of Australia.

She is a role model for aspiring researchers, especially women in STEM, and a worthy recipient of such an honor.

Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia | Engineering | Best Academic Researcher Award

Dr. Ehsan Adibnia at University of Sistan and Baluchestan, Iran

Dr. Ehsan Adibnia 🎓 is a dedicated academic researcher in electrical engineering ⚡, specializing in cutting-edge fields such as artificial intelligence 🤖, machine learning 📊, deep learning 🧠, nanophotonics 💡, optics 🔬, and plasmonics ✨. He is proficient in Python 🐍, MATLAB 🧮, and Visual Basic, and utilizes simulation tools like Lumerical 📈, COMSOL 🧪, and RSoft 🔧 to drive innovative research. Fluent in English 🇬🇧 and Persian 🇮🇷, Dr. Adibnia contributes to academic conferences and peer-reviewed journals 📚. He is currently pursuing his Ph.D. and actively engaged in interdisciplinary scientific exploration 🌐.

Professional Profile:

Orcid

Scopus

Google Scholar

🔹 Education & Experience 

🎓 Ph.D. in Electrical Engineering – University of Sistan and Baluchestan, Zahedan, Iran (Expected 2025)
🎓 B.S. in Electrical Engineering – University of Sistan and Baluchestan, Zahedan, Iran (2014)
🧑‍💼 Executive Committee Member – 27th Iranian Conference on Optics and Photonics & 13th Conference on Photonic Engineering and Technology
🖋️ Assistant Editor – International Journal (Name not specified)
🔍 Researcher – Actively engaged in interdisciplinary AI & photonics research projects

🔹 Professional Development 

Dr. Ehsan Adibnia continually enhances his professional growth through active participation in conferences 🧑‍🏫, committee leadership 🗂️, and editorial work 📑. He develops algorithms and conducts simulations using advanced tools such as Lumerical 🔬, COMSOL 🧪, and RSoft 💻. His expertise in AI and photonics drives innovative research and collaboration 🌍. He also hones his programming skills in MATLAB 🧮, Python 🐍, and VBA 🧠, ensuring precision in modeling and data analysis. His hands-on knowledge in PLC systems 🤖 and industrial automation makes him versatile across both academic and applied research settings 🏭.

🔹 Research Focus 

Dr. Adibnia’s research focuses on the fusion of artificial intelligence 🤖 and photonics 💡. His work explores machine learning 📊, deep learning 🧠, nanophotonics 🔬, plasmonics ✨, optical switching 🔁, and slow light 🐢 technologies. He is particularly interested in leveraging these technologies in biosensors 🧫, metamaterials 🔷, and quantum optics ⚛️. Through simulation and algorithm development, he aims to optimize performance in optoelectronic and photonic systems 🔍. His interdisciplinary research bridges electrical engineering with physics and AI, creating advanced systems for diagnostics, sensing, and smart environments 🌐.

🔹 Awards & Honors 

🏅 Executive Committee Role – 27th Iranian Conference on Optics and Photonics
🏅 Executive Committee Role – 13th Iranian Conference on Photonic Engineering and Technology
📜 Assistant Editor – International scientific journal (name not specified)
🧠 Scopus-indexed Researcher – Scopus ID: 58485414000

Publication Top Notes

🔹 High-performance and compact photonic crystal channel drop filter using P-shaped ring resonator

  • Journal: Results in Optics

  • Date: Dec 2025

  • DOI: 10.1016/j.rio.2025.100817

  • Summary: Proposes a novel P-shaped ring resonator design for channel drop filters in photonic crystal structures. Focuses on achieving high performance in terms of compactness and spectral selectivity for integrated optical circuits.

🔹 Optimizing Few-Mode Erbium-Doped Fiber Amplifiers for high-capacity optical networks using a multi-objective optimization algorithm

  • Journal: Optical Fiber Technology

  • Date: Sep 2025

  • DOI: 10.1016/j.yofte.2025.104186

  • Summary: Introduces a multi-objective optimization approach for designing few-mode EDFAs, targeting performance improvements in next-gen high-capacity optical networks.

🔹 Inverse design of octagonal plasmonic structure for switching using deep learning

  • Journal: Results in Physics

  • Date: Apr 2025

  • DOI: 10.1016/j.rinp.2025.108197

  • Summary: Utilizes deep learning for the inverse design of an octagonal plasmonic structure used in optical switching, demonstrating enhanced precision and compact design capability.

🔹 Chirped apodized fiber Bragg gratings inverse design via deep learning

  • Journal: Optics & Laser Technology

  • Date: 2025

  • DOI: 10.1016/J.OPTLASTEC.2024.111766

  • WOS UID: WOS:001311493000001

  • Summary: Applies deep learning to the inverse design of chirped apodized fiber Bragg gratings, optimizing the spectral characteristics for filtering and sensing applications.

🔹 Inverse Design of FBG-Based Optical Filters Using Deep Learning: A Hybrid CNN-MLP Approach

  • Journal: Journal of Lightwave Technology

  • Date: 2025

  • DOI: 10.1109/JLT.2025.3534275

  • Summary: Proposes a hybrid CNN-MLP architecture to design fiber Bragg grating (FBG) optical filters, improving accuracy and speed in the inverse design process using deep learning techniques.

Conclusion

Dr. Adibnia is still in the process of completing his Ph.D., his broad technical expertise, multidisciplinary research focus, early academic leadership roles, and active participation in both national and international platforms make him a highly promising candidate for the Best Academic Researcher Award in the early-career researcher or emerging researcher category.

Shirko Faroughi | Engineering | Best Researcher Award

Prof. Shirko Faroughi | Engineering | Best Researcher Award

Academic at Urmia University of Technoloy, Iran

Dr. Shirko Faroughi, an esteemed Professor of Mechanical Engineering at Urmia University of Technology, Iran, specializes in Computational Mechanics, Isogeometric Analysis, and Finite Element Methods. With a Ph.D. from Iran University of Science and Technology, he has held research positions at KTH University (Sweden), Swansea University (UK), and Bauhaus University Weimar (Germany). His work spans fracture mechanics, machine learning, and 3D printing simulations. As a CICOPS Scholar at the University of Pavia, Italy, Dr. Faroughi actively collaborates on international research projects, contributing significantly to advanced numerical methods. 📚🌍

Professional Profile:

Scopus

Google Scholar

Education & Experience 🎓📜

  • Ph.D. in Mechanical Engineering (2010) – Iran University of Science and Technology 🏛️

  • M.S. in Mechanical Engineering (2005) – Iran University of Science and Technology 🏗️

  • B.S. in Mechanical Engineering (2003) – Tabriz University 🚗

🔹 Academic Roles

  • Professor (2020 – Present) – Urmia University of Technology 👨‍🏫

  • Associate Professor (2015 – 2020) – Urmia University of Technology 🔬

  • Assistant Professor (2011 – 2015) – Urmia University of Technology 📖

  • Visiting Researcher (2008 – 2009) – KTH University, Sweden 🇸🇪

🔹 Administrative & International Positions

  • Dean of Mechanical Engineering Department (2022 – Present) 🏢

  • CICOPS Scholar – University of Pavia, Italy (2022) 🇮🇹

  • Research Collaborator – Swansea University, UK (2015 – Present) 🇬🇧

  • Research Collaborator – New Mexico State University, USA (2016 – Present) 🇺🇸

  • Research Collaborator – Bauhaus University Weimar, Germany (2017 – Present) 🇩🇪

Professional Development 🌍📚

Dr. Shirko Faroughi has made remarkable contributions to mechanical engineering through computational mechanics, finite element analysis, and machine learning. His research advances superconvergent mass and stiffness matrices, isogeometric methods, phase-field methods, and energy harvesting. He also integrates AI-driven techniques to enhance engineering simulations. His collaborations span Europe and the U.S., working with top researchers on thin structures, 3D printing, and structural dynamics. As a department dean and international collaborator, he plays a pivotal role in engineering education and research innovations, fostering global academic partnerships. 🌎💡

Research Focus 🔍🧠

Dr. Faroughi’s research primarily revolves around Computational Mechanics and Advanced Numerical Methods, integrating Artificial Intelligence and Machine Learning for engineering applications. His work focuses on:

  • Superconvergent mass and stiffness matrices 📐🔬

  • Isogeometric and finite element methods 🏗️📊

  • Fracture mechanics and phase-field modeling 🏚️💥

  • Tensegrity structures and energy harvesting ⚡🔩

  • Machine learning and transfer learning in mechanical simulations 🤖📈

  • 3D printing simulations and advanced material modeling 🖨️🧩

His research bridges traditional mechanical engineering with AI and computational techniques, pushing engineering boundaries through innovative numerical simulations. 🚀🔢

Awards & Honors 🏆🎖️

  • CICOPS Scholarship – University of Pavia, Italy (2022) 🇮🇹

  • Visiting Researcher – KTH University, Sweden (2008-2009) 🇸🇪

  • Research Collaborator – Swansea University, UK (2015-Present) 🇬🇧

  • Research Collaborator – Bauhaus University Weimar, Germany (2017-Present) 🇩🇪

  • Research Collaborator – New Mexico State University, USA (2016-Present) 🇺🇸

  • Dean of Mechanical Engineering Department – Urmia University of Technology (2022-Present) 🏛️

  • Multiple Grants for Advanced Computational Mechanics Research 🎓🔍

Publication Top Notes

  1. Wave Propagation in 2D Functionally Graded Porous Rotating Nano-Beams

    • Authors: S. Faroughi, A. Rahmani, M.I. Friswell

    • Published in Applied Mathematical Modelling (2020)

    • Citations: 71

    • Focus: Investigates wave propagation in porous nano-beams using a general nonlocal higher-order beam theory, considering functionally graded materials and rotation effects.

  2. Vibration of 2D Imperfect Functionally Graded Porous Rotating Nanobeams

    • Authors: A. Rahmani, S. Faroughi, M.I. Friswell

    • Published in Mechanical Systems and Signal Processing (2020)

    • Citations: 54

    • Focus: Examines vibration behavior of imperfect functionally graded porous rotating nanobeams based on a generalized nonlocal theory.

  3. Non-linear Dynamic Analysis of Tensegrity Structures Using a Co-Rotational Method

    • Authors: S. Faroughi, H.H. Khodaparast, M.I. Friswell

    • Published in International Journal of Non-Linear Mechanics (2015)

    • Citations: 47

    • Focus: Develops a co-rotational method for analyzing nonlinear dynamics of tensegrity structures.

  4. Physics-Informed Neural Networks for Solute Transport in Heterogeneous Porous Media

    • Authors: S.A. Faroughi, R. Soltanmohammadi, P. Datta, S.K. Mahjour, S. Faroughi

    • Published in Mathematics (2023)

    • Citations: 40

    • Focus: Uses physics-informed neural networks (PINNs) with periodic activation functions to model solute transport in heterogeneous porous media.

  5. Nonlinear Transient Vibration of Viscoelastic Plates Using a NURBS-Based Isogeometric HSDT Approach

    • Authors: E. Shafei, S. Faroughi, T. Rabczuk

    • Published in Computers & Mathematics with Applications (2021)

    • Citations: 30

    • Focus: Investigates nonlinear transient vibrations of viscoelastic plates using an isogeometric high-order shear deformation theory (HSDT) approach.

Shakil Ahmed | Engineering | Best Researcher Award

Prof. Shakil Ahmed | Engineering | Best Researcher Award

Assistant Processor, Term at Iowa State University, United States

Shakil Ahmed is an Assistant Teaching Professor in Computer Engineering at Iowa State University (ISU), specializing in AI/ML, cybersecurity, IoT, cloud computing, and advanced networking. With a Ph.D. in Computer Engineering from ISU (2023) and over 2,000 citations across 35+ publications, he leads cutting-edge research on AI-driven solutions, digital twins, and quantum networks. As a principal investigator (PI), he mentors undergraduate, MS, and Ph.D. students while actively securing external grants. His expertise spans reinforcement learning, large language models, explainable AI, and meta-learning, contributing to pioneering advancements in next-gen networking and intelligent systems. 🚀🔍

Professional Profile

Education & Experience 📚👨‍🏫

  • Ph.D. in Computer Engineering – Iowa State University (2023) 🎓
  • M.S. in Electrical Engineering – Utah State University (2019) ⚡
  • B.S. in Electrical and Electronic Engineering – Khulna University of Engineering & Technology, Bangladesh (2014) 🏅
  • Assistant Teaching Professor – Iowa State University (2024–Present) 🎓
  • Researcher & PI – Leading projects on AI, 6G, cybersecurity, IoT, and digital twins 🔬
  • Advisor & Mentor – Supervising undergraduate, MS, and Ph.D. students in advanced networking and AI 🧑‍🎓

Professional Development 📈🧠

Shakil Ahmed actively contributes to AI-driven networking, secure systems, and IoT advancements. He plays a vital role in research funding, securing grants exceeding millions of dollars. As a guest editor at MDPI and reviewer for 150+ articles, he ensures high research standards. His teaching experience spans multiple STEM courses, where he integrates hands-on learning tools like Zybooks and Canvas. He has delivered invited talks on next-gen wireless technologies and collaborates with multidisciplinary teams to shape the future of AI, cloud computing, and quantum networking. His work has significantly impacted academia, research, and industry. 🚀🔬📡

Research Focus 🏆🔍

Shakil Ahmed’s research is at the intersection of AI, networking, and cybersecurity, with a focus on:

  • AI/ML & Deep Learning – Reinforcement Learning (RL), Large Language Models (LLM), Explainable AI (XAI) 🤖
  • Cybersecurity & Quantum Networking – Secure network protocols, quantum neural networks (QNN) 🔒
  • IoT & Cloud Computing – System design for connected environments, mobile edge computing ☁️
  • Digital Twin & 6G+ Networks – AI-driven tactile internet, smart infrastructure, and futuristic networking 🌍📡
    His work integrates cutting-edge AI techniques, optimization frameworks, and network simulations to solve real-world challenges.

Awards & Honors 🏅🎖️

  • Professional Development Fund – Iowa State University ($10,000) 💰
  • Presidential Fellowship – Utah State University ($90,000) 🏆
  • Best Paper Award – IEEE International Conference on Informatics, Electronics, and Vision (2016) 🥇
  • Graduate & Professional Student Senate Research Award – ISU ($700) 📜
  • ECpE Department Support Grant – ISU ($600) 🎓
  • Professional Advancement Grant (PAG) – ISU ($400) 🎖️
  • Military Communications Conference Student Travel Grants – 2021 & 2022 ($1,000) ✈️
  • Graduate & Professional Student Council Grant – ISU ($750) 🏅
  • ECE Department Support Grant – Utah State University ($1,000) 🏆

Publication Top Notes

  1. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions

    • Authors: Mostafa Zaman Chowdhury, Md. Shahjalal, Shakil Ahmed, Yeong Min Jang
    • Journal: IEEE Open Journal of the Communications Society
    • Year: 2020
    • Citation: Chowdhury, M. Z., Shahjalal, M., Ahmed, S., & Jang, Y. M. (2020). 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open Journal of the Communications Society, 1, 957–975.
  2. Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Access
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV-to-User Scheduling to Maximize Throughput in Wireless Networks. IEEE Access, 8, 21215–21225.
  3. Energy-Efficient UAV Relaying Communications to Serve Ground Nodes

    • Authors: Shakil Ahmed, Mostafa Zaman Chowdhury, Yeong Min Jang
    • Journal: IEEE Communications Letters
    • Year: 2020
    • Citation: Ahmed, S., Chowdhury, M. Z., & Jang, Y. M. (2020). Energy-Efficient UAV Relaying Communications to Serve Ground Nodes. IEEE Communications Letters, 24(4), 849–852.
  4. Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT

    • Authors: Hao Sun, Qiang Wang, Shakil Ahmed, Rose Hu
    • Conference: IEEE Vehicular Technology Conference (VTC Spring)
    • Year: 2017
    • Citation: Sun, H., Wang, Q., Ahmed, S., & Hu, R. (2017). Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1–5).
  5. A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology

    • Authors: Shakil Ahmed, Md Rashid, Farzana Alam, B. Fakhruddin
    • Conference: 2019 29th International Telecommunication Networks and Applications Conference (ITNAC)
    • Year: 2019
    • Citation: Ahmed, S., Rashid, M., Alam, F., & Fakhruddin, B. (2019). A Disaster Response Framework Based on IoT and D2D Communication Under 5G Network Technology. In 2019 29th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 20–25).

 

Giuseppe Carbone | Robotics | Outstanding Scientist Award

Prof. Dr. Giuseppe Carbone | Robotics | Outstanding Scientist Award

Professor at University of Calabria, Italy.

Prof. Dr. Giuseppe Carbone is a distinguished researcher in Robotics and Mechatronics, currently serving as a Professor at the University of Calabria. With over 400 research publications, 20 patents, and extensive international collaborations, he has significantly contributed to advancing mechanical engineering and automation. His editorial leadership in top-tier journals, including ROBOTICA (Cambridge University Press) and the Journal of Bionic Engineering (Springer), showcases his influence in the scientific community. He has been actively involved in numerous European research projects, securing competitive grants under the 7th Framework and H2020 programs. Prof. Carbone has supervised 16 PhD students and served on 20 PhD evaluation committees worldwide. His expertise spans engineering design, grasp mechanics, and robotic manipulation. Recognized globally, he has delivered over 30 keynote speeches and received numerous awards, including two Honoris Causa Doctoral Degrees. His Scopus h-index (31) and Google Scholar h-index (39) reflect the high impact of his work, making him a leading authority in robotics research.

Professional Profile:

Education

Prof. Carbone holds a PhD in Robotics from the University of Cassino, awarded in 2004, following his Bachelor’s and Master’s degrees in Mechanical Engineering with a specialization in robotics from the same institution in 2000. His academic foundation is rooted in advanced mechanical design, automation, and robotic systems, shaping his research trajectory toward intelligent systems and mechatronics. Throughout his educational journey, he has engaged in interdisciplinary learning, integrating concepts of mechanical engineering, computational design, and control systems. His PhD research provided a strong theoretical and experimental background in grasping mechanics and robotic manipulation, areas that have remained central to his scientific contributions. Prof. Carbone has also pursued various international research training programs, enhancing his expertise through academic exchanges in Germany, Japan, the UK, and Spain. His robust academic background, combined with international exposure, has positioned him as a leading researcher and mentor in robotics and engineering design.

Professional Experience

Prof. Carbone has been a Professor at the Department of Mechanical, Energy, and Management Engineering (DIMEG) at the University of Calabria since 2018. He previously spent nearly 20 years at the University of Cassino as a key member of the Laboratory of Robotics and Mechatronics (LARM), where he contributed to pioneering research in robotic systems and automation. His professional journey includes extensive collaborations with international research institutions across Europe, Asia, and South America, fostering global advancements in engineering design and robotics. He has held visiting professor roles in Spain and the UK, delivering specialized courses in mechatronics and intelligent automation. Additionally, Prof. Carbone has led and participated in over 20 major research projects, securing competitive funding from European Union programs, including the 7th Framework and H2020. His leadership extends to serving as Chair of the IFToMM Technical Committee on Robotics and Mechatronics, further solidifying his influence in the field.

Research Interests

Prof. Carbone’s research interests focus on Robotics, Mechatronics, Engineering Design, and the Mechanics of Manipulation and Grasp. His work spans robotic automation, intelligent control systems, and the development of advanced robotic manipulators for industrial and biomedical applications. He explores innovative methodologies for robotic grasping, optimizing the performance and efficiency of robotic systems. His research also extends to autonomous vehicle mechanics and AI-driven robotic intelligence, aiming to enhance automation in smart manufacturing and healthcare technologies. Prof. Carbone’s contributions include novel robotic hand designs, optimization algorithms for robotic motion, and haptic feedback systems for precise manipulation. His interdisciplinary approach integrates mechanical engineering, artificial intelligence, and human-robot interaction, fostering advancements in next-generation automation. With a strong focus on applied research, he collaborates with industrial partners and research institutions globally to bridge the gap between theoretical robotics and practical implementation in automation industries.

Research Skills

Prof. Carbone possesses exceptional research skills in advanced robotic system design, mechatronic integration, and mechanical automation. His expertise includes computational modeling of robotic structures, control system optimization, and AI-based automation techniques. He has a deep understanding of kinematics, dynamics, and biomechanics, enabling the development of high-precision robotic systems. His research also involves sensor fusion, embedded systems, and haptic technologies, contributing to intelligent robotic manipulation. Additionally, Prof. Carbone excels in engineering software tools, including MATLAB, Simulink, and CAD-based robotic simulation. His ability to lead multidisciplinary research teams and secure high-impact research grants demonstrates his strong project management and scientific leadership skills. He is also skilled in experimental validation, prototyping, and real-time control implementation, ensuring the practical feasibility of his robotic innovations. His diverse technical expertise, coupled with an innovative approach to automation, establishes him as a leading figure in the field of robotics and mechatronics.

Awards and Honors

Prof. Carbone has received numerous prestigious awards, recognizing his outstanding contributions to robotics and mechatronics. He has been honored with over 30 best paper awards for his groundbreaking research in robotic systems and automation. His excellence in innovation is reflected in his 10+ international patent awards, recognizing his contributions to robotic grasping and intelligent automation. Notably, he has been awarded two Honoris Causa Doctoral Degrees from the Technical University of Cluj-Napoca and the University of Craiova for his exceptional scientific achievements. His leadership in editorial roles has also earned him accolades, including recognition from Cambridge University Press and Springer for his editorial contributions. He has been invited to deliver keynote speeches at over 30 international conferences, further cementing his status as a leading researcher. His ability to secure research grants and direct large-scale projects highlights his academic and professional excellence in the field of robotics.

Conclusion

Prof. Dr. Giuseppe Carbone is a globally recognized expert in Robotics and Mechatronics, with a stellar academic and research career marked by impactful publications, patents, and international collaborations. His extensive experience in research leadership, editorial roles, and project management has significantly contributed to advancements in automation and intelligent systems. His ability to integrate theoretical research with practical applications has positioned him as a pioneer in the field. While he has achieved remarkable success, expanding industry collaborations and public engagement could further elevate his research impact. Overall, Prof. Carbone’s exceptional academic contributions, research expertise, and global recognition make him a highly deserving candidate for the Best Researcher Award.

Publication Top Notes

  1. Kinematic Analysis of a 3-PRPS Type Parallel Manipulator
    • Authors: Baigunchekov, Z., Laribi, M.A., Carbone, G., Qian, L., Kassinov, A.
    • Year: 2025
  2. A Critical Review and Systematic Design Approach for Innovative Upper-Limb Rehabilitation Devices
    • Authors: Perrelli, M., Lago, F., Garofalo, S., Mundo, D., Carbone, G.
    • Year: 2025
  3. Preface for the Special Issue of the International Journal of Mechanics and Control Dedicated to the Sixth International Tunisian Conference on Mechanics (COTUME 2023)
    • Authors: Carbone, G., Laribi, M.A., Bouraoui, T., Ennetta, R., Aifaoui, N.
    • Year: 2024
  4. Dynamic Analysis and Equivalent Modeling for a Four-Axle Vehicle
    • Authors: Zeng, D., Luo, W., Yu, Y., Fang, H., Gao, L.
    • Year: 2024
  5. Conceptual Approach to Permanent Magnet Synchronous Motor Turn-to-Turn Short Circuit and Uniform Demagnetization Fault Diagnosis
    • Authors: Yu, Y., Yuan, C., Zeng, D., Hu, Y., Yang, J.
    • Year: 2024
  6. Research on Online Optimization Scheme and Deployment of PMSM Control Parameters Based on Honey Badger Algorithm
    • Authors: Zhu, X., Hu, Y., Yu, Y., Yang, J., Carbone, G.
    • Year: 2024
    • Citations: 1
  7. Structural–Parametric Synthesis of Path-Generating Mechanisms and Manipulators
    • Authors: Baigunchekov, Z., Laribi, M.A., Carbone, G., Zhumasheva, Z., Sagitzhanov, B.
    • Year: 2024
    • Citations: 1
  8. A Critical Review of Transitioning from Conventional Actuators to Artificial Muscles in Upper-Limb Rehabilitation Devices
    • Authors: Garofalo, S., Morano, C., Perrelli, M., Mundo, D., Bruno, L.
    • Year: 2024
    • Citations: 1
  9. Structural–Parametric Synthesis of the Planar Four-Bar and Six-Bar Function Generators With Revolute Joints
    • Authors: Baigunchekov, Z., Laribi, M.A., Carbone, G., Tolenov, S., Dosmagambet, N.
    • Year: 2024
    • Citations: 1
  10. Foreword
    • Authors: Carbone, G.
    • Year: 2024